-
صنعت نفت
هنگامي كه ريچارد اسملي (Richard Smally) برندة جايزة نوبل، بالك مينستر فلورسنس را در سال 1985 در دانشگاه رايس كشف نمود، انتظار اندكي داشت كه تحقيق او بتواند صنعت نفت را متأثر سازد. سازمان انرژي آمريكا (DOE) سرمايهگذاري خود را در قسمت فناوري نانو تا 62 درصد افزايش داد تا مطالعات لازم در زمينة موادي با نامهاي باكيبالها (Bulky Balls) و باكيتيوبها (Bulky Tubes) استوانههاي كربني كه داراي قطر متر ميباشند، صورت گيرد. نانولولههاي كربني با وزني در حدود وزن فولاد، صد برابر مستحكم تر از آن بوده، داراي رسانش الكتريكي معادل با مس و رساني گرمايي هم ارز با الماس ميباشند. نانوفيلترها ميتوانند به جداسازي مواد در ميدانهاي نفتي كمك كنند و كاتاليستهاي نانو ميتوانند تأثير چندين ميليارد دلاري در فرآيند پالايش بهدنبال داشته باشند. از ساير مزاياي نانولولههاي كربني ميتوان به كاربرد آنها در تكنولوژي اطلاعات ( IT ) نظير ساخت پوششهاي مقاوم در مقابل تداخلهاي الكترومغناطيسي، صفحههاي نمايش مسطح، مواد مركب جديد و تجهيزات الكترونيكي با كارآيي زياد اشاره نمود. علم نانو يك تحول بزرگ در مقياس بسيار كوچك بسياري از محققان و سياستمداران جهان معتقدند كه علم نانو ميتواند تحولات اساسي در صنعت جهاني ايجاد نمايد صنعت نفت نيز از پيشرفت اين تكنولوژي بهرهمند خواهد گشت. علم نانو ميتواند به بهبود توليد نفت و گاز با تسهيل جدايش نفت وگاز در داخل مخزن كمك نمايد. اين كار با درك بهتر فرآيندها در سطوح مولكولي امكانپذير ميباشد. با توجه به اينكه نانو مربوط به ابعادي در حدود متر ميباشد، نانوتكنولوژي به مفهوم ساخت مواد و ساختارهاي جديد توسط مولكولها و اتمها در اين مقياس ميباشد.
خوشبختانه كاربردهاي عملي نانو در صنعت نفت جايگاه ويژهاي دارند. نانوتكنولوژي ديدگاههاي جديد جهت استخراج بهبوديافتة نفت فراهم كرده است. اين تكنولوژي به جدايش موثرتر نفت و آب كمك ميكند. با افزودن موادي در مقياس نانو به مخزن ميتوان نفت بيشتري آزاد نمود. همچنين ميتوان با گسترش تكنيكهاي اندازهگيري توسط سنسورهاي كوچك، اطلاعات بهتري دربارة مخزن بدست آورد. صنعت نفت تقريباً در تمام فرآيندها احتياج به موادي مستحكم و مطمئن دارد. با ساخت موادي در مقياس نانو ميتوان تجهيزاتي سبكتر، مقاومتر و محكمتر از محصولات امروزي توليد نمود. شركت نانوتكنولوژي GP در هنگكنگ يكي از پيشگامان توسعة كربيد سيليكون، يك پودر سراميكي در ابعاد نانو ميباشد.
با استفاده از اين پودرها ميتوان مواد بسيار سختي توليد نمود. اين شركت در حال حاضر مشغول مطالعه و تحقيق بر روي ساير مواد مركب ميباشد و معتقد است كه ميتوان با نانوكريستالها تجهيزات حفاري بادوامتر و مستحكمتري توليد كرد. همچنين متخصصان اين شركت يك سيال جديد حاوي ذرات و نانوپودرهاي بسيار ريز توليد نمودهاند كه بهطور قابل توجهي سرعت حفاري را بهبود ميبخشد. اين مخلوط آسيبهاي وارده به ديوارة مخزن در چاه را حذف نموده و قابليت استخراج نفت را افزايش ميبخشد.
