تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




مشاهده نتيجه نظر خواهي: -

راي دهنده
0. شما نمي توانيد در اين راي گيري راي بدهيد
  • -

    0 0%
  • -

    0 0%
صفحه 13 از 32 اولاول ... 39101112131415161723 ... آخرآخر
نمايش نتايج 121 به 130 از 315

نام تاپيک: «««تـازه های دنیـــای شیـــــمی »»»

  1. #121
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    تفلون

    تفلون از پلیمر شدن رادیكالی تترا فلوئورو اتیلن تشكیل می شود.داستان كشف ان حكایت جالبی از كشف های تصادفی در شیمی است كه نخستین بار در ازمایشگاه تحقیقاتی شركت دوپان روی داده است.
    در ان زمان با این كه تترافلوئورواتیلنسنتز شده بود,ولی كوشش برای پلیمر كردن ان ناموفق بود.از انجایی كه این تركیب گازی دردر یك سیلندر كوچك نگهداری می شد,پس از مدتی كه برای اجرای ازمایش دیگری به این ماده نیاز شد,با باز شدن شیر سیلندر هیچ گازی از ان بیرون نیامد.فرد ازمایشگاه برای رد این فرضیه كه "گاز از ظرف نشت كرده است."یسلندر را با ترازو كشید و مجموع جرم سیلندر و گاز را با با مجموع جرم سیلندر و گازی كه در ابتدا در ان بوده,مقایسه كرد.یكسان بودن این مقادیر اشكار كرد كه گاز تترافلورئوراتیلن باید به فراورده دیگری تبدیل شده باشد.كنجكاوی این شیمیدان سبب شد تا وی سیلندر را ببرد و پی به وجود ماده جامدپلیمری در درون سیلندر ببرد.پلیمری كه او پیدا كرد خواص جالبی داشت و همین انگیزه ای برای تلاش های بعدی شد.نتیجه این كوشش ها سرانجام به روشی بای تهیه این پلیمر منتهی شد.تفلون به دلیل داشتن ساختاری خطی و بدون پیچیدگی فضا شیمیایی,دمای ذوب بالایی (۳۲۷ )دارد.تفلون,پلیمری انحلال ناپذیر و از نظر شیمیایی بسیار بی اثر است.ازتفلون برای ساختن سوپاپ ها و پوشش های مقاوم در برابر مواد شیمیایی استفاده می شود و به دلیل خواص نچسب و مقاومت گرمایی بالایی كه دارد,كاربرد وسیعی در پوشش دادن به ظروف پخت و پز یافته است.

  2. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  3. #122
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    شناسایی الکل ها

    تست های شناسایی الکل ها
    الکل ها دسته بزرگی از ترکیبات الی حاوی گروه هیدروکسی (OH) هستند که منبع طبیعی ان ها گیاهان بوده و در صنعت از مشتقات نفت نظیر اتیلن ساخته می شود. استفاده وسیع ان ها به عنوان حلال ̦ پاک کننده ̦ سوخت و نیز به عنوان موادی که در صنعت دارویی مصرف دارند. این ترکیبات اغلب در گروههای [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ] N1 , S1و یا N2 قرار دارند و به طریق زیر شناسایی می شوند:
    تست سدیم
    ترکیبات دارای هیدروژن فعال در واکنش با سدیم می توانند هیدروژن خود را ازاد کنند. بسته به نوع ترکیب این هیدروژن می تواند دوباره در محیط جذب یک مولکول دیگر شود و یا از محیط خارج شود. الکل ها در ترکیب با سدیم ̦ هیدروژن خود را به صورت گاز ازاد می کنند. این تست به ترکیبات دارای 3 تا 8 کربن جواب مثبت می دهد. الکل ها سبکتر به دلیل وجود اب در محیط به سرعت با سدیم واکنش می دهند ( این الکل ها جاذبه الرطوبه اند). الکل های سنگین تر ( بیش از 8 کربن ) به کندی واکنش می دهند به طوری که خروج گاز محسوس نیست. این تست برای هیدروژن هایی که در ترکیبات خنثی به سهولت قابل استخلاف باشد مناسب است. به عبارت دیگر هیدروژن های متصل به اکسیژن نیتروژن و یا گوگرد به این تست پاسخ مثبت می دهند.
    سدیم تست مناسبی برای تشخیص هیدروژن های فعال در اجسامی که به راحتی یونیزه نمی شوند به عبارت دیگر برای ترکیبات گروههای SA ̦ A2 ̦ A1 و S2روش مناسبی نیست.
    روش کار :
    در یک لوله ازمایش خشک یک میلی لیتر الکل مورد ازمایش را بریزید و به ان یک تکه کوچک سدیم بیفزایید. تشکیل حباب های هیدروژن در اطراف سدیم و خروج ان ها نشان دهنده وجود هیدروژن قابل استخلاف در ترکیب است.
    تست سریک امونیوم نیترات
    این معرف با ترکیباتی که دارای گروه های OH الکی هستند کمپلکس قرمز رنگ تشکیل می دهد. الکل های نوع اول دوم و سوم که کمتر از10 کربن دارند به این تست پاسخ مثبت می دهند. امینو الکل ها به دلیل افزایش PH محیط نتیجه مطلوبی نشان نمی دهند زیرا در این حالت یون سریک به صورت هیدروکسید رسوب می کند. هرچه وزن مولکولی الکل افزایش یابد شدت رنگ کمتر شده و تا حدودی به رنگ قرمز قهوه ای متمایل می شود.
    در مورد الکل ها ظهور رنگ قرمز نشانه مثبت بودن واکنش است. این رنگ بسته به نوع الکل طی مدت زمان مشخصی بیرنگ می شود. زمان شپری شدن تا بیرنگ شدن کامل در شتاسایی الکل مورد استفاده قرار می گیرد. مثلا متانول طی هفت ساعت و الیل الکل طی شش دقیقه بیرنگ می شود. ازمون باید در دمای اتاق ( 25 – 20 درجه سانتیگراد ) صورت گیرد زیرا بسیاری از ترکیبات در دماهای بالاتر توسط سریم (IV) اکسید می شود.
    روش کار :
    اجسام محلول در اب
    دریک لوله ازمایش 0.5 میلی لیتر معرف فوق را با 3 میلی لیتر اب مفطر رقیق کرده و کاملا مخلوط کنید. سپس 4 تا 5 قطره از جسم مرد ازمایش را به این محلول اضافه کنید. تغییر رنگ را مورد مشاهده قرار دهید. اگر جسم جامد است بهتر است ابتدا ان را در اب حل کنید و سپس معرف را به ان بیفزایید.
    اجسام نامحلول در اب
    در لوله ازمایشی 0.5 میلی لیتر معرف و 3 میلی لیتر دی اکسان را مخلوط کنید. اگر رسوبی حاصل شد به ان 3 تا 4 قطره اب مقطر اضافه کنید تا محلول شفاف شود. سپس 4 تا 5 قطره از جسم مورد ازمایش را به ان بیفزایید به تغییر رنگ توجه کنید. اگر جسم جامد بود ابتدا ان را در دی اکسان حل کرده سپس معرف را اضافه کنید.
    معرف جونز ( انیدرید کرومیک ̦ کروم تریوکسید )
    الکل های دارای هیدروژن در موقعیت الفا نسبت به کربن حامل OH , با این معرف اکسایش می یابد. به طور کلی ترکیباتی که در ان ها گروه هیدروکسیل روی کربنی که حداقل یک هیدروژن دارد استخلاف شده باشد توسط این معرف اکسید می شوند. به عبارت دیگر الکل های نوع اول و دوم تا 27 کربن به این تست پاسخ مثبت می دهند در حالیکه الکل های نوع سوم به این تست پاسخ منفی می دهند.
    روش کار :
    در یک لوله ازمایش خشک یک میلی لیتر استون خالص بریزید و به ان یک قطره جسم مورد ازمایش اضافه کنید و خوب مخلوط کنید سپس یک قطره معرف به ان بیفزایید. در صورت مثبت بودن تست طی 2 تا 3 ثانیه رسوب سبز متمایل به ابی ظاهر می شود.
    توجه : فنل ها و الدهیدها نیز به این تست پاسخ مثبت می دهند.
    معرف لوکاس
    این معرف عبارت است از مخلوط HCL غلیظ و ZnCl2 خشک. موادی که به اسانی قادرند در موضع کربن حامل گروه هیدروکسیل ویژگی کاتیونی پیدا کنند به این تست پاسخ مثبت دهند. با این ازمایش معمولا نوع الکل مشخص می شود. الکهای حاوی حداکثر تا 6 کربن به این تست پاسخ مثبت می دهند الکل هایی با تعداد کربن بیشتر از 6 عدد در این محیط حل نشده به صورت نامحلول ( دو فاز ) باقی می مانند. مکانیسم واکنش از نوع SN1است و تولید کربوکاتیون پایدار واکنش را تسریع می کند در نتیجه الکل های نوع سوم سریعتر از الکل های نوع دوم واکنش می دهند در حالی که الکل های نوع اول در حرارت متعارفی قادر به فعل و انفعال نیستند.
    رنگ شیری ایجاد شده مربوط به الکیل کلرید به عنوان فاز دوم است. در بین الکل های نوع اول , الیل الکل به دلیل پایداری کاتیون الیل به معرف پاسخ مثبت می دهند.
    روش کار :
    در یک لوله ازمایش خشک به 4 تا 6 قطره الکل مورد ازمایش 3 میلی لیتر معرف بیفزایید. اگر محیط به سرعت کدر شود. الکل نوع سوم است در غیر این صورت در حمام اب گرم محلول را حرارت دهید. اگر پس از 5 دقیقه محلول کدری تشکیل شده الکل نوع دوم است و در صورت عدم پاسخ مثبت الکل نوع دوم است.
    معرف پریدیک اسید
    این معرف برای ترکیباتی که در انها عامل OH در مجاورت یک عامل OH دیگر و یا در مجاورت عامل کربونیل و یا عامل NH2 باشد همچنین در مواردی که دو گروه کربونیل در مجاورت یکدیگر قرار داشته باشد مناسب است. به عبارت دیگر این معرف برای شناسایی 1و2 دی ال ها , الفا هیدروکسی الدهیدها , الفا هیدروکسی کتون ها , 1و2 دی کتون ها و الفا هیدروکسی اسیدها به کار می رود. سرعت واکنش نیز به ترتیب ذکر شده در بالا است یعنی سرعت 1و2 گلیکولها بیشتر از همه و الفا هیدروکسی اسیدها کمتر از همه بوده و حتی گاهی جواب منفی است. اساس ازمایش حلالیت ناچیز AgIO3 در نیتریک اسید رقیق است. نقره ایدات به مقدار جزئی در نیتریک اسید حل شده در صورتی که نقره پریدات (AgIO4) در نیتریک اسید بسیار محلول است. چنانچه نیتریک اسید زیاد به کار رود نقره ایدات (AgIO3) نیز حل شده رسوب نخواهد کرد.
    گاهی رنگ قهوه ای مربوط به تشکیل سیلور پرایدات (AgIO4) است که نشان دهنده جواب منفی است. این ازمایش برای اجسام محلول در اب مناسب است و برای اجسام نامحلول در اب می توان از حلال دی اکسان استفاده کرد. گروه اپوکسی نیز با پریدیک اسید قابل تشخیص است به شرط انکه مقدار کافی اسید برای هیدرولیز افزوده شود.
    روش کار :
    در یک لوله ازمایش 2 میلی لیتر محلول پریدیک اسید بریزید و به ان تنها یک قطره نیتریک اسید اضافه کنید. سپس یک قطر از جسم مورد ازمایش به ان افزوده پس از 10 تا 20 ثانیه تکان دادن , 1 تا 2 قطره نقره نیترات 5% به ان بیفزایید. تولید رسوب نقره یدات دلیل بر وجود عوامل OH مجاور است.

  4. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  5. #123
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    طرز تهیه بعضی از الکترودها

    الکترود نقره
    برای کارهای دقیق در ازمایشگاه الکترود نقره را باید با فیلمی از نقره به شرح زیر پوشانید :
    در حدود 100ml محلول نقره نیترات با غلظت 3.5g/l تهیه کنید ( در حدود 0.02M ) . به این محلول با دقت ( کم کم و در حال همزدن )محلول رقیق پتاسیم سیانید ( در حدود 0.1m) اضافه کنید تا اثار رسوب نقره سیانید پیدا شود ( پتاسیم سیانید سمی است ) . الکترود نقره رابشویید و خشک کنید و چند ثانیه در نیتریک اسید 6M فرو کنید سپس با اب مقطر بشویید. این الکترود را به عنوان کاتد همراه با الکترود نقره دیگر ( به عنوان اند ) در محلولی که اماده کرده اید قرار دهید. شدت جریانی به اندازه 0.2mA از محلول عبور دهید تا سطح کاتد با فیلم نازکی از نقره پوشیده شود. حال الکترود را با اب مقطر بشویید و در اب مقطر قرار دهید.
    الکترود طلا و پلاتین
    الکترود پلاتین اگر برای واکنش های اکسایش – کاهش به کار رود به شکل براق و اگر به عنوان الکترود هیدروژن یا برای اندازگیری کنداکتومتری به کار رود به صورت سیاه مورد استفاده قرار می گیرد . پلاتین شیاه یا پلاتین پلاتینه شده به شرح زیر تهیه می شود :
    دو عدد الکترود پلاتین را با نیتریک اسید غلیظ بشویید و با اب مقطر ابکشی کنید. محلول پلاتینی از 3 گرم کلروپلاتینیک اسید و 0.02 تا 0.03 گرم سرب استات در 100 میلی لیتر اب تهیه کنید. الکترودها را در این محلول قرار دهید و انها را به یک انباره 4 ولت با سویچ دو طرفه وصل کنید. جریان را طوری تنظیم کنید تا گاز به طور متعادل و منظم متصاعد شود. هر 10 تا 15 ثانیه یک بار جهت جریان را عوض کنید تا جای کاتد و اند با هم عوض شود. ضخامت پلاتین سیاه پوشیده شده اگر به اندازه متوسط باشد بهتر از یک لایه نازک است. پلاتین سیاه چسبیده به الکترود اکنون ممکن است دارای مقداری مایع و گاز باشد . این را می توانید با فرو کردن الکترود در سولفوریک اسید 0.3M و اتصال مجدد انها به انباره برطرف سازید. برای پاکسازی کامل الکترودها از گاز و مواد مزاحم بهتر است که این عمل را به مدت 30 دقیقه به طور متناوب ادامه دهید ( هر 10 تا 15 ثانیه جهت جریان را عوض کنید ) تا متصاعد شدن گاز از سطح الکترودها کاملا قطع شود. حال الکترود را با اب مقطر بشویید و در اب قرار دهید.
    الکترود نقره – نقره کلرید اشباع ( الکترود مرجع )
    این الکترود از یک سیم نقره یا پلاتین نقره اندود شده تشکیل شده است که روی ان را به روش الکتریکی با لایه نازک از نقره کلرید پوشانیده اند و ان را در محلول پتاسیم کلرید اشباع قرار داده اند. پتانسیل الکترود نقره – نقره کلرید اشباع در دمای 25 درجه سانتیگراد نسبت به الکترود استاندارد هیدروژن 0.199 ولت است. طرز پوشاندن الکترود نقره با لایه نازک از نقره کلرید به روش الکتریکی به این شرح است :
    یک الکترود نقره براق را که به روش یک تهیه کرده اید در کلریدریک اسید 0.1M قرار دهید و ان را به قطب مثبت منبع برق DC وصل کنید. یک عدد الکترود پلاتین یا زغال باطری را به جای کاتد به کار ببرید و شدت جریانی به اندازه 2.5mA/cm به مدت 30 ثانیه از محلول عبور دهید. سعی کنید در مدت الکترولیز دانسیته جریان کمتر از 0.6mA/cm نباشد. زیرا دانسیته جریان کم باعث تشکیل یک لایه خاکستری در سطح الکترود می شود که به نور حساس بوده و در ان صورت پاسخ الکترود توام با خطا خواهد بود. طرز ساخت یک نوع الکترود نقره – نفره کلرید اشباع به صورت خیلی ساده در شکل زیر نشان داده شده است.
    الکترود کالومل اشباع ( الکترود مرجع )
    این الکترود به دلیل ساخت ساده ای که دارد معمولا بیش از سایر الکترودهای کالومل ( الکترود کالومل غیر اشباع ) به کار می رود. یک الکترود کالومل اشباع که به اسانی ساخته میشود در شکل زیر نشان داده شده است. این الکترود به وسیله پل نمکی ( متشکل از KCl اشباع که با ان ارتباط دارد ) به ظرفی که الکترود شناساگر در ان قرار گرفته است متصل می شود.