-
آلودگي توسط مواد شيميايي و يا گازهاي آلاينده مبحثي بسيار دشوار در توليد نفت و گاز ميباشد. نتايج بدستآمده از تحقيقات دانشمندان حاكي از آن است كه نانوتكنولوژي ميتواند تا حد مطلوبي به كاهش آلودگي كمك كند. در حال حاضر فيلترها و ذراتي با ساختار نانو در حال توسعه ميباشند كه ميتوانند تركيبات آلي را از بخار نفت جدا سازند. اين نمونهها عليرغم اينكه اندازهاي در حدود چند نانومتر دارند، داراي سطح بيروني وسيعي بوده و قادر به كنترل نوع سيال گذرنده از خود ميباشند. همچنين كاتاليستهايي با ساختار نانو جهت تسهيل در جداسازي سولفيد هيدروژن، آب، مونوكسيدكربن، و دياكسيد كربن از گازطبيعي در صنعت نفت بكار گرفته ميشوند. در حال حاضر مطالعاتي بر روي نمونههايي از خاك رس در ابعاد نانو و جهت تركيب با پليمرهايي صورت ميپذيرد كه بتوانند هيدروكربنها را جذب نمايند. بنابراين ميتوان باقيماندههاي نفت را از گل حفاري جدا نمود.
-
سنسورهاي هيدروژن خود تميز كننده: خواص فوتوكاتاليستي نانوتيوبهاي تيتانيا در مقايسه با هر فرمي از تيتانيا بارزتر ميباشد، بطوريكه آلودگيهاي ايجادشده تحت تابش اشعة ماوراء بنفش بهطور قابل توجهي از بين ميروند. تا اينكه سنسورها بتوانند حساسيت اصلي خود نسبت به هيدروژن را حفظ نمايد. تحقيقات انجامگرفته در اين زمينه حاكي از آن است كه نانوتيوبهاي تيتانيا داراي يك مقاومت الكتريكي برگشتپذير ميباشند، بطوريكه اگر هزار قطعه از آنها در مقابل يك ميليون اتم هيدروژن قرار بگيرند، مقاومت الكتريكي آن در حدود يكصد ميليون درصد افزايش مييابد. سنسورهاي هيدروژن بطور گستردهاي در صنايع شيميايي، نفت و نيمهرساناها مورد استفاده قرار ميگيرند. از آنها جهت شناسايي انواع خاصي از باكتريهاي عفونتزا استفاده ميگردد. به هر حال محيطهايي نظير تأسيسات و پالايشگاههاي نفتي كه سنسورهاي هيدروژن از كاربردهاي ويژهاي برخوردار ميباشند، ميتوانند بسيار آلوده و كثيف باشند. اين سنسورهاي هيدروژن نانوتيوبهاي تيتانيا هستند كه توسط يك لاية غيرپيوستهاي از پالاديم پوشانده شدهاند. محققان اين سنسورها را به مواد مختلفي نظير اسيد استريك ( يك نوع اسيد چرب )، دود سيگار و روغنهاي مختلفي آلوده نمودند و سپس مشاهده كردند كه تمام اين آلودهكنندهها در اثر خاصيت فوتوكاتاليستي نانوتيوبها از بين ميروند. حد نهايي آلودگيها زماني بود كه دانشمندان اين سنسورها را در روغنهاي مختلفي غوطهور ساخته و سنسورها توانستند خواص خود را بازيابند. محققان سنسورها را در دماي اتاق به مقدار هزار قطعه در مقابل يك ميليون اتم هيدروژن در معرض اين گاز قرار دادند و مشاهده نمودند كه در طرحهاي اولية سنسور مقاومت الكتريكي آن به ميزان 175000 درصد تغيير ميكند. سپس سنسورها را توسط لايهاي به ضخامت چندين ميكرون از روغن موتور پوشاندند تا بطور كلي حساسيت آنها نسبت به هيدروژن از بين برود. سپس اين سنسورها را در هواي عادي به مدت 10 ساعت در معرض نور ماوراء بنفش قرار دادند و پس از يك ساعت مشاهده نمودند كه سنسورها مقدار قابل توجهي از حساسيت خود را بدست آورده و پس از گذشت 10 ساعت تقريباً بطور كامل به وضعيت عادي خود بازگشتند.
عليرغم قابليت بازگشتي بسيار مناسب اين سنسورها نميتوانند پس از آلودگي به انواع خاصي از آلودهكنندهها حساسيت خود را باز يابند.