  6. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  7. #124
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    پلیمرهای مقاومت حرارتی

    پلیمرها، بخش عمده ای از مشتقات نفتی هستند كه در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده كه می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد كه علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می كنند.
    پلیمرها، بخش عمده ای از مشتقات نفتی هستند كه در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده كه می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد كه علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می كنند. هنگامی كه تركیبات آلی در دمای بالا حرارت داده می شوند، به تشكیل تركیبات آروماتیك تمایل پیدا می كنند. بنابراین می توان نتیجه گرفت كه پلیمرهای آروماتیك باید در مقابل دماهای بالا مقاوم باشند. انواع وسیعی از پلیمرها كه واحد های تكراری آروماتیك دارند، در سالهای اخیر توسعه و تكامل داده شده اند. این پلیمرها در صنایع هوا- فضا مورد استفاده قرار می گیرند، زیرا در برابر دمای زیاد پایداری مطلوبی از خود نشان می دهند. برای این كه یك پلیمر در برابر حرارت و در برابر گرما مقاوم تلقی شود، نباید در زیر دمای ۴۰۰ درجه سانتی گراد تجزیه شود. هم چنین باید خواص مورد نیاز و سودمند خود را تا دماهای نزدیك به دمای تجزیه حفظ كند. این گونه پلیمرها دارای Tg بالا و دمای ذوب بالا هستند. پس می توان گفت پلیمرهای مقاوم حرارتی به پلیمرهایی گفته می شود كه در دمای بالا بكار برده می شوند، به طوری كه خواص مكانیكی، شیمیایی و ساختاری آنها، با خواص سایر پلیمرها در دماهای پایین متفاوت باشد. پلیمرهای مقاوم حرارتی به طور عمده در صنایع اتومبیل سازی، صنایع هوا- فضا، قطعات الكترونیكی، عایق ها، لوله ها، انواع صافی ها، صنایع آشپزی و خانگی، چسب ها و پوشش سیم های مخصوص مورد استفاده قرار می گیرد. پلیمرهای یاد شده هم به روش آلی و هم به روش معدنی تهیه می شوند. ذكر این نكته مهم است كه روش آلی متداول تر و اغلب پژوهش ها توسط دانشمندان پلیمر در این زمینه ها به ثمر رسیده است.
    پایداری حرارتی
    پایداری حرارتی پلیمرها، تابع فاكتورهای گوناگونی است. از آنجا كه مقاومت حرارتی تابعی از انرژی پیوندی است، وقتی دما به حدی برسد كه باعث شود پیوندها گسیخته شوند، پلیمر از طریق انرژی ارتعاشی شكسته می شود. پس پلیمرهایی كه دارای پیوند ضعیفی هستند در دمای بالا قابل استفاده نیستند و از بكار بردن منومرها و هم چنین گروه های عاملی كه باعث می شود این پدیده تشدید شود، باید خودداری كرد. البته گروه هایی مانند اتر یا سولفون، نسبت به گروه هایی مانند آلكیل و NH و OH پایدارتر هستند، ولی وارد كردن گروه هایی مانند اتروسولفون و یا گروههای پایدار دیگر صرفاً بخاطر بالا بردن مقاومت حرارتی نیست، بلكه باعث بالا رفتن حلالیت نیز می شوند. تاثیرات متقابلی كه بین دو گونه پلیمری وجود دارد، ناشی از تاثیرات متقابل قطبی- قطبی، و پیوند هیدروژنی (۶-۱۰ Kcal/mol) است كه باعث بالا رفتن مقاومت حرارتی در پلیمرها می شوند. این قبیل پلیمرها باید قطبی و دارای عامل هایی باشند كه پیوند هیدروژنی را بوجود آورند، مانند: پلی ایمیدها و پلی یورتانها. انرژی رزونانسی كه به وضوح در آروماتیك ها به چشم می خورد، مخصوصاً در حلقه های هتروسیكل و فنیلها و كلاً پلیمرهایی كه استخوان بندی آروماتیكی دارند باعث افزایش مقاومت حرارتی می شوند. در مورد واحدهای تكراری حلقوی، شكستگی یك پیوند در یك حلقه باعث پایین آمدن وزن مولكولی نمی شود و احتمال شكستگی دو پیوند در یك حلقه كم است. پلیمرهای نردبانی یا نیمه نردبانی پایداری حرارتی بالاتری نسبت به پلیمرهای زنجیره باز دارند. بنابراین اتصالات عرضی موجب صلب پلیمرهای خطی می شوند كه شامل حلقه های آروماتیك با چند پیوند یگانه مجزا هستند. با توجه به نكاتی كه ذكر شد برای تهیه پلیمرهای مقاوم حرارتی باید نكات زیر رعایت شوند.
    - استفاده از ساختارهایی كه شامل قوی ترین پیوند های شیمیایی هستند. مانند تركیبات هتروآروماتیك، آروماتیك اترها و عدم استفاده از ساختارهایی كه دارای پیوند ضعیف مثل آلكیلن- آلیسیكلیك و هیدروكربن های غیر اشباع می باشند.
    - ساختمان تركیب باید به گونه ای باشد كه به سمت پایدار بودن میل كند، پایداری رزونانسی آن زیاد باشد و بالاخره ساختارهای حلقوی باید طول پیوند عادی داشته باشند، به نحوی كه اگر یك پیوند شكسته شد، ساختار اصلی، اتم ها را كنار هم نگه دارد.
    لباس فضا نوردان
    امروزه در زمینه پلیمرهای مقاوم حرارتی پیشرفت های زیادی حاصل شده است. پژوهشگری به نام كارل اسی مارول كه یك محقق برجسته در زمینه مقاومت حرارتی پلیمرها است، باعث توسعه تجارتی پلی بنزایمیدازول، با نام تجارتی PBI ، شده است كه به شكل الیاف برای تهیه لباس فضانوردان مورد استفاده قرار می گیرد. البته این تنها یكی از موارد كاربردهای متنوع پلیمرهای مقاوم حرارتی در برنامه های فضایی است. بی تردید اگر سالها پژوهش علمی و آزمایش های گوناگون موجب كشف الیاف پلیمری مقاوم برای تهیه لباس فضا نوردان نمی شد، هیچ فضا نوردی نمی توانست به فضا سفر كند. طی سال های اخیر گونه های وسیعی از پلیمرهای آروماتیك و آلی فلزی مقاوم در برابر گرما، توسعه و تكامل داده شده اند، كه تعداد كمی از آنها به علت قیمت بالای آنها در تجارت قابل قبول نبوده اند. پلیمرهای آروماتیك، به خاطر اسكلت ساختاری صلب، دمای گذار شیشه ای Tg و ویسكوزیته بالا، قابلیت حلالیت كم دارند، بنابراین سخت تر از سایر پلیمرها هستند. در حال حاضر بالاترین حد مقاومت گرمایی از پلیمرهای آلی بدست آمده است، بنابراین در سال های اخیر تاكید روی معرفی تفاوت های ساختاری پلیمرها بوده است. پیوستن گروه های انعطاف پذیر مانند اتر یا سولفون در اسكلت، یك راهكار است. هر چند این اقدامات باعث حلالیت بیشتر، ویسكوزیته كمتر و معمولاً پایداری حرارتی كم می شود. نگرش دیگر برای وارد كردن گروههای آروماتیك حلقه ای این است كه به صورت عمودی در اسكلت صفحه ای آروماتیك قرار می گیرد. همان طور كه در پلی بنزایمیدازول اشاره شد این ساختارها كه »كاردو پلیمر« نامیده می شوند معمولاً پایداری بالایی دارند، بدون این كه خواص دمایی آنها از بین برود. وارد كردن اسكلت با گروههای فعال كه در اثر گرما موجب افزایش واكنش حلقه ای بین مولكولی می شوند، راهی دیگر برای پیشرفت روندكار است. مهم ترین و پرمحصول ترین راه از نقطه نظر توسعه تجارتی، سنتز الیگومرهای آروماتیك یا پلیمرهایی است كه با گروههای پایانی فعالی، خاتمه داده شده اند. الیگومرهایی كه انتهای آنها فعال شده اند، در دمای نسبتاً پایین ذوب می شوند و در انواع حلال ها نیز حل می شوند. هم چنین در موقع حرارت دادن به پلیمرهای شبكه ای پایدار تبدیل می شوند.
    مقاومت در برابر حرارت
    هنگامی كه از پلیمرهای مقاومت حرارتی صحبت می شود باید مقاومت حرارتی آنها را برحسب زمان و دما تعریف كنیم. افزایش هر كدام از فاكتورهای ذكر شده موجب كاهش طول عمر پلیمر می شود و اگر هر دو فاكتور افزایش یابند طول عمر به صورت لگاریتمی كاهش می یابد. به طور كلی اگر یك پلیمر به عنوان پلیمر مقاوم حرارتی در نظر گرفته می شود، باید به مدت طولانی در ۲۵۰ درجه سانتی گراد، در زمان های متوسط در پانصد درجه سانتی گراد و در كوتاه مدت در دمای یكهزار درجه سانتی گراد خواص فیزیكی خود را حفظ كند. به طور دقیق تر یك پلیمر مقاوم حرارتی باید طی سه هزار ساعت و در حرارت ۱۷۷ درجه سانتی گراد، یا طی یكهزار ساعت در ۲۶۰ درجه سانتی گراد، یا طی یك ساعت در ۵۳۸ درجه سانتی گراد و یا طی ۵ دقیقه در ۸۱۶ درجه سانتی گراد، خواص فیزیكی خود را از دست ندهد. برخی از شرایط ضروری برای پلیمرهای مقاوم حرارتی، بالا بودن نقطه ذوب، پایداری در برابر تخریب اكسیداسیونی در دمای بالا، مقاومت در برابر فرآیندهای حرارتی و واكنش گرمای شیمیایی است. سه روش اصلی برای بالا بردن مقاومت حرارتی پلیمرها وجود دارد. افزایش بلورینگی، افزایش اتصال عرضی و حذف اتصال های ضعیفی كه در اثر حرارت اكسید می شوند. افزایش بلورینگی، كاربرد پلیمرها را در دمای بالا محدود می كند. زیرا موجب كاهش حلالیت و اختلال در فرآورش می شود. برقرار كردن اتصال های عرضی در الیگومرها روش مناسبی است و خواص پلیمر را به طور واقعی اما غیر قابل برگشت تغییر می دهد. اتصالاتی كه باید حذف شود شامل اتصال های آلكیلی، آلیسیكلی، غیر اشباع و هیدروكربن های غیر آروماتیك و پیوند NH است . اما اتصالاتی كه مفید است شامل سیستم های آروماتیكی، اتر، سولفون و ایمید و آمیدها هستند. این عوامل پایدار كننده به صورت پل در ساختار پلیمر واقع و موجب پایداری آنها می شوند. از طرفی ضروری است كه پلیمر از قابلیت به كار گیری و امكان فرآورش مناسب برخوردار باشد. پس باید تغییرات ساختاری طوری باشد كه حلالیت و فرآورش مناسب تر داشته باشند. برای این منظور باید از واحد های انعطاف پذیرِ اتر، سولفون، آلكیل و همچنین از كوپلیمره كردن، و تهیه ساختارهایی با زنجیر نامنظم استفاده كرد.به طور كلی پلیمرهای مقاوم حرارتی به چهار دسته تقسیم می شوند. پلیمرهای تراكم ساده، مانند پلیمرهایی كه از حلقه آروماتیك تشكیل شده اند و با اتصالات تراكمی به یكدیگر متصل هستند. پلیمرهای هتروسیكل، یعنی پلیمرهایی كه از حلقه های آروماتیك تشكیل شده اند اما از طریق حلقه های هتروسیكل به هم وصل شده اند. كوپلیمرهای تركیبی تراكمی هتروسیكل، یعنی پلیمرهایی كه شامل تركیبی از اتصال های تراكمی ساده و حلقه های هتروسیكل می باشند و پلیمرهای نردبانی كه شامل دو رشته زنجیر هستند.
    Last edited by saeed-d; 04-09-2008 at 18:42.

  8. #125
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض


    روش تهیه صابون
    عمل هیدرولیز چربی یا روغن را اصطلاحا صابونی کردن مینامند. برای این کار، چربی (a) را با محلول سود حرارت میدهند. در نتیجه گلیسرین (b) و مخلوطی از نمک سدیم اسیدهای چرب (c) مطابق واکنش زیر حاصل میشود:
    چربیها و روغنهای طبیعی استر اسیدهای آلیفاتیک یک ظرفیتی با تعداد اتمهای کربن زوج و گلیسرین میباشند که آنها را گلیسرید نیز مینامند. چربیها و روغنها به طور کلی دارای ساختمان (a) میباشند. چربیها جامد و روغنها مایع میباشند. نقطه ذوب چربیها بالاتر از نقطه ذوب روغنها است. این اختلاف بستگی به نوع و مقدار اسید مربوطه دارد. هرچه مقدار اسیدهای اشباع نشده در ساختمان یک چربی بیشتر باشد، نقطه ذوب پایین تری دارد. اگر چربی تنها از اسیدهای اشباع شده تشکیل شده باشد مانند پیه گوسفند و غیره نقطه ذوب بالا خواهد داشت.
    روغنهای نباتی مانند روغن زیتون، خرما، نارگیل و کرچک علاوه بر این که دارای اسیدهای چرب (اولئیک، استئاریک و پالمیتیک) هستند، اسیدهای اشباع نشده با چند پیوند دوگانه مانند اسید لینولئیک به فرمول زیر نیز در ساختمان آنها شرکت میکنند.
    مولكولهاي صابون د اراي يك انتهاي قطبي است كه در آب حل مي شود و انتهاي ديگر آن يك دنباله طويل هيدروكربن است كه در روغن محلول است واين عامل باعث ميشود تا مثل يك واسطه چربيها را در آب حل كند.
    ابتدا یون هیدروکسید به عنوان نوکلئوفیل (هسته دوست) به کربن گروه کربنیل حمله کرده، پس از خارج شدن یک مولکول الکل، انیون اسید به صورت هیبرید رزونانس فوق، پایدار میگردد.
    روش تهیه
    50 گرم چربی را در یک بشر 250 میلی لیتری ریخته و به طور ملایم آنرا حرارت دهید تا ذوب شود (دما نباید از 70 درجه بالاتر برود).
    در حالیکه چربی را حرارت میدهید ضمن به همزدن مداوم محلول سود (7گرم در 50 میلی لیتر آب) را در قسمتهای 5 میلی لیتر به چربی اضافه کنید. پس از افزودن اولین 5 میلی لیتر سود، زمان اضافه نمودن 5 میلی لیتر بعدی وقتی است که سود اضافه شده قبلی تقریبا مصرف شده باشد. (برای اطمینان از مصرف سود، نوک اسپاتول را در بشر فرو برده و یک قطره معرف فنل فتالئین روی آن بچکانید، چنانچه رنگ آن فورا ارغوانی شد دلیل آن است که هنوز سود در محیط وجود دارد و باید به هم زدن را ادامه داد).
    پس از افزودن آخرین قسمت سود، آنقدر به هم بزنید تا صابون یک حالت کشدار به خود بگیرد (بوی صابون در این حالت به خوبی استشمام میشود.) صابون حاصل را در قالب ریخته و بگذارید یک هفته بماند تا عمل صابونی شدن کامل شود. صابون حاصل دارای مقدار زیادی گلیسیرین است، چنانچه بخواهند گلیسیرین آنرا جدا کنند، قبل از ریختن در قالب، صابون را به مدت 24 ساعت در محلول اشباع شده نمک طعام قرار میدهند، سپس قرص صابون را از درون ظرف خارج کرده و پس از شستن به قطعات کوچک تقسیم نموده، در هوا خشک میکنند.

    روش دیگر
    در یک بالن، ۵۰ میلی لیتر روغن مایع را با ۴۰ میلی لیتر اتانول و ۳ گرم پتاسیم هیدروکسید ریخته و بمدت نیم ساعت رفلاکس کنید. پس از اتمام این مدت چند قطره از مخلوط را در مقدار کمی آب حل کنید که اگر قطره روغنی روی آب قرار نگرفت واکنش پایان یافته و اگر روغن در سطح آب مشاهده شد عمل رفلاکس را به مدت 15 دقیقه دیگر ادامه دهید. سپس الکل موجود در مخلوط را به وسیله تقطیر ساده جدا کنید و ماده باقیمانده در بالن را در cc 75 آب مقطر گرم حل کنید. دقت کنید که حتما الکل موجود در بالن از مخلوط خارج شود سپس آزمایش زیر را انجام دهید.
    الف) مقدار 25 میلی لیتر محلول به دست آمده را به 25 میلی لیتر آب نمک اشباع به آهستگی اضافه کنید مخلوط را صاف کرده و ماده جامد که صابون میباشد روی کاغذ صافی میماند. آنرا با آب نمک اشباع بشوئید و صابون را در روی یک ظرف شیشه ای پهن کنید.
    ب) مقدار 10 میلی لیتر آب شهر را با 10 میلی لیتر محلول صابون مخلوط کرده تکان دهید و نتیجه را گزارش کنید.

  9. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  10. #126
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض اعتراض

    يه اعتراض كوچولو
    چرا اين تاپيك رو به صورت مهم در نمي آوريد.
    در مورد شيمي يه تاپيك خوب داريم ولي هيچكس بهش اهميت نميده .
    از مسؤلان و مديران خواهش منديم اين تاپيك را به صورت مهم درآورند.

    Last edited by saeed-d; 04-09-2008 at 20:39.

  11. #127
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    دید کلی

    محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد.
    ماهیت محلولها

    در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند.

    امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.
    غلظت محلول

    برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L می‌گیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان می‌دهند.
    انواع محلولها

    محلولهای رقیق

    محلولهایی که غلظت ماده حل شده آنها نسبتا کم است.
    محلولهای غلیظ

    محلولهایی که غلظت نسبتا زیاد دارند.
    محلول سیر شده

    اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.
    محلول سیر نشده

    غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است.
    محلول فراسیرشده

    می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند.
    خواص فیزیکی محلولها

    بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است).

    یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است. چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو Colligative properties) می‌نامند و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.
    کاهش فشار بخار

    وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود.
    افزایش نقطه جوش

    در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای 25 درجه سانتیگراد و فشار بخار یک اتمسفر یا 760 میلی متر جیوه) در 100 درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در 1000 گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه 14 میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در 52/100درجه سانتیگراد می‌جوشد.
    کاهش نقطه انجماد

    وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در 20 درجه زیر صفر منجمد نمی‌شود.
    فشار اسمزی

    اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت (حاوی B + A) که حل شونده وجود دارد بالا می رود.
    اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است.

    به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود.