-
براي مثال روغن wq-40 به علت دارابودن مقداري نمك خاصيت فوتوكاتالسيتي نانوتيوبها را تا حد زيادي از بين ميبرد. با افزودن مقدار اندكي از فلزات مختلف نظير قلع، طلا، نقره، مس و نايوبيم، يك گروه متنوعي از سنسورهاي شيميايي بدست ميآيند. اين فلزات خاصيت فوتوكاتاليستي نانوتيوبهاي تيتانيا را تغيير ميدهند. به هر حال سنسورها در يك محيط غيرقابل كنترل در دنياي واقعي توسط مواد گوناگوني نظير بخارهاي آلي فرار، دودة كربن و بخارهاي نفت و همچنين گرد و غبار آلوده ميگردند. قابليت خودپاككنندگي اين سنسورها طول عمر آنها را افزايش و از همه مهمتر خطاي آنها را كاهش ميدهد. سنسورهاي جديد در خدمت بهبود استخراج نفت
براساس آخرين اطلاعات چاپ شده توسط سازمان انرژي آمريكا، استخراج نفت در حدود دو سوم از چاههاي نفت آمريكا اقتصادي نميباشد. با توجه به دما و فشار زياد در محيطهاي سخت زيرزميني، سنسورهاي قديمي الكتريكي و الكترونيكي و ساير لوازم اندازهگيري قابل اعتماد نميباشند و در نتيجه شركتهاي استخراج كنندة نفت در تهية اطلاعات لازم و حساس جهت استخراج كامل و مؤثر نفت از مخازن با برخي مشكلات مواجه ميباشند. در حال حاضر محققان در آزمايشگاه فوتونيك دانشگاه صنعتي ويرجينيا در حال توسعة يكسري سنسورهاي قابل اعتماد و ارزان از فيبرهاي نوري جهت اندازهگيري فشار، دما، جريان نفت و امواج آكوستيك در چاههاي نفت ميباشند. اين سنسورها بهعلت مزايايي نظير اندازة كوچك، ايمني در قبال تداخل الكترومغناطيسي، قابليت كارآيي در فشار و دماي بالا و همچنين محيطهاي دشوار، مورد توجه بسيار قرار گرفتهاند. از همه مهمتر اينكه امكان جايگزيني و تعويض اين سنسورها بدون دخالت در فرآيند توليد نفت و باهزينة مناسب فراهم ميباشد. در حال حاضر عمل جايگزيني و تعويض سنسورهاي قديمي در چاههاي نفت ميليونها دلار هزينه در پي دارد. سنسورهاي جديد از نظر توليد بسيار مقرون به صرفه بوده و اندازهگيريهاي دقيقتري ارائه ميدهند. انتظار ميرود كه تكنولوژي اين سنسورها توليد نفت را با ارائه اندازهگيريهاي دقيق و قابل اعتماد و كاهش ريسكهاي همراه با اكتشاف و حفاري نفت بهبود بخشد. همچنين سنسورهاي جديد بهعلت برخي كاربردهاي ويژه نظير استخراج دريايي و افقي نفت، جايي كه بكاربستن سنسورهاي قديمي در چنين شرايطي بسيار مشكل ميباشد، از توجه ويژهاي برخوردارند.
-
کاربرد نانو مواد در مشبککاري (Perforation) صنايع بالادستي نفت
به دلايلي نظير توليد از يك عمق خاص (جلوگيري از توليد آب يا گاز اضافي) و نه از تمام لايه و همچنين پايدارسازي دهانه چاه و جلوگيري از ارتباط لايه ها با يكديگر، مقابل لايه نفت يا گاز يك لوله جداري قرار داده مي شود و سپس مشبك كاري (Perforation) جهت مرتبط ساختن چاه و لاية مربوطه و در يك عمق خاص، انجام مي شود. با مشبك كاري، لولة جداري به همراه سيمان پشت آن و بخشي از لاية مربوطه سوراخ مي¬شوند. سپس نفت يا گاز از طريق سوراخ هاي ايجاد شده به درون چاه راه پيدا مي كند. سوراخ كردن لولة جداري معمولاً امروزه توسط Jet Perforator انجام مي پذيرد كه از دو فلز با جنس هاي متفاوت و مواد منفجره براي توليد نيروي كافي تشكيل شده است. يك فلز، استحكام كافي براي سوراخ كردن لولة جداري و سيمان را دارد و فلز ديگر باعث ذوب شدن فلز اول مي شود تا سوراخ ايجاد شده درون لايه نفت يا گاز مسدود نشود. نهايتاً با فرآيند اسيدزني، بقاياي فلزات باقي مانده نيز خارج مي شوند.