  12. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  13. #128
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    از مهمترین واکنشهای جابجایی دوگانه : واکنشهای رسوبی که در آنها مخلوط کردن محلول دو نمک به تشکیل نمک نامحلول می انجامد . مهمترین کود شیمیایی نیتروژن دار در جهان : آمونیم نیترات ( NH4NO3 ) مهمترین حلال صنعتی پس از آب : اتانول رایج ترین روش بیان غلظت : غلظت مولار ( مولاریته ) ساده ترین کربوکسیلیک اسید : متانوئیک اسید ( HCOOH ) آشناترین کربوکسیلیک اسید : اتانوئیک اسید ( CH3COOH ) یکی از مهمترین مشتقات کربوکسیلیک اسیدها : استر ها ساده ترین آمینواسیدها : گلی سین ( آمینو اتانوئیک اسید ) یکی از مهمترین و پرکاربردترین روشهای حفاظت فلزها : حفاظت کاتدی یکی از ارزشمندترین و پرکاربردترین فلزها : آلومینیم انجام شدنی ترین واکنشها : واکنشهایی که در فراورده هایشان اتمها به هشت تایی پایدار رسیده اند . نزدیکترین لایه الکترونی به هسته = نخستین سطح انرژی : سطح انرژی K تازه ترین مدل اتمی : مدل کوانتومی که بر پایه رفتار دوگانه الکترون و با تاکید بر رفتار موجی الکترون استوار است . خط طیفی با کمترین طول موج ( بیشترین انرژی ) در طیف خطی اتم هیدروژن : خط بنفش با طول موج 410 نانومتر که مربوط به سقوط الکترون از n=6 ----> 2 است . مهمترین نکته در جدول تناوبی : تشابه آرایش الکترونی عنصرهای یک خانواده در بسیاری گروه های جدول سبکترین ذره زیر اتمی : الکترون واکنش پذیرترین فلزها : فلزهای قلیایی واکنش پذیرترین نافلزها : هالوژنها سبکترین فلز : لیتیم مشهورترین فلز قلیایی خاکی : کلسیم مشهورترین اکتنید : اورانیم فراوانترین عنصرهای موجود در پوسته زمین : سیلیسیم و اکسیژن فراوانترین عنصر جهان : هیدروژن فراوانترین ترکیب هیدروژن : آب سبکترین عنصر : هیدروژن کمترین الکترونگاتیوی : سزیم بیشترین الکترونگاتیوی : فلوئور کمترین انرژی نخستین یونش : سزیم بیشترین انرژی نخستین یونش : هلیم ساده ترین ترکیبهای آلی : هیدروکربنها ساده ترین هیدروکربنها : الکانها اربیتال با کمترین انرژی در هر تراز انرژی : اربیتال کروی نفت خام و محصولات آن، چه در هنگام استخراج و چه در مواقع حمل و نقل زميني و دريايي، در نتيجه رخدادها و تصادف ها سبب آلودگي خاك، آب و يا به طور كلي محيط زيست مي شوند. وجود هيدروكربن هاي نفتي در سطح دريا و در خشكي تهديدي جدي براي اكوسيستم به شمار مي آيد، زيرا براي محيط زيست به شدت مضر و سرطان زا هستند. وجود نفت خام در سطح زمين، سبب آتش سوزي، آلودگي آب هاي زير زميني و آلودگي هوا نيز مي شود، به همين دليل پاك سازي اين آلودگي ها بايد هر چه سريع تر انجام گيرد تا محيطي ايمن و عاري از خطر داشته باشيم. براي پاك سازي و آلودگي زدايي مواد نفتي، روش هاي استاندارد و معمول زيادي وجود دارد كه به علت هزينه بالا و پايين بودن كارايي محدود مي شوند. پاك سازي بيولوژيك مواد نفتي، پروسه هايي هستند كه تركيبات سمي را به مواد غير سمي و بي خطر تبديل مي كنند. اين عمل در نتيجه فعاليت هاي متابوليك ميكروارگانيسم هايي كه قادرند از مواد نفتي به عنوان منبع انرژي و كربن خود استفاده كنند، صورت مي گيرد. عرضه اين فناوري مي تواند بسيار مفيد باشد، زيرا قادر است بدون ايجاد خلل در محيط زيست طبيعي، تركيبات سمي مواد نفتي را به مواد غير سمي تبديل كند. در مقايسه با ديگر فناوري هاي پاك سازي مانند سوزاندن و دفن لجن هاي نفتي، روش بيولوژيك، بسيار ارزان تر و مقرون به صرفه تر است. امروزه تعداد بي شماري از ميكروارگانيسم هايي كه قادر به تجزيه نفت هستند، شناخته شده اند. با مطالعات وسيع روي اين ميكروارگانيسم ها و با روش هاي افتراقي و كشت توانسته اند گونه هاي شاخص و كارآمد را جداسازي كنند. هنگامي كه ميكروارگانيسم ها هيدروكربن هاي نفت خام را مي شكنند، نخستين مرحله اين پروسه، اضافه كردن گروه هيدروكسيل به انتهاي زنجيره آلكان و يا به حلقه غير اشباع هيدروكربن آروماتيك چند حلقه اي است كه در نتيجه يك الكل شكل مي گيرد. اين مرحله از واكنش، به وسيله قارچ هاي ميكروسكوپي انجام مي گيرد. پس از اين مرحله، باكتري ها و مخمر ها الكل را به آلدهيد و بي درنگ آلدهيد را به اسيد كربوكسيليك تبديل مي كنند و سرانجام پس از طي يك زنجيره بلند از واكنش هاي احيا، محصولات نهايي يعني آب، دي اكسيد كربن و بيوماس تشكيل مي شود. اين واكنش ها آنزيم هاي درون سلولي و برون سلولي كه به وسيله اين ميكروارگانيسم ها سنتز مي شود، انجام مي گيرد. عقيده بر اين است كه تركيبات با وزن مولكولي پايين به وسيله آنزيم هاي درون سلولي تجزيه و تركيبات نفتي با وزن مولكولي بالا به وسيله آنزيم هاي ميكروبي برون سلولي شكسته مي شوند. تمام اين محصولات نهايي غير سمي هستند و از بيوماس پس از پايان يافتن پروسه هاي فرآوري بيولوژيك، مي توان به عنوان كود استفاده کرد. پاك سازي بيولوژيك آلودگي هاي نفتي به وسيله ميكروارگانيسم ها بسيار آسان است زيرا باكتري هاي تجزيه كننده هيدروكربن هاي نفتي در حالت طبيعي به طور گسترده در طبيعت (محيط هاي آبي و خشكي) توزيع شده اند. تحقيقات نشان داده است كه جمعيت اين گونه باكتري ها حدود يك درصد از كل جمعيت ميكروبي جهان است. اين گونه باكتري ها كه چربي دوست هستند، به سمت مواد نفتي جذب مي شوند. هنگامي كه يك منطقه با مواد نفتي آلوده مي شود، جمعيت آنها افزايش مي يابد و به حدود ده درصد از كل جمعيت مي رسد. پس مي توان انتظار داشت كه اين روش در محيط زيست به طور طبيعي صورت مي پذيرد ولي سرعت آن بسيار كند است؛ از اين رو ما مي توانيم با استفاده از روش هاي ميكروبيولوژي و بيوتكنولوژي نوين، اين پروسه بيولوژي را تقويت كنيم و به طور انحصاري به خدمت خود درآوريم. در سال 1997 شركتي به نام TERI پس از چندين سال تحقيق روي باكتري هاي تجزيه كننده نفت خام و لجن هاي نفتي موفق به توليد تركيباتي به نام oil zapper شدند. اين مواد شامل باكتري هاي تجزيه كننده نفت، به علاوه يك رشته مواد حامل آلي (به صورت پودر) براي حفظ و نگهداري اين باكتري ها هستند. اين تركيب از پنج گونه باكتري تشكيل شده است كه قادرند بخش‌هاي آليفاتيك، آروماتيك، آسفالتين و تركيبات نيتروژني، گوگردي و اكسيژني را در نفت خام و لجن هاي نفتي به سرعت تجزيه و در نهايت توليد مواد و تركيبات بي خطري مانند آب، دي ‌اكسيد كربن و بيوماس كنند تا به حال در مورد روانكارهاي قابل تجزيه بسيار گفته و نوشته شده است. آنچه توليد كنندگان اين روغن ها را به اين امر وادار كرده، تجزيه پذيري و غير سمي بودن آنهاست. با اين حال بنا به تقاضاي مصرف كنندگان و قابليت هاي توليد كنندگان، مشخصاتي نظير پايداري در برابر اكسيداسيون، جلوگيري از سايش، پايداري هيدروليكي و شاخص گرانروي بالا نيز مي تواند از خصوصيات اين روغن ها باشد. دو نوع عمده روانكارهاي قابل تجزيه، روغن هاي گياهي و سينتتيك هستند. با اين حال هنوز اطلاعات زيادي توسط توليد كنندگان اين نوع روغن ها نظير نحوه كاربرد و يا روش نگهداري آنها منتشر نشده است. صنايع مصرف كننده روغن هاي گياهي و سينتتيك بايد توجيه شوند كه نحوه كاربرد و نگهداري اين روغن ها با روغن هاي پايه معدني متفاوت است، در اين مقاله انواع مختلف روغن هاي قابل تجزيه و مزيت ها و معايب آنها بررسي مي شود. روغن هاي گياهي: روغن هاي گياهي از دانه هاي روغني نظير ذرت، سويا، كُلزا، آفتابگردان، بادام و زيتون بدست مي آيند. اين روغن ها از ملكول هاي تري گليسريد تشكيل شده اند و معايبي نظير پايداري حرارتي و هيدروليكي ضعيف و عدم پايداري در مقابل اكسيداسيون دارند. بيشتر روغن هاي گياهي دماي بالاتر از 800c را نمي توانند تحمل كنند. به علاوه، آب حتي به ميزان چند صد واحد در ميليون، دشمن طبيعي روغن هاي گياهي است و باعث مشكلات جدي نظير كف كردن و تخريب اين روغن ها مي شود. در حالت كلي اين روغن ها در دماي پايين، به راحتي جريان پيدا مي كنند. اين روغن ها بدليل ساختارشان، از خواص روانكاري خوبي برخوردارند. در نتيجه به راحتي سطوح فلزي را پوشانده و ذرات گرد و غبار و براده هاي فلزي را با خود حمل مي كنند. ساختار مولكولي اين روغن ها، هم چنين موجب گرانروي و شاخص گرانروي بالا مي شود. از طرف ديگر اصلاح ژنتيكي روغن هايي نظير سويا و كُلزا مشكلات پايداري در برابر اكسيداسيون و پايداري حرارتي را نيز برطرف كرده است. روغن هاي سينتتيك: روغن هاي قابل تجزيه سينتتيك كه امروزه در دسترس هستند عبارتند از: پلي آلفا الفين ها : گرچه اين روغن ها در دماي پايين داراي ويژگي هاي مطلوبي هستند ولي موجب چروكيدگي آب بندها مي شوند. دي استرها: اين روغن ها پايداري خوبي در برابر اكسيداسيون داشته و خاصيت تورم آب بندها را دارند. پلي آلكيلن گلايكول ها (پلي گلايكول ها): بخشي از اين روغن ها مانند اكسيد اتيلن، آب را در خود حل كرده و گروهي ديگر مانند اكسيد پروپيلن قادر به حل كردن آب نيستند. گروه اول براي روانكارهاي ضدآتش بسيار مناسب هستند. عيب اين دسته از روغن هاي سينتتيك اين است كه در بعضي تجهيزات نظير جعبه دنده ها، تمايل به ايجاد امولسيون آب دارند كه موجب ايجاد كف، لجن و خوردگي مي شوند. عيب عمده پلي آلفا الفين ها و پلي گلايكول ها توانايي پايين حل كردن افزودني ها است وچون مواد افزودني نيز بايد توسط محيط زيست قابل تجزيه باشند، لذا تنها از افزودني هايي مي توان استفاده كرد كه به همراه پلي آلفا الفين ها و پلي گلايكول ها منجر به توليد روغن هاي قابل تجزيه مطلوب شوند. امروزه، برخي از توليد كنندگان، دي استرها را با پلي آلفا الفين ها مخلوط مي كنند و نتيجه، روغن هايي است كه علاوه بر تجزيه پذيري داراي قدرت حلاليت خوب، پايداري در برابر اكسيداسيون و شاخص گرانروي بالا هستند. گروهي ديگر، دي استرهاي سينتتيك را با كلزا مخلوط كرده كه به نتيجه مشابهي مي رسند. روغن هاي تجزيه پذير در تجهيزات بعضي صنايع نظير جنگل داري، معدن، اكتشاف نفت و هم چنين در مواردي كه روانكارها وارد محيط زيست مي شوند بسيار مناسب هستند. معمولاً هنگامي كه به جاي روغن هاي پايه معدني از روغن هاي تجزيه پذير استفاده مي شود، به موارد لازم توجهي نمي شود. روغن هاي تجزيه پذير داراي خصوصيات متفاوتي هستند و جايگزيني روغن فقط محدود به تخليه روغن هاي معدني و استفاده از روغن هاي قابل تجزيه نيست. پيش از استفاده از روانكاري هاي تجزيه پذير، ابتدا بايد مشخصات طراحي و عملياتي سيستم، نظير دما، فشار و دبي عمليات، نوع آب بندي يا جنس شلنگ ها، پتانسيل آلودگي آب، گرد و غبار، آلاينده ها و اين كه آيا سيستم فيلتراسيون موجود براي سيال جديد مناسب است را در نظر گرفت. نكته مهم ديگري كه معمولاً به آن توجهي نمي شود اين است كه آيا سيال تجزيه پذير جديد با روغن معدني سازگار است يا خير؟ در صورتي كه جواب منفي باشد، اگر پيش از مصرف سيال جديد، روغن معدني قديمي كاملاً از سيستم شسته نشود، منجر به بروز مسائل جدي خواهد شد. جايگزيني ناقص و نادرست باعث توليد كف، نشتي آب بندها، گرفتگي فيلترها، سايش بيش از حد بعضي از اجزاء (نظير پمپ هاي هيدروليك) و افزايش دماي عملياتي مي شود. كاربرد صحيح روغن هاي تجزيه پذير با توجه به مواردي كه در مورد سيالات تجزيه پذير گفته شد، كاربرد صحيح هر كدام از اين روانكارها كجاست؟ هم چنين هنگام جايگزيني، مصرف كنندگان بايد چه مواردي را در نظر بگيرند؟ روغن هاي گياهي: بهترين كاربرد اين روغن ها در تيغه هاي چوب بري يا ديگر مواردي است كه استفاده از روغن هاي غير سمي توصيه شده و روغن به صورت يك بار مصرف وارد چرخه طبيعت مي شود. هم چنين از اين نوع روغن ها مي توان در سيستم هاي هيدروليكي فشار پايين تا متوسط يا دنده هاي با بار پايين كه دماي عملياتي آن از 600c بالاتر نمي رود و شانس كمي براي ورود آب يا آلودگي وجود دارد، استفاده كرد. اين گونه روغن ها قابليت ----- شوندگي پاييني دارند، بنابراين هنگامي كه احتمال وجود آلودگي مي رود، بايد فيلترها پيوسته مورد بازرسي قرار گيرند. قبل از استفاده از روغن هاي گياهي بايد جعبه دنده ها و سيستم هاي هيدروليكي به طور كامل از براده ها، لجن و آلاينده ها شسته شوند تا از هر نوع عدم سازگاري جلوگيري شود. با درنظر گرفتن اين نكته كه ممكن است واكنش هاي نامناسبي روي موادي نظير نئوپرن و نيتريل اتفاق بيفتد. پلي آلفا الفين ها: مصرف اين روغن ها در روغن هاي موتور، بخصوص در شرايط آب و هوايي سرد و هنگامي كه فشار هيدروليكي بالاست در حال افزايش است. مصرف اين روغن ها در روانكاري دنده ها رو به افزايش بوده كه اين امر بدليل كاهش دماي عملياتي و ضرايب اصطكاك آنهاست و در نهايت منجر به كاهش سايش مي شود. اين روغن ها با روغن هاي معدني سازگار هستند، بنابراين نياز به شستشوي اضافي نيست، ولي چون تاثير منفي بر روي آب بندها دارند، احتمال نشتي وجود خواهد داشت. دي استرها: اين روغن ها، روانكارهاي بسيار عالي براي توربين ها و كمپرسورها هستند. دي استرها به دليل حلاليت و پاك كنندگي خاصي كه دارند، ممكن است بر روي پوشش ها، تاثير منفي داشته باشند. بنابراين قبل از جايگزيني بايستي از سازگاري دي استر با رنگ هاي بكار رفته در سيستم اطمينان حاصل كرد. علاوه بر اين كليه روغن هاي بالا اثر بدي بر روي آب بندها ايجاد كرده و بايد از آب بندهاي فلوئوروكربني استفاده كرد. پلي گلايكول ها: اين سيالات شامل اكسيد پلي اتيلن يا اكسيد پلي پروپيلن است كه قدرت حل كنندگي آب درهر كدام متفاوت است. پلي گلايكول هاي با پايه اكسيد پلي اتيلن داراي قابليت بالاي حل كنندگي آب و اختلاط ضعيف با روغن هاي معدني و بسيار قطبي هستند. در نتيجه حتماً بايد قبل از جايگزيني، سيستم به طور كلي از روغن معدني شسته شود. گرچه قدرت حل كنندگي آب اين گروه از روغن ها به تجزيه پذيري آنها كمك مي كند، ولي در عوض داراي اين عيب است كه آلودگي آب آزاد آنها به سرعت اتفاق مي افتد. دانسيته بالاي اين سيالات باعث عدم ته نشيني ذرات جامد مي شود. براي غلبه بر اين مشكل، سيستم هاي فيلتراسيون بايد اصلاح و يا تعويض شوند. در سيستم هاي هيدروليك، فيلترهاي با اندازه3 ميكرون در يك جريان جانبي دركنترل آلودگي ها موثر است. به منظور جلوگيري از تبخير اضافي و غير ضروري سيالات حلال آب، دماي عملياتي بايد به طور قطع كنتر ل شود. دماي توصيه شده بين50 تا60 درجه سانتي گراد است كه بايد حفظ شود. موضوع ديگري كه در سيستم هاي هيدروليك بايد به آن توجه داشت، آسيب هايي است كه از كاويتاسيون سيالات بر پايه آب و سيالات حلال آب به شيرهاي اطمينان وارد مي شود. كاويتاسيون فاز بخار به دليل فشار بخار بالا باعث سايش نشيمن گاه شير شده و در نتيجه از كارافتادگي زود هنگام شير اطمينان را به وجود مي آورد. بنابراين قبل از جايگزيني بايد شير مناسبي انتخاب شود. جدول شماره يك برخي از مشخصات روغن هاي تجزيه پذير را نشان مي دهد. نگهداري روغن هاي تجزيه پذير عقيده بر اين است كه روانكار درون يك ماشين، بخشي از آن ماشين به حساب مي آيد. بنابراين بايد روانكار درون يك ماشين را مانند خود ماشين نگهداري وبررسي كرد. متاسفانه تا قبل از اين كه مشكلي بوجود بيايد، به وضعيت روغن توجهي نمي شود. يك دليل اين وضعيت، اين است كه افراد زيادي روغن را به طور دلخواه و بدون توجه به عواقب آن تخليه مي كنند. در بيشتر حالات، قيمت روغن هاي تجزيه پذير، سه، چهار و يا پنج برابر روغن هاي معدني است. ولي هزينه اي كه مصرف كنندگان اين روغن ها مي پردازند با مدت زمان كاركرد طولاني تر اين روغن ها قابل جبران است. در حالت كلي، نگهداري و مراقبت روغن هاي تجزيه پذير بايد مانند روغن هاي پايه معدني انجام شود. اين روغن ها بايد خنك، تميز و خشك نگهداري شوند و شرايط آنها بر اساس يك برنامه منظم با روش هاي موجودِ تحليلِ روغن، بررسي شود. به طور خاص، روانكارهاي تجزيه پذير بايد به منظور تعيين گرانروي در400c و 1000C مقدارآب آزاد (با استفاده از روش دقيقي نظير آزمايش كارل فيشر)، عدد اسيدي (كه مي تواند نشان دهنده اكسيداسيون باشد) و آلودگي ذرات جامد ( با استفاده از روش هاي آزمايش شمارش ذرات) تحت مراقبت قرار گيرند. هر علامتي كه نشان دهنده بروز يا شكل گيري يك مشكل است بايد بررسي و اصلاح شود تا نتيجه مطلوبي از مصرف روغن هاي تجزيه پذير حاصل شود.