-
كاربرد نانو تكنولوژي در اين بخش:
1. نانومواد: جنس مواد بکار رفته در ابزار مشبک کاري اهميت حياتي در انجام اين فرايند دارد و در اين ميان نانو مواد در اين حيطه پتانسيل خوبي جهت بکار گرفته شدن دارد.
2. مواد نانوساختار: در اين بخش امكان استفاده از يك سري مواد نانوساختار كه پس از عمليات مشبك كاري پس از زمان مشخصي از بين مي روند، استفاده كرد. يعني در اين فرآيند نيازي به فلز دوم براي از بين بردن فلز اول وجود ندارد.
3. نانوپوششها: پيشرفت هاي اخير در زمينه مهندسي سطح با استفاده از پوشش هاي هوشمند و تكنولوژي هاي پوشش دهي، كنترل بهتر اصطكاك و سايش را در تماس هاي سطحي ارائه مي دهد. در برخي از پوشش ها جذب سولفورها و فسفرها باعث كاهش ويسكوزيته شده و خواص روانروي بهتري را در سيال موجب مي شوند. جديد ترين تكنولوژي هاي در دست انجام منجر به توليد نانوكامپوزيت ها و نانوپوشش هاي ابرساختار شده است كه به افزايش عمر قطعه پوشش داده شده و كاربردهاي ديگر توليد خواهد پرداخت. گاهي اين پوشش ها طوري طراحي مي شوند كه با موادي كه به عنوان مثال در لوله هاي نفت حركت مي كنند، واكنش داده و يك لايه مرزي بسيار سخت و متراكم را تشكيل مي دهند كه هم باعث عدم خوردگي مي شود و هم جلوگيري از اصطكاك مي كند. گاهي پوشش هايي كه خاصيت روغنکاري در حالت جامد دارند باعث بهبود خواص سطحي مي شوند كه باعث لغزش آسان روي سطوح پوشش داده مي گردند. در سال هاي اخير گونه اي از پوشش هاي نانوساختار كه از فازهاي فلزي و سراميكي تشكيل شده اند، توليد گشته اند. اين پوشش ها معمولاًٌ با روش PVD يا MBE توليد مي شوند. اين پوشش ها به علت نانوساختار بودنشان و هموژنيته يكسان آن در طول پوشش به طور قابل توجهي چندكاره[1] مي باشند. اين پوشش ها علاوه بر سختي بالا، ضريب اصطكاك پايين را دارا بوده و خواص هدايت الكتريكي يا حرارتي بالايي دارند. سختي آنها در حد 40 تا 60 گيگاپاسكال و ضريب اصطكاك آنها 4/0 - 3/0 در مقايسه با سطح فولاد مي باشد. برايان بورن و کنث گراهام کوان از شرکتMCDONNELL BOEHNEN HULBERT & BERGHOFF LLP با ترکيب 90% وزني پودر تنگستن و 10% وزني پودر بايندر (Binder) که بصورت هرمي شکل داده شده است، موفق به توليد گلوله هايي (Jet perforator) شده اند که براي مشبک سازي لوله هاي جداري مناسب هستند. اين مواد ساختار کريستالي دارند که اندازه دانه هايشان بين 25 نانو متر تا 1 ميکرون است.
-
اربرد مواد نانومتخلخل در فرايند رفورمينگ پالايش نفت
پالايش نفت با تقطير جزء به جزء نفتخام به گروههاي هيدروكربني شروع شده و خواص محصولات مستقيماً متناسب با نحوه انجام فرآيند تبديل نفت مي باشد. فرآيندها و عمليات پالايش نفت به پنج بخش اصلي تقسيم ميشود:
الف) تفكيك (تقطير)
ب) فرآيندهاي تبديلي كه اندازه و ساختار ملكولي هيدروكربنها را تغيير ميدهند. اين فرآيندها شامل: ب-1) تجزيه (تقسيم) ب-2) همسانسازي(تركيب) ب-3) جايگزيني(نوآرائي) مي باشند.
ج) فرآيندهاي عملآوري
د) تنظيم و اختلاط
فرايند تجزيه كه از زيرشاخه هاي فرايندهاي تبديلي محسوب ميشود، شامل هيدروكراكينگ، شكست كاتاليستي و شكست گرمايي مي شود.
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
هيدورژن بهعنوان يك محصول فرعي از رفورميتها جدا شده و دوباره به چرخه توليد باز ميگردد. كاربردهاي نانوتكنولوژي: در قسمتي از فرايند بايد گاز هيدروژن را از مخلوط گازهاي ديگر جدا كرد كه براي اين منظور مي توان از نانومواد متخلخل در رفورمينگ کاتاليستي پالايش استفاده کرد. مثلاً در رفورمينگ پتروشيمي ژيمين و همکاران بررسي NMR واكنش متانول به هيدروكربنها (MTH) با استفاده از زئوليتهاي ميكروساختار و نانوساختار HZSM–5 را انجام داده اند. تشكيل انواع آلكوكسي سطحي روي HZSM – 5 نانوابعاد و ميكروابعاد پس از پرتودهي به متان و متعاقب آن تبديل به اولفينها توسط روش Solid state NMR In situ بررسي شده است. در مقايسه با HZSM – 5 ميكرو ابعاد، زئوليت نانو ابعاد تمايل بيشتري براي به دام انداختن گونه هاي مولكولي متانول دارد. همچنين مشخص شده كه حضور موادي كه Carbon – Pool ناميده مي شوند، نه تنها در تبديل متانول به اولفين ها موثر است بلكه موادي پليمري كه به طور ناخواسته توليد مي شوند را به صورت كك روي سطح درمي آورد. در زئوليت نانو ساختار تشكيل رسوبهاي كربن دار روي سطح به سختي صورت مي پذيرد.
رفرمينگ كاتاليزوري: رفرمينگ كاتاليزوري، يك فرآيند مهم مورد استفاده براي تبديل نفتهاي با اكتان پايين در مخلوطهاي گازوئيل با عدد اكتان بالا ميباشد. در طي انجام فرايند رفرمينگ تمام انواع واكنشها مثل كراكينگ، پليمريزاسيون، هيدروژنزدايي، ايزومريزاسيون به طور همزمان اتفاق مي افتد. بسته به خواص خوراك نفت (مقدار پارافين، اولفين، نفتالين، موادآروماتيكي در نفت خام) و كاتاليست مورد استفاده، ميتوان رفرميت با غلظت بسيار بالاي تولوئن، بنزين، زايلن و ساير آروماتيكهاي مفيد در مخلوط محصول توليد کرد.
-
كاربرد مواد نانومتخلخل در پليمريزاسيون و ايزومريزاسيون فرايندهاي پالايش نفت
پليمريزاسيون: پليمريزاسيون در صنايع پتروشيمي، فرآيند تبديل گازهاي اولفين سبك، شامل اتيلن، پروپيلن و بوتيلن به هيدروكربنهاي با وزن مولكولي بيشتر و عدد اكتان بالاتر ميباشد كه بهعنوان مخلوطهاي سوختي مرغوب استفاده ميشود. درطي اين فرآيند 2 يا بيشتر مولكولهاي اولفين يكسان، تشكيل يك مولكول با عناصر يكسان و خواص يكسان بهعنوان مولكولهاي جديد ميدهند. پليمريزاسيون ميتواند به طور گرمايي يا در حضور كاتاليست دردماي پايينتر اتفاق بيفتد.
ايزومريزاسيون: در ايزومريزاسيون بوتان نرمال، پنتان نرمال و هگزان نرمال، به ايزوپارافينهاي مربوطه با عدد اكتان بالاتر تبديل ميشود. پارافينهاي با زنجيره مستقيم، به زنجيرههاي شاخهدار با همان تعداد اتم ولي با ساختار هندسي متفاوت تبديل ميشوند. محصولات ايزو بوتان اين واحد، خوراك واحد آلكيلاسيون بوده و ايزوپنتان و ايزوهگزان براي مخلوط گازوئيل بكار ميرود.
-
کاربردهاي فناوري نانو در پليمريزاسيون و ايزومريزاسيون:
پليمريزاسيون: بهعلت اينكه پليمر شدن در اينجا به معني واقعي كلمه اتفاق نميافتد بلكه واكنش تا تشكيل ديمرها و تريمرها خاتمه مييابد لذا بايد طراحي فضاي واكنش به گونهاي صورت گيرد كه با تشكيل ديمرها واكنش ادامه نيابد لذا ميتوان از مواد نانومتخلخلي استفاده كرد كه ابعاد كانالهاي آن براي تحقق اين امر مناسب باشند. اين مواد نانوتخلخل را ميتوان نانوراكتور ناميد. در اين زمينه به کار "سانو" و "اومي" اشاره کرد که از سيليكا مزوپروس به عنوان نانو راكتور براي پليمريزاسيون اولفينها استفاده کردهاند.
در اين روش ماده متخلخل MCM-41 حاوي فلز توسط روش Post – Synthesis با تركيبات ارگانومتاليك يا آلكوكسيد آماده شد و به عنوان نانوراكتور براي فرآيند پليمريزاسيون اولفين بكار رفت. در حقيقت MCM-41 حاوي فلز به عنوان كوكاتاليست غيرهمگن به كار ميرود.
ايزومريزاسيون: به دليل اينكه كانالهاي مواد متخلخل مكان مناسبي براي انجام واكنشهاي شيميايي ميباشد، ميتوان از نانومواد متخلخل براي اين منظور استفاده كرد. اين كار در واكنش مشابه پتروشيمي مورد بررسي قرار گرفته است. به عنوان مثال بائر و همكاران زئوليتهاي نانوساختار HZSM – 5 را در ايزومريزاسيون زايلن بررسي كردهاند. هيدروژن در جداكنندههاي با فشار عملياتي بالا (Separator)، جدا شده و كلريد هيدروژن در ستون جداساز (Stripper) حذف ميشود. حاصل آن که مخلوط بوتان بدست آمده مي باشد، وارد تفكيككننده (Fractionator) شده، در آن بوتان از ايزوبوتان جدا ميشود. در كليه موارد بالا ميتوان از نانومواد متخلخل كربني براي جداسازي گازها استفاده كرد. در فرايند ايزومريزاسيون ميتوان به كاربردن متنوعي از مواد نانوساختار اشاره كرد، همچنان كه در طي تحقيقاتي براي پيدا كردن نانومواد مناسب براي فرايند ايزومريزاسيون آنتونلي و همكاران از ميکروقفس هاي توخالي زيرکونيا با استفاده از پايه هاي مالسيلي کروي استفاده كردهاند.
-
فناوري نانو و صنايع نفت در ايران:
گروه مطالعاتي نانوتکنولوژي مرکز تحقيقات کاتاليست در پژوهشگاه نفت، فعاليت خود را در شهريورماه سال 1380 در زمينه ساخت نانولولههاي كربني با استفاده از روش رسوبگذاري شيميايي بخار هيدروكربنها (CVD) آغاز نموده و به موفقيتهاي چشمگيري در اين زمينه دست يافته است كه از آن جمله ميتوان به توليد نانولولههاي كـربني تكديــواره با كيفيــت و خلــوص بالا, توليــد نانولولــههاي كربني با ساختار بامبو و كنترل تخلخل در محصولات توليدي اشاره نمود.
نتايج حاصل و مشخصات نانولولههاي ساخته شده: كاتاليستهاي پايه MgO با فلزات Co ، Fe ، Ni و Mo افزودني¬هاي متفاوت و سطح¬هاي مختلف تهيه گرديدند و در سيستم راكتوري (با تغيير پارامترهاي نوع گاز, غلظت گازها, دماي واكنش, شيب دمايي و زمان اقامت) تحت رسوب گذاري C6H6، C2H2، CO و CH4 قرار گرفتند. پس از تهيه محصول, مرحله خالصسازي شامل شستشو با اسيد, فيلتراسيون, سانتريفوژ و خشك كردن بر روي نمونهها انجام گرفت و سپس آزمايشهاي تعيين سطح (BET), تخلخل و حجم حفرات, TG, XRD, SEM, TEM و طيفسنجي رامان بر روي نمونهها انجام گرفت.
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
تصوير SEM از نانولوله هاي توليد شده (راست) و تصوير TEM از نالوله هاي توليد شده (چپ)
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
تصوير کامپيوتري نانوله ها
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
نمونههايي از نتايج حاصل در زير آورده شده است. نتايج نشان ميدهد كه نانولولههاي كربني تكديواره با قطرهاي حدود 4nm وطول 10µm بدست آمده است. بازدهي كربن در اين روش 200 درصد بوده است و سطح (BET) نمونههاي توليدي حدود m2/gr 700-500 ميباشد. امكان افزايش مقياس در اين روش به خاطر سطح بالا, يكنواختي محصول و سهولت در خالص سازي, راحتتر از كاتاليستهاي ديگر ميباشد. افزايش مقياس توليد در دست بررسي و انجام ميباشد.