  14. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  15. #129
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    هنگامی که جرم مولکولی و فرمول تجربی تعیین گردیدند، می‌توان مستقیما فرمولی مولکولی جسم را تعیین کرد. اغلب ، وزن فرمول تجربی و جرم مولکولی یکسان است. در چنین حالتی ، فرمول تجربی ، همان فرمول مولکولی است. در بسیاری از حالتها وزن فرمول تجربی کمتر از جرم مولکولی است. در چنینی حالتهایی ضروری است که تعیین گردد چند بار وزن مولکولی را باید به وزن فرمول تجربی تقسیم کرد و سپس رقم بدست آمده را در فرمو ل تجربی ضرب کرد تا فرمول مولکولی بدست آید.

    مثال ساده در این مورد ، اتان است. بعد از تجزیه کمی عنصری ، فرمول تجربی Ch3 برای اتان تعیین گردید. محاسبات نشان داد که جرم مولکولی اتان 30 است. پس از تقسیم وزن مولکولی اتان (30) بر وزن فرمول تجربی (15) رقم 2 بدست آمد. بنابراین ، باید فرمول مولکولی اتان ، 2(ch3) یا C2h6 باشد.

    برای مثال ، مجهولی که فرمول تجربی C7h14o2 بوده و وزن فرمولی آن 130 است. اگر فرض کنیم که جرم مولکولی این ماده 130 تعیین شده است، می‌توان نتیجه گرفت فرمول تجربی و فرمول مولکولی معادلند و ضمنا فرمول مولکولی باید C7h14o2 باشد.

  16. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  17. #130
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    یک مرحله در تعیین فرمول مولکولی یک ماده ، تعیین وزن یک مول از آن ماده است. این عمل به طرق مختلفی صورت می‌گیرد. بدون در دست داشتن جرم مولکولی یک مجهول ، کسی قادر نیست بگوید فرمول تجربی که مستقیم از تجزیه عنصری تعیین گشته ، آیا فرمول حقیقی ماده بوده یا این که این فرمول باید در عددی ضرب شود تا فرمول مولکولی واقعی جسم مجهول مشخص گردد.
    استفاده از طیف سنج جرمی

    در یک آزمایشگاه جدید ، جرم مولکولی با استفاده از طیف سنج جرمی تعیین می‌گردد. یک روش قدیمی جهت تعیین جرم مولکولی ماده ( بر اساس اصول شیمی عمومی ) ، روش چگالی بخار است. در این روش ، حجم مشخصی از گاز در دمای مشخص توزین می‌گردد. پس از تبدیل حجم گاز در دما و فشار استاندارد ، می‌توان تعیین نمود که آن حجم چه کسری از یک مول را نشان می‌دهد. از این طریق می‌توان جرم مولکولی ماده را بسادگی تعیین کرد.

    اندازه‌گیری نزول نقطه انجماد یک حلال

    روش دیگر تعیین جرم مولکولی یک ماده ، اندازه‌گیری نزول نقطه انجماد یک حلال است که به مقدار مشخصی از ماده مورد آزمایش اضافه شده باشد. این روش به نام روش انجماد سنجی خوانده می‌شود.

    اسمومتری فشار بخار

    روش دیگر که فقط گاهی اوقات مورد استفاده قرار می‌گیرد، اسمومتری فشار بخار است. در این روش ، ماده مورد آزمایش را در یک حلال حل کرده و تغییر فشار بخار حلال را اندازه می‌گیرند.

  18. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •