تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 2 اولاول 12
نمايش نتايج 11 به 19 از 19

نام تاپيک: انتقال قدرت

  1. #11
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض مباني هيدروليك

    مباني هيدروليك

    هيدروليك مطالعه سيالات و كاربرد آن براي انتقال نيرو و حركت است. كلمه هيدورليك از لغت يوناني هيدرو به معني آب گرفته شده است.
    سيستم‌هاي آب رساني خانگي يك كاربرد متداول از هيدروليك مي باشد و اصول حاكم بر رفتار آب در مورد تمام سيالات صادق است. درگير بكس‌هاي اتوماتيك مدرن يك سيستم هيدروليك براي كنترل عملكرد آنها به كار رفته است.
    در حالي كه تمام سيستم‌هاي هيدروليكي از مايعات استفاده مي‌كنند مايعي كه درگير بكس‌هاي اتوماتيك به كار مي رود عموماً روغن گيربكس ناميده مي شود.

    اصول هيدروليك
    سيستم‌هاي هيدروليك نيرو و حركت را از طريق كاربرد فشار انتقال مي دهند نيرو، فشار و يا كشش اعمال شده بر يك شيئي است. نيرو معمولاً بر حسب پاوند و يا نيوتن اندازه‌گيري مي شود. فشار نيروي اعمال شده بر سطح معين است. فشار معمولاً بر حسب واحد نيرو تقسيم بر واحد سطح اندازه گيري مي شود و واحدهاي آن پاوند بر اينچ مربع (Psi) يا كيلوپاسكال (kpa ) اندازه گيري مي شود. 6.89 pa= 1psi))مي باشد.

    پاسكال يك واحد اندازه گيري است كه بعد از « بلز پاسكال » رياضيدان و دانشمند مشهور فرانسوي (1623-1662 ) به خاطر تحقيقاتش در هيدروليك به نام او نامگذاري شد. پاسكال بعضي از حايق مهم دربارة رفتار مايعات در يك سيستم بسته را كشف كرد. او دريافت كه فشار روي يك مايع محبوس شده بطور مساوي بر تمام جهات منتقل مي شود و بر سطوح برابر نيروي مساوي وارد مي كند.

    اين اصل قانون پاسكال ناميده مي شود و چنانچه بعداً خواهيم ديد يك اصل بنيادي است كه بر عملكرد تمام سيستم‌هاي هيدروليك حكمفرماست. سيستم‌هاي هيدروليك قادرند مايعات را براي انتقال نيرو و حركت بكار گيرند زيرا در تمام كاربردهاي عملي يك مايع غير قابل تراكم است.
    اينكه چه مقدار فشار بر روي يك مايع اعمال مي شود اهميتي ندارد، چون حجمش همواره ثابت مي ماند. اين امر به سيال اجازه مي دهد كه نيرو و حركت بكار گيرند زيرا در تمام كاربردهاي عملي يك مايع غيرقابل تراكم است.
    اينكه چه مقدار فشار بر روي يك مايع اعمال مي شود اهميتي ندارد، چون حجمش همواره ثابت مي ماند. اين امر به سيال اجازه مي دهد كه نيرو و حركت را به خوبي يك اهرم مكانيكي منتقل كند. مزيت يك مايع بر اهرم مكانيكي اين است كه داراي حجم است امّا شكل ثابتي ندارد. چون فرض بر اين است كه مايع به شكل ظرف خود در مي‌‌آيد مي توان آن را براي رفع موانع به هر شكلي خم كرد.

    اصول قطعات سيستم هيدروليكي
    تمام سيستم‌هاي هيدروليكي گيربكس اتوماتيك از يك مخزن، يك چشمه ورودي، سوپاپ‌هاي كنترل و يك عمل كنندة خروجي استفاده مي كنند. مخزن عبارت است از يك كارتل، يك تانگ و يا هر نوع ظرف ديگري كه روغن را براي ما ذخيره مي‌كند. چشمة ورودي يك پيستون يا يك پمپ است كه نيروي لازم را تهيه مي‌كند. سوپاپ‌هاي كنترل عبارتند از هر قطعه‌اي كه جريان روغن را محدود، هدايت و يا به عبارت ديگر تنظيم كند. كارانداز خروجي يك پيستون و يا سرو و موتور است كه نيروي ايجاد دشه به وسيلة فشار هيدروليكي را منتقل مي كند.

    هيدروديناميك
    عبارت است از مطالعه عملكرد و حركت مكانيكي و عملكرد سيالات يا مايعات در حال حركت، اولينن چيزي كه در اين رابطه بايد دانست اين است كه فشار تنها زماني ايجاد مي شود كه مقاومتي در برابر جريان سيال وجود داشته باشد. اگر دبي حجمي پمپي 200 گالن بر دقيقه باشد و اين پمپ اين حجم روغن را از ميان لوله‌اي كه توانايي عبور حداكثر 200 گالن بر دقيقه را داشته باشد جاري كند روغن جريان خواهد داشت. امّا هيچ فشاري ايجاد نمي‌شود. فشار تا زمانيكه مانعي در مقابل سيال در داخل لوله ايجاد نشود بالا نمي رود. قابليت ايجاد مقاومتهاي گوناگون در يك سيستم هيدروليك براي بدست آوردن مقادير مختلف فشار اساس سيستم هيدروليك تمام گيربكس هاي گوناگون است. اين بخش جزئيات انواع مختلف سوپاپ‌هاي كنترل بكار رفته در گيربكس هاي اتوماتيك متمركز است. شيرهاي كنترل گيربكس هاي اتوماتيك را مي توان در دو گروه عمدة زير طبقه‌ بندي نمود:

    ـ سوپاپ‌هايي تنظيم فشار: اندازة فشار ايجاد شده در گيربكس به منظور تعويض دنده‌ها را كنترل مي كنند.
    ـ سوپاپ‌هاي قطع و وصل )سويچينگ) جهت جريان روغن را قبل از انجام تعوييض كنترل مي‌كنند. گاهي اوقات در بعضي گيربكس‌ها عمل تنظيم فشار و سويچينگ در يك زمان انجام مي شود امّا در هر يك صورت هر يك از دو وظيفة فوق به وضوح در انواع گيربكس‌ها مشاهده مي شود.

    اريفيس (تنگنا( orifice
    اريفيس يك مجراي عبوري كوچك است كه به عنوان ساده ترين سوپاپ تنظيم فشار به كار مي ورد. در گيربكس هاي اتوماتيك اريفيس ممكن است يك لولة محدود شده و يا يك سوراخ كوچك بين دو محفظه باشد.
    همچنين ممكن است از اريفيس براي محدود كردن جريان روغن عبوري از كانالهاي يك گيربكس استفاده شود، هنگامي كه سيال به يك اريفيس مي رسد با مقاومتي روبرو مي‌شود و فشار رو به افزايش مي‌نهد، لذا فشار در سمتي از اريفيس كه حجم روغن بيشتر است بالاتر مي رود.

    سوپاپ فشار شكن Pressure Relief Valve
    يك سوپاپ فشار شكن يا سوپاپ محدود كنند فشار هنگامي كه فشار به يك حد از پيش تعيين شده رسيد از يك مجراي خرو جي به روغن اجازه تخليه مي دهد. در يك نوع رايج از سوپاس فشار شكن يك پيستون يك فنر و يك مجراي خروجي براي كنترل فشار به كار رفته است. در اين سوپاپ، روغن وارد مجراي ورودي شده و پيستون را مخالف نيروي فنر مي‌فشارد.

    درگيربكس هاي اتوماتيك سوپاپ فشارشكن دو وظيفه را به عهده دارد:
    ـ فشار سيستم هيدروليك را به منظور حفاظت از قطعات گيربكس در مقابل فشار زياد محدود مي‌كد.
    ـ مي‌توان سوپاپ فشارشكن را براي جلوگيري از جريان يافتن سيال در سيستم هيدروليك تا رسيدن به يك فشار معين به كار برد. در اين صورت مجراي خروجي مانند يك راهگاه ورودي عمل مي‌كند و تا زمانيكه فشار سيستم براي متراكم كردن فنر و باز كردن مجراي خروجي كفايت كند هيچ سيالي از ميان آن عبور نمي‌كند.

    سوپاپ هاي قرقره اي
    اغلب سوپاپ‌هاي بكار رفته درگير بكس اتوماتيك از نوع سوپاپ قرقره‌ايي هستند و تعدادي از آنها به عنوان سوپاپ تنظيم فشار عمل مي كنند.اين سوپاپ‌ها از اين جهت كه شباهت زيادي به قرقره‌هايي كه روي آن ها نخ خياطي پيچيده مي شود، نامگذاري كرده‌اند.

    سوپاپ قرقره‌ايي ساده
    يك سوپاپ قرقره‌اي ساده 2 عدد پيستون، 4 سطح فشاري و يك دسته پيستون در بين سطوح داخلي دارد .
    سوپاپ هاي قرقره ايي اساساً يك نوع پستون هستند كه هنگام اعمال شار هيدروليك بر سطوح مختلف آنها در داخل يك سيلندر به دقت ماشينكاري شده، به عقب و جلو حركت مي‌كنند.
    سوپاپ قرقره ايي ساده در يك طرف داري يك سطح فشار است كه دو برابر سطح فشار طرف ديگر است و فشار اعمال شده بر هر دو سطح يكسان است. در اين مثال فشار اعمال شده بر سطح بزرگتر، نيروي خروجي دو برابر توليد خواهد كرد و سوپاپ به سوي نيروي كوچكتر حركت مي‌كند.

    سوپاپ هاي بالانس (تعادل(
    سوپاپ هاي بالانس، سوپاپ‌هاي تنظيم فشار هستند كه يك سوپاپ قرقره اي و فنر را براي كنترل فشار سيستم هيدروليك به خدمت مي گيرند. همچنين بعضي از سوپاپ‌هاي بالانس از نيروي كمكي اهرم و يا نيروي سيال كمكي براي ايفاي نقش خود بهره مي‌گيرند.

    سوپاپ‌ها سويچينگ (راه دهنده( : switching valves
    يك سوپاپ سويچينگ يا سوپاپ راه دهنده (سوپاپ كنترل جهت) سيال را از يك معبر به معبر ديگر و يا از يك مدار هيدروليك به مدار هيدروليك ديگر هدايت مي‌كند. همچنين يك سوپاپ سويچينگ ممكن است به يك مجموعه از معابر اجازه دهد در بيش از يك مدار هيدروليك به كار گرفته شوند.

    سوپاپ مانع يك راهه one-way check valve
    اين سوپاپ همچنانكه از نامش پيداست تنها از يك طرف به سيال اجازه مي‌دهد كه از ميانش عبور كند. سوپاپ پاپت يك نوع سوپاپ مانع يك طرفه است . روغن تنها پس از غلبه فشار هيدروليك بر فشار فنري كه پاپت را در نشيمنگاه نگه داشته مي‌تواند از ميان سوپاپ بگذرد .

    سوپاپ مانع دو راهه Two – way check valve
    سوپاپ مانع دو راهه جريان سيال را در دو مدار هيدروليك جداگانه كنترل مي‌كند. سوپاپ ساچمه‌اي ساده ترين نوع سوپاپ مانع دو راهه است .
    همانطور كه ملاحظه مي‌كنيد، هنگامي كه فشار هيدروليك به مدار وارد مي‌شود سوپاپ بطور اتوماتيك عمل مي كند. اگر سيال از طرف راست وارد شود، ساچمه به طرف چپ حركت مي كند . سپس فشار هيدروليك ساچمه را در نشيمنگاه مربوط به مجراي سمت چپ نگه مي دارد و جريان سيال را در آن جهت مسدود مي‌كند. پس سيال وارد شده از طريق مجراي بالانس سوپاپ خارج مي‌شود. اگر سيال از طرف مجراي سمت چپ وارد سوپاپ شد .
    ساچمه را به طرف مجراي راست حركت مي‌دهد. سپس فشار هيدروليك ساچمه را در نشيمنگاه مربوط به مجراي راست نگه مي‌دارد. اين عمل جريان سيال از مجراي راست را متوقف مي‌كند و روغن هاي وارد شده بار ديگر از مجراي بالايي خارج مي‌شوند.
    خاصيت آب بندي سازي اتوماتيك سوپاپ مانع دو راهة ساچمه‌ايي به دو مدار هيدروليك مجزا امكان استفاده از يك مع بر را مي دهد. درگير بكس هاي اتوماتيك فشار هيدروليك دو مدار به مجراهاي چپ و راست سوپاپ دو راهه تغذيه مي شود. در اين حالت مجراي بالايي به يك خروجي مشترك تبديل مي شود و به اين ترتيب دو مدار هيدروليك اجازه مي يابند كه يك خروجي گيربكس را در شرايط مختلف كاري كنترل كنند.

    سوپاپ سويچينگ با كار انداز دستي
    يك سوپاپ سويچينگ با كارانداز دستي يك سوپاپ قرقره‌ايي است كه بوسيلة يك اهرم مكانيكي حركت مي كند، بر حسب موقعيت اهرم و به تبع آن موقعيت قرقره در داخل محفظه‌اش ممكن است مانع ورود سيال به داخل سوپاپ شود و يا اينكه سيال ممكن است اجازه عبور از ميان سوپاپ را بيابد.
    سوپاپ طوري واقع شده كه پيستونِ قرقره مجراي ورودي را مسدود كرده است. اين حالت از ورود سيال به داخل سوپاپ ويچينگ ممانعت مي كند. در اهرم براي تغيير موقعيت قرقره حركت كرده بنابراين مجراي ورودي باز شده است. اين جالت به سيال اجازه مي دهد كه به فضاي بين قرقره جريان يابد. امّا چون پيستونِ سمت راست قرقره مجراي خروجي را مسدود كرده سيال در داخل سوپاپ باقي مي ماند.

    سوپاپ بيشتر حركت كرده و موقعيت قرقره در اين حالت مجراي ورودي و خروجي را باز كرده است . دسته انتخاب حالت اغلب گيربكس‌هاي اتوماتيك به يك سوپاپ سويچينگ با كارانداز دستي متصل است. يعني براي انتخاب دنده مورد نظر بكار رفته است.عه‌هاي سوپاپ‌هاي سويچينگ با كارانداز دستي درگير بكس‌هاي اتوماتيك داراي قرقره چندگانه و چندين مجرا مي باشد. امّا با آنكه داراي شكل نسبتاً پيچيده‌ايي هستند از همان روش براي كنترل جريان روغن استفاده مي‌كنند.
    سوپاپ سويچينگ (راه دهنده ) با كارانداز هيدروليكي
    يك سوپاپ سويچينگ با كارانداز هيدروليكي يك سوپاپ قرقره‌ايي است كه بوسيله فشار هيدروليك در جهت عكس فشار يك فنر به حركت در مي‌آيد.

    همانند سوپاپ سويچينگ با كارانداز دستي پيستون هاي يك سوپاپ سويچينگ با كارانداز هيدروليكي مدارات هيدروليكي مختلف را براي كنترل عملكرد گيربكس باز و بسته مي‌كنند. فشار فنر قرقره سوپاپ را در موقعيتي قرار داده كه سيال نمي‌تواند از مجراي ورودي به مجراي خروجي جريان يابد در نتيجه يك مدار در سيستم هيدروليك مسدود مي شود. امّا اگر فشار كمكي در سمت چپ سوپاپ افزايش يابد و به حدي برسد كه بر فشار فنر غلبه كند سوپاپ به طرف راست حركت خواهد كرد و دريچه ورودي را باز مي كند در نتيجه سيال اجازه مي يابد كه به يك مدار هيدروليك تغذيه شود.

    سوپاپ تعويض گير بكس Shift valve
    سوپاپ تعوييض گيربكس شبيه به يك سوپاپ سويچينگ با كارانداز هيدروليكي عمل مي كند كه دو فشار هيدروليك كمكي را براي حركت سوپاپ بكار مي‌گيرد. يك فشار كمكي به سمت چپ سوپاپ اعمال مي شود در حالي كه فشار ديگر برطرف راست سوپاپ اعمال مي شود.
    مادامي كه تركيب فشار فنر و فشار هيدروليك اعمال شده به سمت راست سوپاپ بزرگتر از فشار كمكي اعمال شده به سمت چپ سوپاپ است، پيستونِ سمت راست سوپاپ مجراي ورودي را مسدود خواهد كرد. اين عمل مانع جاري شدن سيال از ميان سوپاپ به طرف مدار هيدروليك مورد نظر مي‌شود. اگر فشار كمكي در سمت چپ سوپاپ از تركيب فشار فنر و فشار كمكي سمت راست بزرگتر باشد سوپاپ به سمت راست حركت خواهد كرد.
    در نتيجه دريچه ورودي باز و فشار هيدروليك اجازه مي يابد از طريق فضاي بين قرقره‌ها ب دريچه خروجي جريان يابد. از طريق اين طرح زمان حركت سوپاپ با استفاده از تغيير فشارهاي كمكي مي تواند تغيير كند. گاهي اوقات سوپاپ‌هاي تعويض گيربكس را سوپاپ چهنده مي نامند زيرا هنگام تغيير فشار، در انتهاي سوپاپ تقريباً بطور ناگهاني تغيير موقعيت مي‌دهند.


    خلاصه :

    هيدروليك مطالعه مايعات و سيالات و كاربرد فشار آنها براي انتقال نيرو و حركت است سيستم هاي هيدروليك براي اين منظور از مايعات استفاده مي كنند زيرا غير قابل تراكم هستند.
    اين نكات را درباره سيستم هاي هيدروليك به خاطر بسپاريد.
    1
    ـ به ازاي هر مقدار نيروي ورودي داده شده فشار هيدروليك در داخل يك سيستم بسته ثابت است.
    2
    ـ به ازاي هر مقدار نيروي ورودي داده شده يك پيستون ورودي كوچك بيشتر از يك پيستون ورودي بزرگ فشار ايجاد مي كند.
    3
    ـ به ازاي هر مقدار فشار موجود در سيستم هيدروليك يك پيستون خروجي بزرگ نيروي بيشتري نسبت به يك پيستون خروجي كوچك ايجاد مي كند.
    4
    ـ يك پيستون خروجي كه نيرو را نسبت به پيستون ورودي افزايش مي دهد جابجايي كمتري نسبت به پيستون ورودي دارد.
    5
    ـ يك پيستون خروجي كه مقدار نيرو را به ميزان كمتر از نيروي ورودي مي رساند جابجايي بيشتري نسبت به پيستون ورودي خواهد داشت.


    هر سيستم هيدروليك به ي منبع ذخيره سيال يك چشمه ورودي، سوپاپ‌هاي كنترل و يك وسيله خروجي احتياج دارد. فشار در سيستم هيدروليك مادامي كه مقاومتي در برابر جريان وجود نداشته باشد بوجود نمي آيد.
    اريفيس ها، سوپاپ هاي فشار شكن، سوپاپ هاي قرقره‌ايي و سوپاپ‌هاي بالانس، سوپاپ‌هي تنظيم فشار هستند كه براي ايجاد مقاومت و كنترل فشار هيدروليك به كار مي‌روند. سوپاپ‌هاي مانع دريچه‌اي، سوپاپ‌هاي مانع ساچمه‌ايي، سوپاپ‌هاي سويچينگ با كارانداز دستي و سوپاپ‌هاي سويچينگ با كارانداز هيدروليكي انواع مختلف سوپاپ‌هي راه دهنده هستند كه براي هدايت سيال هيدروليك از يك معبر به معبر ديگر و يا از يك مدار به مدار ديگر به كار مي روند بعضي از سوپاپ‌ها هم كار سويچينگ و هم كار تنظيم فشار را انجام مي‌دهند.

    منبع : انجمن علمي مهندسي مكانيك دانشگاه شهركرد

  2. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  3. #12
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض كاربرد پمپ ها در سيستم هاي هيدروليك

    كاربرد پمپ ها در سيستم هاي هيدروليك

    كارآيي سيستم هاي هيدروليك براي سهولت انتقال نيرو، موجب گسترش روز افزون اين سيستم ها شده است. مي توان پمپ هاي سيستم هاي هيدروليك را به مثابه قلب سيستم در نظر گرفت.
    پمپ هاي هيدروليك تنها يك وظيفه مهم را بدوش دارند و آن به جريان انداختن سيالات هيدروليك است. عامه مردم تصور مي كنند كه پمپ ها، فشار مورد نياز را ايجاد مي كنند، ليكن اين تصور نادرست است. فشار ناشي از عواملي مانند مقاومت خطوط لوله، گرانروي و بار روي محرك ها (Actuator) در مقابل جريان سيال، مقاومت مي كنند. در واقع شفت پمپ، انرژي مكانيكيِ موتور الكتريكي يا موتورهاي ديزلي و بنزيني را به انرژي سيال تبديل مي كند. پمپ هاي سيستم هاي هيدروليك از نوع پمپ هاي جابجايي مثبت هستند. در اين پمپ ها كه با آب بندهاي خاص و لقي هاي بسيار كم طراحي مي شوند، با هر جابجايي حجم معيني از سيال تحت فشارهاي نرمال پمپ مي گردد به طوري كه احتمال برگشت سيال تقريباً غيرممكن است.
    در نتيجه هنگامي كه فشار سيستم به دليل بار روي محرك (Actuator) افزايش مي يابد، موتور الكتريكي يا موتور ديزلي بايد شديدتر كار كند تا حجم مورد نياز را منتقل كند كه اين به معناي توان الكتريكي بيشتر و يا افزايش مصرف سوخت است. در واقع چون اين جريان به نواحي حساس سيستم پمپ مي شود (آب بندها، شلنگ ها و غيره ) هميشه سيستم به يك شير اطمينان مجهز مي شود.

    انواع پمپ هاي هيدروليك
    با وجود تنوع پمپ هاي هيدروليك ، مي توان آنها را در چند گروه تقسيم بندي كرد: دنده اي، پره اي و پيستوني.
    پمپ هاي دنده اي: پمپ هاي دنده اي بسيار ارزان بوده، به نوع سيال هيدروليك حساسيت ندارند. اين پمپ ها در مقابل آلودگي مقاوم بوده و نياز به طراحي هاي خاص ندارند. فشار در اين سيستم ها بين1500 تا 5000psi مي باشد. اين ويژگي ها باعث شده كه در تجهيزات متحرك، بيشتر از پمپ هاي دنده اي استفاده شود چرا كه كه مقاومتشان در برابر آلودگي بسيار زياد و كارايي آنها در خور توجه است.
    درون پمپ هاي دنده اي، دو چرخ دنده در خلاف جهت يكديگر حركت مي كنند كه اولي به شفت موتور متصل بوده و دومي چرخ دنده هرز گرد (Idler) مي باشد. سيال از محفظه ورودي وارد پمپ شده و از ميان دندانه هاي چرخ دنده ها و جداره محفظه پمپ منتقل مي شود. به دليل فواصل بسيار كم، سيال از مركز پمپ نمي تواند عبور كند. پس دو جريان دوباره با هم مخلوط شده و به سمت خروجي پمپ رانده مي شوند.

    پمپ هاي دنده اي مي توانند در هر دو جهت عمل كنند و اين ويژگي قابل توجهي در بعضي از سيستم ها است. از آنجايي كه ياتاقان هاي اين پمپ ها تنها از يك جهت، (جهت فشار پمپ خروجي) تحت بار قرار دارند، به پمپ هاي نامتوازن معروفند. در نتيجه اين پمپ ها به طور نامتناسب و تنها از يك جهت، تمايل به سايش دارند. پمپ هاي دنده اي در انواع خارجي (كه بسيار متداول است)، داخلي و يا از نوع چرخان (Gerotor) ساخته مي شوند(شكل1)
    پمپ هاي پره اي: اين نوع پمپ ها كارآيي و موارد استفاده زيادي دارند ولي سيال آنها بايد خواص ضد سايش فوق العاده اي داشته باشد. در پمپ هاي پره اي چند نقطه در معرض سايش قرار دارند. اين نقاط نوك پره ها، صفحات دوار و شيار پره ها در روتور هستند. يك مزيت پمپ هاي پره اي اين است كه سايش تمام سطوح آن يكنواخت است و اين وضعيت راندمان را افزايش مي دهد.
    هم چنين، پمپ هاي پره اي كه با دو ورودي و دو خروجي در جهات مختلف طراحي مي شوند متوازن بوده و با توجه به اين ويژگي، تنش يكنواخت و كمتري بر روي ياتاقان ها وارد مي شود. مي توان پمپ هاي پره اي را با تغيير شكل مكانيكي محفظه پمپ، به صورت پمپ هاي جا بجايي متغير ساخت كه در نتيجه راندمان آنها افزايش يافته و البته هزينه اوليه‌(ساخت) پمپ ها نيز افزايش مي يابد.

    تحمل پمپ هاي پره اي در مقابل آلودگي كم است و ذرات آلودگي، سبب سايش غيرمنتظره پره ها مي شود. پمپ هاي پره اي در محدوده فشار1000 ت 3000psi توانايي عملكرد دارند.
    پمپ هاي پيستوني: اين نوع از پمپ ها به دو شكل شعاعي يا محوري طراحي مي شوند. در نوع شعاعي، پيستون ها از محور يك محفظه استوانه اي حلقوي شكل شبيه چرخ پره دار مي چرخند و در نوع محوري، محور گردش پيستون ها و سيلندرها موازي مي باشد. از طرفي لقي هاي پمپ هاي پيستوني بسيار كم بوده و به همين دليل اين پمپ ها به ذرات ناشي از سايش خراشيدگي بسيار حساس هستند.
    پمپ هاي پيستوني به دو شكلِ جابجايي ثابت يا متغير طراحي مي شوند. طراحي هاي جابجايي متغير، تغييرات فشار
    سيستم را جبران مي كنند و داراي بيشترين بازدهي (يعني بين92 تا97 درصد) هستند.
    صرف نظر از نوع پمپ ها، سيستم هاي هيدروليك، بايد قبل از راه اندازي به طور كامل تميز و شسته شوند و كليه منابع آلودگي بايد تا حد امكان به حداقل برسد. هم چنين سيال هيدروليك نو يا سيال هيدروليك كه سر ريز مي شود بايد قبل از استفاده در سيستم به طور كامل ----- شود چرا كه يك سيستم هيدروليكي كه در شرايط مناسب عملياتي به سر مي برد و سيال هيدروليك آن ----- مي شود، در مقايسه با يك سيال هيدروليك نو تميزتر است. علاوه بر تميزي سيال، نوع سيال، محدوده دما، گرانروي سيال، شرايط سيال (اكسيداسيون، آلودگي با آب و غيره) فشاري كه بر روي سيستم وارد مي شود، ورود هوا و كاويتاسيون، همگي بر پمپ و عمر آن موثر هستند.


    منبع :ماهنامه نفت پارس

  4. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  5. #13
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض گیربکس اتوماتیک اتومبيل

    گیربکس اتوماتیک اتومبيل

    گیربکس های اتوماتیک پس از گیربکس های مکانیکی و در جهت رفع مشکلات ان پا به بازار گذاشت
    در گیربکس های اتوماتیک راحتی راننده بسیار مد نظر بوده و بسیاری از عیبهای گیربکس مکانیکی
    را رفع نموده شرح این که چگونه یک گیربکس اتوماتیک کار می کند باید گفت که یک داستان هیجان
    انگیزی است مختصر نگاهی به اصول مقدماتی و اساسی طرز کار انها می توان فهمید که گیربکس
    های اتوماتیک چطور کار می کنند این بسیار ساده است زیرا تمام تعویض ها خودکار و با استفاده
    از اصول اولیه طراحی شده اند که به طور کلی دارای یک مبدل گشتاورهیدرولیکی و یک مجموعه
    خورشیدی با نسبت دنده های مختلف می باشد که به وسیله یک سیستم کنترل هیدرولیکی به طور
    خودکار تعویض دندها را انجام می دهد ترکیب مبدل گشتاور هیدرولیکی و مجموعه دنده های
    خورشیدی رایج در تعدادی از جعبه دنده های اتوماتیک هم خانواده مانند جعبه دنده های "تورک
    فلایت " " کروییز " و " هیدرا-ماتیک" به کار برده شده یکی از بزرگترین مزیت های گیربکس های
    اتوماتیک این است که به طورخودکار دندها را تعویض می نماید و وظایف راننده را کاهش می دهد
    در نتیجه راننده مجبور نخواهد بود در تعویض دنده ها مهارت خاص رانندگی را دارا باشد و تناسب با
    مقاومت مسیر که بستگی به وزن , سرعت و موقعیت اتومبیل دارد به طور خودکار در مواقع لزوم
    تعویض دنده ها انجام می گردد در گیربکس های معمولی بر اثر سرعت بیش از حد معمول و یا عدم
    ایجاد هماهنگی بین سرعت چرخ دنده ها , هنگام درگیر شدن توسط یک راننده غیر ماهر باعث
    استهلاک سریع قطعات خواهد گردید در صورتی که در جعبه دنده های اتوماتیک راننده به یک اهرم
    تغییر وضعیت دنده ها و پدال گاز احتیاج دارد . مانند فشار دادن به پدال گاز در گیربکس اتوماتیک
    تعویض دنده ها به طور خودکار انجام میگردد
    کلاچ های اسپراگی دنده عقب
    باند دنده عقب
    باند دنده یک
    کلاچ یکطرفه اسپراگی جلو
    حرکت باند بجلو
    کلاچ دنده متوسط
    کلاچ مبدل گشتاور
    وضعیت دندها
    ازاد
    ازاد
    ازاد
    ازاد
    ازاد
    ازاد
    ازاد
    خلاص N
    ازاد
    ازاد
    ازاد
    درگیر
    درگیر
    درگیر
    ازاد
    دنده متوسط D
    ازاد
    ازاد
    ازاد
    ازاد
    درگیر
    درگیر
    درگیر
    دنده مستقیم D
    ازاد
    ازاد
    درگیر
    درگیر
    درگیر
    ازاد
    ازاد
    دنده یک L
    درگیر
    درگیر
    ازاد
    ازاد
    ازاد
    ازاد
    ازاد
    دنده عقب R
    گیربکس اتوماتیک 3 سرعته استودبکر ( بورک – وارنر )
    سیستمهای کنترل کننده
    گیربکس های اتوماتیک دارای سیستم های کنترل کننده ای می باشد که اولا جعبه دنده را با موتور
    مربوط می سازد بدین ترتیب که هر گونه تغییرات موتور را به طور کامل به جعبه دنده منتقل می نماید
    و باعث تعویض دنده ها می گردند ثانیا ارتباط راننده با جعبه دنده را به وسیله اهرم تغییر وضعیت به
    طور دستی برقرار می سازد که هر کدام به نوبه خود دارای وظایفی به شرح زیر می باشد
    سیستم کنترل دستی
    ارتباط راننده به جعبه دنده را برقرار می سازد و تغییر وضعیت اهرم تعویض دنده ها را به وسیله
    اتصالات ان به سوپاپ دستی واقع در بدنه سوپاپ سیستم کنترل هیدرولیکی منتقل می نماید
    سیستم کنترل دریچه گاز
    این سیستم گشتاور موتور را احساس می کند و شامل مجموعه سوپاپ تعدیل فشار در بدنه سوپاپ
    سیستم کنترل هیدرولیکی می باشد و این سیستم اثر گشتاور ورودی را به وسیله اهرم های اتصال
    به طور مکانیکی از پدال گاز به جعبه دنده دریافت می کند یا به وسیله یک اثر خلائی از زیر درچه گاز
    کاربراتور به یک واحد کنترل کننده خلائی در بدنه جعبه دنده دریافت می کند اگر در تعویض خودکار
    دنده ها اشکالی پیش بیاید علاوه بر موارد فوق یک ارتباط کننده دیگری برای جعبه ضروری است و
    بدین منظور یک سیستم گاورنر پیش بینی شده است تا تغییرهای سرعت جاده ای اتومبیل را به دنده
    منتقل نماید
    سیستم کنترل گاورنر
    این سیستم تغییرات سرعت اتومبیل را از دور خروجی جعبه دنده احساس می کند و مانند سیستم
    کنترل دریچه گاز , اثر فشار هیدرولیکی را به بدنه سوپاپ سیستم کنترل هیدرولیکی می فرستد
    این سیستم مجهز به مجموعه سوپاپ تنظیم فشار با وزنه های گریز از مرکز می باشد سیستم های
    کنترل دستی , کنترل دریچه گاز و کنترل گاورنر قسمت هایی از سیستم کنترل هیدرولیکی می باشد

    سیستم کنترل هیدرولیکی

    این سیستم شامل یک پمپ هیدرولیک جلو و سوپاپ تعدیل فشار برای تکمیل و پر کردن روغن مورد
    نیاز مبدل گشتاور با تجهیزات مربوط و ارسال روغن به بدنه سوپاپ جهت تقسیم نمودن به مدارات
    راه انداز کلاچ و باند "نوار ترمز" می باشد بدنه سوپاپ کنترل , مغز سیستم هیدرولیکی می باشد که
    به طور معمول جایگاه سوپاپ دستی و سوپاپ کنترل دریچه گاز و یک سوپاپ کنترل دستی برای
    ایجاد درگیری دنده یک توسط راننده و مجموعه سوپاپ تعویض دنده به طور خودکار می باشد

    عملکرد و اثر کنترل کنندها
    با سیستم کنترل تعریف شده می توان کاربرد و طرز کار انها را در جعبه دنده اتوماتیک مورد مطالعه
    قرار داد
    وضعیت پارک و راه اندازی موتور
    برای راه اندازی و روشن نمودن موتور در گیربکس های اتومات اهرم تعویض دنده باید در وضعیت
    پارک یا خلاص باشد یک کلید اطمینان از استارت زدن در وضعیت های دنده عقب R حرکت به جلوD
    و وضعیت دنده یک L جلوگیری می نماید هنگام استارت زدن یک مسیر قدرت به مبدل گشتاور که
    میل لنگ متصل است وارد می شود مسیر قدرت را مبدل گشتاور خارج و توسط شفت توربین یا
    همان محور ورودی جعبه دنده به مجموعه دنده های خورشیدی و دنده های سیاره ای ان به طور
    ازاد می چرخند و حرکت را به محور خروجی جعبه دنده منتقل می نماید مسیر جریان روغن به
    واحدهای اصطکاکی و سوپاپ تعویض دنده ها قطع می باشد وقتی اهرم انتخاب وضعیت دنده در
    وضعیت پارک باشد تمام واحدهای اصطکاکی مانند وضعیت خلاص و یک نیروی فنر به اهرم قفل
    کننده ازاد هستند
    وضعیت حرکت مستقیم
    در وضعیت حرکت مستقیم D در گیربکس های اتوماتیک ارتباط مبدل گشتاور و دنده یک جعبه دنده
    برقرار می شود و با باز شدن در دریچه گاز موتور , دور موتور افزایش می یابد و حرکت اتومبیل به
    جلو به ارامی انجام می گیرد هنگامی که دور موتور زیاد می شود درگیری دنده مستقیم انجام
    می گردد بدین ترتیب که باند دنده یک ازاد شده و کلاچ دنده مستقیم درگیر می شود که این درگیری
    باعث می شود که مجموعه دنده های خورشیدی ثابت و قفل شوند و در نتیجه نسبت دنده 1:1
    خواهد بود و باند دنده یک توسط اهرم کنترل دستی درگیر می شود و جزئی از وظایف تعویض
    خودکار نمی باشد در حالی که کلاچ حرکت به جلو توسط تعویض خودکار درگیر می شود وظایف
    سیستم کنترل دریچه گاز و گاورنر را به خاطر داشته باشید که چگونه تعویض دنده به طور خودکار
    انجام می گیرد
    اگر به موتور گاز داده شود و در نتیجه گاز کاملا باز شود فشار ارسالی توسط سوپاپ دریچه گاز
    فنر انتهایی ان به سوپاپ تعویض دنده خودکار باعث می شود که ان را در حالت بسته نگه دارد
    مادامی که دور خروجی جعبه دنده و در نتیجه سرعت اتومبیل به حدی برسد که تعویض دنده
    ضروری باشد فشار روغن گاورنر در این حالت بر فشار سوپاپ دریچه گاز و نیروی فنر ان غلبه می کند
    و سوپاپ تعویض دنده را باز می نماید که مسیر اصلی روغن به کلاچ جلو مربوط به دنده مستقیم
    می شود و باند دنده یک را ازاد می کند مجموعه بدنه سوپاپ مانند یک کامپیوتر عمل می کند و
    توسط سوپاپ کنترل دستی برای وظایف مختلف برنامه ریزی می کند و از دو سیستم فرمان
    می گیرد یکی سیستم کنترل دریچه گاز و دیگری سیستم گاورنر این فرمان به سوپاپ تعویض
    دنده مستقل شده و به مرحله اجرا می اید
    سیستم کنترل گاورنر در گیربکس اتومات حرکت اتومبیل را نسبت به مقاومت جاده تنظیم می کند
    پس در نتیجه تعویض دنده خودکار را به طور مداوم انجام می دهند به این ترتیب که سرعت اتومبیل
    موجب افزایش فشار گاز گاورنر و باز شدن تعویض دنده می شود پس اتومبیل در دنده مستقیم
    قرار می گیرد . در مواقعی که سرعت اتومبیل کم می شود مانند شرایط سخت رانندگی یا هنگام
    عبور از سربالایی یا وقتی که دریچه گاز باز باشد (مقاومت جاده زیاد باشد) فشار روغن سوپاپ
    کنترل دریچه گاز و فنر ان بر فشار روغن گاورنر غلبه می کند و سوپاپ تعویض دنده بسته می شود
    و اتومبیل با دنده یک حرکت می کند یا مانند وقتی که ترمز می کنیم بر اثر ترمز فشار روغن گاورنر
    به تدریج کم می شود و فنر سوپاپ تعویض دنده ان را در حالت بسته نگه می دارد و جعبه دنده
    به وضعیت دنده یک بر می گردد
    در وضعیت دنده یک دستی در جعبه دنده های اتوماتیک , توسط راننده اهرم انتخاب دنده در وضعیت
    L قرار می گیرد که در این حالت سوپاپ تعویض دنده از سیستم کنترل هیدرولیکی به طور خودکار
    قطع می شود و جعبه دنده نمی تواند دنده مستقیم را داشته باشد سوپاپ دستی مسیر اصلی
    روغن را به پیستون سروی باند دنده یک هدایت می کند . وضعیت دنده یک دستی L مخصوص
    حرکت در سربالایی با کشش خوب و در سرازیری به منظور استفاده از حالت ترمز موتوری به کار
    برده می شود
    وضعیت دنده عقب
    با به کار بردن یک کلاچ دنده عقب در گیربکس های اتوماتیک باعث می شود که مسیر اصلی روغن
    را پیستون کلاچ منتقل نماید و در نتیجه سبب معکوس شدن دنده رینگی در مجموعه خورشیدی
    شده و دور خروجی عکس می گردد . که فقط دنده عقب کابرد دارد



    منبع : اولین دایره المعارف اتومبیل در ایران جلد3(حسین منوچهر پارسا)

  6. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  7. #14
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض سيستم هاي هيدروليكي گيربكس اتوماتیک

    سيستم هاي هيدروليكي گيربكس اتوماتیک
    هنگام مطالعه اصول هيدروليك در بخش دوم چند نوع از سوپاپ‌هاي تنظيم فشار و سوپاپ‌هاي سويچينگ را بررسي كرديم. در اين بخش ياد خواهيم گرفت كه اين سوپاپ‌ها در درون گيربكس اتوماتيك چگونه عمل مي كنند. همچنين پمپ‌هايي كه با سه نوع فشار هيدروليكي مختلف گيربكس اتوماتيك را آماده كار مي‌كنند، بررسي مي كنيم. سپس اين فشارها را در درون مجراها و سوپاپ‌ها دنبال مي كنيم و ياد مي گيريم كه چگونه اين فشارها با هم براي كنترل تعويض مستقيم و معكوس دنده عمل مي‌كنند.

    فشارهاي موجود در گيربكس اتوماتيك
    قبل از شروع بررسي جزئيات پمپ ها و سوپاپ‌هاي گيربكس، لازم است بطور خلاصه نگاهي به سه فشار اصلي موجود در گيربكس اتوماتيك بياندازيم:
    1
    ـ فشار خط اصلي Main Line Pressure
    2
    ـ فشار گاز Throttle Pressure
    3
    ـ فشار گاورنر Gorernor pressure

    به خاطر داريد كه براي ايجاد فشار هيدروليك بايستي يك چشمه جريان سيال و مقاومتي در برابر آن جريان وجود داشته باشد. درگيربكس هاي اتوماتيك، پمپ همان ايجاد كنندة جريان است و سوپاپ‌ها و گذرگاههاي مختلف بكار رفته باعث ايجاد فشار مي شوند.

    1
    ـ فشار خط اصلي: Main Line Pressure

    اين فشار به وسيلة پمپ (ايجاد جريان ) بوجود مي‌آيد و بوسيلة سوپاپ رگلاتور فشار، در خروجي پمپ كنترل مي شود. فشار خط اصلي براي راه اندازي كلاچها و سروها، كه عضوهاي مختلفِ مجموعة دنده سياره‌اي را ترمز مي‌كنند به كار مي‌رود و از اين طريق نسبت دنده هاي مختلف و تعويض اتوماتيك دنده فراهم مي شود. فشار اصلي به جز اين منشاء تمام فشارهاي ديگر گيربكس نيز مي‌باشد.


    2
    ـ فشار گاز : Throttle pressure

    يك فشار هيدروليكي است كه اندازة آن با زياد شدن بار موتور يا مقدار باز بودن دريچة گاز افزايش مي يابد. فشار گاز از فشار خط اصلي بوجود مي‌آيد.

    3
    ـ فشار گاورنر : Gorernor pressure

    يك فشار هيدروليكي است كه مقدار آن با زياد شدن سرعت خودرو افزايش مي يابد. اين فشار از خط اصلي بوجود مي آيد و در يك سوپاپ كه به صورت گريز از مركز كار مي‌كند و توسط شافت خروجي گيربكس مي‌چرخد، كنترل مي شود. فشار گاونر در تعامل با فشار گاز براي كنترل نقاط تعويض دنده به كار مي رود.

    پمپ‌هاي هيدروليك گيربكس هاي اتوماتيك:
    تمام فشارهاي هيدروليكي كه در گيربكس اتوماتيك عمل مي كنند، از جريان خروجي يك پمپ روغن استفاده مي كنند.اين پمپ از طريق يك فيلتر، روغنِ مخزن را مي‌كشد .
    درگير بكس هاي امروزي سه نوع پمپ بكار مي رود:
    ـ ـ دنده‌اي Gear Pump
    ـ ـ روتوري Rotor pump
    ـ ـ پره اي. Vane Pump

    پمپ دنده‌اي و روتوري، پمپ با جابجايي مثبت يا جابه جايي ثابت ناميده مي شود. زيرا حجم سيالي كه در هر بار گردش پمپ زياد مي شود حجم سيال جابه جا شده توسط آن در هر دقيقه بيشتر مي‌شود، با اين حال حجم روغن پمپ شده به ازاي يك دور گردش ثابت مي ماند.
    امّا پمپ هاي پره اي كه در گيربكس هاي مدرن بكار مي روند، پمپ با جابجايي متغير ناميده مي شوند زيرا مقدار روغن پمپ شده به ازاي هر دور گردش مي تواند تغيير كند. خروجي پمپ بطور اتوماتيك براساس نياز گيربكس به روغن تنظيم مي شود و هيچگونه بستگي مستقيم بين سرعت پمپ و مقدار جريان سيال وجود ندارد.
    پمپ گيربكس هاي اتوماتيك در قسمت جلو بدنة گيربكس نصب شده و توسط تورك كنورتور به حركت در مي‌آيد. در خودروهاي محرك جلو نيز پمپ ممكن است توسط تورك كنورتور و يا يك شافت مجزا به حركت در آيد. بيشتر گيربكس هاي قديمي يك پمپ ثانويه داشتند كه در ناحية عقب بدنة گيربكس نصب مي‌شود و بوسيلة شافت خروجي به حركت در مي‌آمد. پمپ عقب در گيربكس‌هاي ساخت آمريكا از اواخر دهة 60 به بعد حذف شد.

    فشار خط اصلي
    همانطور كه مي دانيم براي ايجاد فشار بايستي در مقابل خروجي پمپ مانعي ايجاد شود. چنانچه هيچ مانعي وجود نداشته باشد، دبي پمپ قابل اندازه گيري است؛ امّا فشار صفر است. در وا قع در سيستم هيدروليك گيربكس هاي اتوماتيك موانع زيادي براي ايجاد فشارهاي مختلف وجود دارد. مجراي خروجي پمپ يك مانع نسبي در برابر جريان روغن محسوب مي شود و به همين دليل معابر و خطوط روغن نيز موانعي در برابر جريان هستند.

    اولين مانع اساسي در سيستم كه براي كنترل فشار اصلي بكار مي رود، سوپاپ تنظيم (رگلاتور) فشار است. ساير سوپاپ ها از قبيل سوپاپ هاي تقويت كننده، سوپاپ كنترل دستي و سوپاپ‌هاي تعويض از طريق اعمال فشار اصلي بر روي آنها عمل مي كنند. البته فشار اصلي تنها موجود در سيستم هيدروليك ايجاد مي شود. امّا تمام آنها وابسته به فشار اصلي هستند و توسط سوپاپ‌هايي با كاربرد تنظيم فشار كار مي كنند. از قبيل سوپاپ گاز و سوپاپ گاورنر كه طرز ايجاد اين فشارها را بررسي مي‌كنيم.

    سوپاپ تنظيم فشار (رگلاتور(
    از آنجا كه حجم ارسال پمپ با افزايش سرعت زياد مي شود اگر در برابر جريان روغن مانعي ساده و ثابت مانند يك اريفيس وجود داشته باشد، فشار نيز با زياد شدن سرعت پمپ افزايش مي يابد. در چنين سيستمي فشار به سرعت به حدّي كه بتواند به قطعات مختلف گيربكس آسيب برساند خواهد رسيد. بنابراين لازم است فشار تنظيم شود. اين كار بوسيلة سوپاپ رگلاتور فشار كه در مقابل جريان روغن ايجاد يك مانع متغير مي كند ايجاد مي شود.

    يك مانع متغير عبارتست از يك مجرا كه اندازة آن به منظور تغيير در فشار ايجاد شده توسط مانع مي‌تواند تغيير كند. سوپاپ رگلاتور فشار حد بالا و حد پائين فشار روغن خط اصلي را براي پاسخگويي به شرايط مختلف گيربكس كنترل مي‌كند. فشار خط اصلي عملاً از رگلاتور فشار به بعد آغاز مي شود. امّا در نقشه هاي هيدروليكي اغلب مستقيماً از پمپ منشعب مي شود. فشار بين پمپ و سوپاپ تقريباً برابر با فشاري است كه روغن هنگام ترك سوپاپ و ورود به مدار خط اصلي دارد. واين در نتيجه اثر توازن در سوپاپ است.

    هنگامي كه موتور روشن مي شود روغن از پمپ وارد سوپاپ مي‌شود. در ابتدا روغن مستقيماً براي پر كردن مبدل گشتاور و خط اصلي از ميان سوپاپ عبور مي‌كند به محض آنكه اين فضاها از هوا تخليه شوند فشار در مدار هيدروليك ايجاد مي شود. اين فشار بر سطح انتهايي سوپاپ عمل كرده و آن را بر خلاف نيروي فنر حركت مي دهد. مادامي كه فشار روغن بر نيروي فنر غلبه نكند تمام خروجي پمپ در اختيار مدارات اصلي گيربكس قرار مي‌گيرد. اگر دور موتور زياد شود حجم روغن ارسالي توسط پمپ به سوپاپ هم افزايش مي يابد.در نتيجه فشار روغن اعمال شده بر سوپاپ هم افزايش مي يابد. در نتيجه فشار روغن اعمال شده بر سوپاپ هم افزايش مي‌يابد و سوپاپ مخالف نيروي فنر، آنقدر حركت مي كند تا مجراي خروجي را باز كند
    در گيربكسي كه پمپ آن از نوع دنده‌ايي يا روتوري است فشار اضافي با جاري شدن روغن از مجراي خروجي و بازگشت آن به سمت مكش پمپ آزاد مي شود امّا در يك گيربكس مجهز به پمپ با جابجايي متغير بخشي از فشار اضافي به ناحيه پشت كمربند لغزان براي كاهش جابجايي پمپ و در نتيجة آن كاهش جريان روغن هدايت مي شود و در هر صورت گيربكس از آسيب احسالي ناشي از فشار زياد حفاظت مي شود.

    در بيشتر گيربكس‌ها فشار از پمپ مستقيماً به سمت سوپاپ كنترل دستي و ساير سوپاپ هاي سيستم هيدروليك هدايت مي شود. اين امر عملي است زيرا تمام روغن قبل از رفتن به سمت ساير سوپاپ‌ها مجبور نيستند كه از ميان رگلاتور فشار عبور كنند. همانطور كه در بخش دوم ملاحظه كرديد، فشار در داخل يك سيستم بسته هيدروليك در هر جايي از مدار يكسان است. لذا مي توانيد مدار فشار خط اصلي را به عنوان يك مدار بسته منفرد تصور كنيد. در اين صورت اهميتي ندارد كه سوپاپ رگلاتور فشار در چه قسمتي از مدار نصب شود، چون به هر حال فشار در تمام نقاط مدار را تنظيم خواهد كرد.

    سوپاپ هاي تعويض
    سوپاپ تعويض يك سوپاپ قطع و وصل (سويچينگ ) يا جهت دهنده است كه از فشار گاورنر و فشار گاز براي تعيين زمان تعويض و اجراي تعويض در يك گيربكس استفاده مي كند. به همين دليل سوپاپ تعويض سوپاپ تايمينگ نيز ناميده مي شود. سوپاپ تعويض قادر است با اندازه گيري گشتاور موتور( به وسيلة فشار گاز ) و سرعت خودرو ( به وسيلة گاورنر ) تحت هر شرايطي از رانندگي تعويض به دندة بالاتر (مستقيم ) و به دنده پائين تر (معكوس) را به طرز صحيحي زمان بندي و اجرا كند.
    اغلب گيربكس ها چندين سوپاپ تعويض دارند كه تعويض دنده‌هاي مورد نياز را كنترل مي‌كنند هنگامي كه فشار گاورنر بر فشار گاز و فشار فنر غلبه كند تعويض به دنده بالاتر توسط سوپاپ تعويض انجام مي‌شود.

    فشار گاورنر به سمت راست سوپاپ تعويض و فشار گاز به سمت چپ آن اعمال مي شود. يك فنر مارپيچي نيز در طرف چپ سوپاپ قرار گرفته است. فشار خط اصلي به سوپاپ تعويض هدايت شده امّا يكي از پيستون ها مسير روغن را مسدود كرده است. اگر سرعت خودرو افزايش يابد، فشار گاورنر نيز زياد مي شود. در لحظه‌ايي كه فشار گاورنر بر فشار گاز و فشار فنر غلبه كند سوپاپ را به طرف چپ هدايت مي كند.
    در نتيجه حركت سوپاپ تعويض فشار خط اصلي مي تواند از بين قرقره ها به طرف يك مدار كارانداز (باند ياكلاچ) خارج شود. البته هنگامي كه يك سوپاپ تعويض حركت مي كند بايد حركت آن سريع و تقريباً ناگهاني باشد و اجازه نيابد به جلو و عقب حركت كند قبل از اينكه به اين موضوع بپردازيم ابتدا مي خواهيم بدانمي فشار گاز و فشار گاورنر چگونه ايجاد مي شوند و هدف از ايجاد آنها چيست؟

    فشار گاز
    همانطور كه قبلاً تشريح شد فشار گاز يكي از فشارهاي مورد استفاده در كنترل نقاط تعويض به دنده بالاتر (UP Shift ) و به دنده پائينتر (Down Shist )در يك گيربكس اتوماتيك است.

    فشار گاز اين وظيفه را متناسب با بار موتور يا گشتاور خروجي كه در هر لحظه مستقيماً وابسته به شرايط رانندگي است، به انجام مي رساند.
    در بيشتر گيربكس ها از فشار گاز براي كمك به تنظيم فشار خط اصلي استفاده مي شود. زماني كه گشتاور خروجي موتور زياد است در گيربكس ها درگيري محكم‌تر كلاچها و ب اندها براي جلوگيري از لغزش ضروري است. براي دستيابي به فشار بيشتر در خط اصلي، فشار گاز ( يا شكل تغيير يافته‌اش) از طريق كانالهايي به سمت سوپاپ تقويت كننده واقع در يك طرف رگلاتور فشار هدايت مي‌ شود.

    كاربرد هيدروليك
    سيستم‌ هاي هيدروليك گيربكس‌هاي اتوماتيك مدرن تعويض هاي مستقيم و معكوس دنده‌ها را براي هماهنگ كردن سرعت خودرو و گشتاور موتور به منظور دستيابي به عملكرد موثر و روان فراهم مي‌كنند.امّا كاربرد سيستم هيدروليك تنها راه براي اجراي تعويض اتوماتيك در يك گيربكس نيست. بعضي از سازندگان خودرو در گيربكس هاي اتوماتيك اوليه از سيستم‌هاي اكركي و خلايي براي كنترل تعويض بهره مي گرفتند.
    سبيمپلي ماتيك كرايسلر مدل سال 1940 چهار سرعته از نوع دنده كشوئي و متصل به يك كوپلينگ هيدروليكي بود. اهرم تعويض دنده بوسيله سرووهاي خلايي كه خلاء آن بوسيلة سيستم الكتريكي بالا كنترل مي شد بكار مي افتاد.
    كمپاني كرايسلر، مدلهاي گوناگون اين گيربكس را تحت نام هاي تجاري مختلف تا سال 1953 يعني هنگامي كه اولين گيربكس تمام اتوماتيك خود را معرفي كرد مورد استفاده قرار داد.

    سوپاپ گاز مكانيكي
    Mechanically Operated Throttle Valve
    براي درك طرز كار سوپاپ گاز به شكل يك سوپاپ گاز مكانيكي ساده نگاه مي‌كنيم.
    اين سوپاپ گاز شامل يك سوپاپ قرقره اي يك فنر و يك پالانچر است كه همة آنها در يك محفظه قرار گرفته اند. يك اهرم از سوپاپ گاز خارج شده و به دريچه گاز كاربراتور موتور وصل است. هنگامي كه موتور خاموش است و سوپاپ بسته است. پيستون سمت چپ سوپاپ دريچه ورود فشار خط اصلي را مسدود مي كند. چنانچه در حالت روشن بودن موتور دريچه گاز باز شود يك اهرم مكانيكي قرقره سوپاپ را به سمت چپ حركت مي دهد. در نتيجه مجراي ورود روغن باز شده و فشار خط اصلي به داخل سوپاپ جاري مي شود در اين نقطه فشار خط اصلي به فشار گاز تبديل مي شود.

    سوپاپ تعويض معكوس Down Shift Valve
    قبل از خاتمه اين بحث بايد اطلاعاتي درباره سوپاپ‌هاي كه هنگام باز شدن كامل دريچه گاز باعث افزايش فشار گاز مي‌شوند و موجب اجراي تعويض به دنده سنگين تر مي شود داشته باشيد. اين سوپاپ‌ها را ممكن است با اسامي 1ـ سوپاپ تعويض معكوس Dawnshift 2ـ سوپاپ پرش به عقب (kickdown ) و يا سوپاپ بازدارنده Detent بنامند.
    در هر صورت هنگامي كه دريچه گاز باز مي شود سوپاپ تعويض معكوس فشار سوپاپ گاز را تقويت مي كند و يا يك فشار كمكي براي اجراي تعويض معكوس ايجاد مي كند اين فشار براي غلبه بر فشار گاورنر بر سوپاپ تعويض مورد نظر اعمال شده و تعويض به دنده سنگين‌تر اجرا مي شود.

    فشار گاورنر
    فشار گاورنر در جهت عكس فشار گاز براي كنترل نقاط تعويض مستقيم (UP Shift ) و معكوس (DOWN Shift ) متناسب با سرعت جاده ايي خودرو به سوپاپ تعويض اعمال مي‌شود. فشار گاورنر از فشار خط اصلي به وجود مي آيد و به وسيلة سوپاپ گاورنر كنترل مي شود. سوپاپ گاورنر به وسيلة شافت خروجي گيربكس به حركت در مي‌آيد و سرعتش با افزايش سرعت خودرو زياد مي‌شود. اگر سرعت شافت خروجي زياد شود فشار گاورنر نيز زياد مي‌شود وقتي كه سرعت شافت خروجي ثابت بماند فشار گاورنر نيز در يك حدّ معين براي آن سرعت متعادل مي شود.
    در مدارات هيدروليك گيربكس هاي ساخت آمريكا سه نوع گاورنر به كار رفته است.

    1
    ـ گاورنر با محرك دنده‌ايي و سوپاپ قرقره‌ايي

    2
    ـ گاورنر با محرك دنده‌ايي و سوپاپ‌هاي ساچمه‌اي مانع

    3
    ـ گاورنر نصب شده روي شافت خروجي با سوپاپ قرقره‌اي

    تنظيم زمان بندي تعويض
    هر دو نوع سوپاپ گاز خلايي و مكانيكي را مي توان جهت تنظيم دقيق، زمان بندي تعويض كه در نتيجه سرعت كمتر و بيشتر خودرو اتفاق مي‌افتد آماده نمود.

    اين عمل بوسيلة افزايش و يا كاهش نيرويي كه اهرم مكانيكي و يا مدولاتور خلايي بر سوپاپ گار اعمال مي‌كند انجام مي شود. هنگامي كه نيروي اعمال شده بر سوپاپ گاز زياد مي شود فشار گاز افزايش مي يابد بنابراين در سوپاپ تعويض فشار گاورنر بيشتري براي غلبه بر فشار گاز مورد نياز است و تعويض در سرعت هاي بالاتر انجام مي شود. وقتي كه فشار اعمال شده بر سوپاپ گاز كاهش ي‌يابد، فشار گاز نيز كاهش مي‌يابد. بنابراين در سوپاپ تعويض ب فشار گا كمتري احتياج است و تعويض در سرعت هاي كمتر انجام مي شود.
    براي تنظيم سوپاپ گاز مكانيكي طول اهرم ها كوتاه و بلند مي‌ شوند . در سوپاپ گاز خلايي براي تنظيم، كپسول را بيشتر يا كمتر در داخل بدنة گيربكس پبيچ مي‌كنند و يا يك پيچ در طرف لوله خلايي براي تغيير كشش فنر در درون كپسول پيچانده مي شود.
    سازندگان خودرو مشخصاتي براي اهرم بندي و يا مدلاتور خلايي سوپاپ گاز ارائه مي‌كنند تا خودروهايشان در بهترين محدوده عملكرد موتور تعويض‌ها را انجام دهند

    منبع : انجمن علمي مهندسي مكانيك دانشگاه شهركرد

  8. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  9. #15
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض سيستم انتقال قدرت اتوماتيك cvt

    سيستم انتقال قدرت اتوماتيك cvt

    چون دستيابي به يک سيستم انتقال نرم و بدون صدا با استفاده از جعبه دنده هاي دستي مرسوم که در بالا اشاره شد، امکان پذير نمي باشد، بنابراين در جعبه دنده هاي اتوماتيک نيز همانند آنچه قبلاً براي اوردرايو گفته شد از سيستم چرخدنده خورشيدي استفاده مي شود. علاوه بر آن، اين نوع سيستم جعبه دنده اي مزاياي زيادي دارد:

    1
    تمام اعضا مجموعه خورشيدي برروي يک محور اصلي قرار دارند و در نتيجه همه آنها در يک مجموعه قرار گرفته اند.

    2-
    دنده هاي خورشيدي هميشه بطور ثابت با هم در گير مي باشند و امکان حذف دنده و يا شکستن و سرو صدا کمتر وجود دارد و هم چنين تعويض دنده، سريع و بطور خودکار و بدون افت قدرت انجام مي گردد.

    3-
    دنده هاي خورشيدي نسبت به جعبه دنده هاي استاندارد مي توانند سخت تر و قويتر باشند و بارهاي گشتاوري را بطور سريع منتقل نمايند و داراي حجم کمتري باشند. به اين دليل که گشتاور از ميان دنده هاي سياره اي عبور مي نمايند و نيرو بين چند دنده سياره اي تقسيم مي گردد، قدرت انتقال افزايش مي يابد.

    4-
    موقعيت اعضا مجموعه سياره اي براي نگهداشتن يا درگيري و قفل نمودن آنها با يکديگر براي تعويض دنده ها نسبت به هم رابطه ساده اي دارند.

    در جعبه دنده هاي اتوماتيک حتماً بايد از کلاچ هيدروليکي و مبدل گشتاور بجاي کلاچ اصطکاکي استفاده کرد. ساختمان و نحوه عمل اين مبدلها در قسمت کلاچها توضيح داده شد.

    اغلب اين جعبه دنده هاي خودکار سه يا چهار دنده براي حرکت رو به جلو دارند. اين جعبه دنده ها در وضعيتهاي پارک، خلاص و دنده عقب نيز قرار مي گيرند. در اين خودروها دنده چهار معمولاً اوردرايو است. در بعضي از جعبه دنده هاي خودکار که شش دنده اند، دنده پنج اوردرايو است. خودروهايي که جعبه دنده خودکار دارند، معمولاً با دنده يک به راه مي افتند. سپس جعبه دنده به دنده هاي دو، سه و چهار مي رود. تعويض دنده ها و قفل شدن مبدل گشتاور بدون کمک راننده انجام مي شود. با افزايش سرعت خودرو، دنده ها تعويض مي شود و بار موتور کاهش مي يابد. راننده براي کاهش سرعت خودرو و متوقف کردن آن پايش را از روي پدال گاز برمي دارد و در صورت نياز ترمز مي گيرد. در اين حالت جعبه دنده مبدل گشتاور را خلاص مي کند و به صورت خودکار دنده معکوس مي رود؛ هنگامي که خودرو متوقف مي شود، جعبه دنده در دنده يک است. در اين حالت به کلاچي که با پا بکار مي افتد نيازي نيست. بکسواد کردن مبدل گشتاور اين امکان را مي دهد که حتي حين درگيري جعبه دنده نيز موتور درجا کار کند.
    شکل کلي نمونه اي از اين جعبه دنده ها را در پايين مشاهده مي کنيد. همانطور که ملاحظه ميشود براي دستيابي به دنده مورد نظر بايد تعدادي از دنده هاي خورشيدي، پينيونها، بازوها يا رينگها ثابت يا بهم قفل شوند. براي بوجود آمدن اين شرايط، يکسري عملگر (مانند کلاچهاي يکطرفه، بستهاي قفل کننده و کلاچهاي چند صفحه اي) وجود دارد که با قفل شدن يا آزاد شدن هريک از آنها توسط سيستم کنترلي، تعدادي از دنده ها قفل شده و اتومبيل در دنده مورد نظر قرار مي گيرد.
    در شکل2-15 نمونه اي از اين گيربکسهاي اتوماتيک بهمراه عملگرهاي آن را مشاهده مي کنيد. بعنوان مثال براي قرار گرفتن گيربکس در دنده يک، بايد کلاچهاي DC و FC و همچنين کلاچ يکطرفه OWC قفل شوند. براي ديگر دنده ها نيز به همين ترتيب عملگرهاي ديگر عمل مي کنند.



    شکل2-15شکل شماتيکي ازگيربکسهاي اتوماتيک بهمراه عملگرهای آن

    سيستم کنترل هيدروليکي جعبه دنده اتوماتيک

    سيستم هيدروليکي، سيال تحت فشار لازم براي بکار انداختن جعبه دنده خودکار را تامين مي کند. کلاً سيستم هيدروليکي کارهاي زير را انجام مي دهد:
    سيال را به مبدل گشتاور مي رساند.
    سيال تحت فشار را بسوي پمپ بست قفل کننده و کلاچهاي چند صفحه اي هدايت مي کند.
    قطعات داخلي را روغنکاري مي کند.
    مبدل گشتاور و ساير قطعات را خنک مي کند.
    همانطور که ديديم عمل تعويض دنده يا تغيير کارکرد عملگرها در اين نوع جعبه دنده ها به صورت خودکار و بدون دخالت راننده انجام مي پذيرد. جهت نيل به اين مقصود بايد اطلاعاتي از وضعيت حال حاضر خودرو در دسترس باشد، تا سيستم کنترلي بتواند بر اساس اين اطلاعات تصميم گيري نمايد. اين اطلاعات که در واقع زمان تعويض دنده را مشخص مي کنند از سه طريق بدست مي آيند :

    دور خروجي جعبه دنده
    دور موتور
    بار موتور (ميزان گشودگي دريچه گاز(

    هر کدام از اين عوامل فشارهاي متغيري را در مسير هيدروليکي سيستم کنترلي ايجاد مي کنند که در نتيجه تاثير اين فشارها برروي شيرهاي هيدروليکي در سر راه و نهايتاً برروي بستهاي قفل کننده و کلاچهاي چند صفحه اي و تغيير وضعيت هر يک از آنها، مي تواند دنده خودرو عوض شود.

    در شکل 2-16 شماي کلي از اين سيستم کنترل را بهمراه اجزاي عمل کننده آن مشاهده مي کنيد.


    شکل2-16 اجزاي سيستم کنترل در ارتباط با يکديگر و نحوه عمل عملگرها

    بست قفل کننده (band brake)

    بست قفل کننده در واقع کفشک ترمزي است که دور يک کاسه کلاچ فلزي مي پيچد. بست قفل کنده با ماده اي از جنس لنت ترمز پوشانيده مي شود. وقتي اين بست روي کاسه کلاچ فشرده مي شود، کاسه کلاچ و چرخدنده خورشيدي از چرخش باز مي ايستند و ثابت مي شوند. يک سر بست قفل کننده به پوسته جعبه دنده متصل است و سر ديگر آن با يک پمپ در ارتباط است. شکل217-
    پمپ وسيله اي در سيستم هيدروليک است که فشار هيدروليکي را به حرکت مکانيکي تبديل مي کند. وقتي فشار هيدروليکي سيال تحت فشار به پشت پيستون پمپ هدايت مي شود، پيستون به حرکت در مي آيد. پيستون بر نيروي فنر پمپ غلبه کرده و به ضامن بست، فشار وارد مي آورد. در نتيجه بست قفل کننده به کار مي افتد. جهت آزاد کردن بست نيز فشار روغن از پشت پيستون برداشته مي شود


    شکل2-17 بست قفل کننده

    کلاچ چند صفحه اي (multiple clutch)

    اين کلاچ که شامل چند صفحه کلاچ مي باشد در داخل کاسه کلاچ قرار دارد. اين صفحه ها يک در ميان فولادي و اصطکاکي اند. صفحه هاي فولادي لختند اما هر دو طرف صفحه هاي اصطکاکي لنت کوبي شده اند. صفحه هاي فولادي با هزارخاربه کاسه کلاچ متصلند. صفحه هاي لنت کوبي شده با هزارخار به يک توپي در کلاچ متصلند تا مجموعه چرخدنده سياره اي را کنترل کند. (شکل2-18(
    براي درگير کردن کلاچ، فشار روغن به پشت پيستون کلاچ هدايت مي شود، در نتيجه پيستون به حرکت در مي آيد و صفحه ها را به هم مي فشارد. صفحه ها چرخدنده خورشيدي را به بازو قفل مي کنند. در اين حالت مجموعه چرخدنده سياره اي بصورت واحدي يکپارچه مي چرخد.



    شکل2-18 کلاچ چند صفحه اي

    گاورنر

    گاورنر وسيله اي حساس به سرعت است که فشار هيدروليکي را متناسب با سرعت محور خروجي تغيير مي دهد. فشار گاورنر تعويض دنده را متناسب با سرعت خودرو کنترل مي کند. گاورنر حرکت خود را از محور خروجي جعبه دنده مي گيرد. فشار لوله اصلي توسط پمپ به گاورنر مي رسد. وقتي محور خ آهسته مي چرخد، نيروي گريز از مرکز تاثير اندکي بر وزنه هاي گاورنر دارد. در اين
    حالت گاورنر فشار مختصري را به يکطرف شير راه دهنده وارد مي کند. با افزايش سرعت محور خروجي و خودرو، وزنه ها به طرف خارج متمايل مي شوند. در نتيجه شير گاورنر بيشتر باز شده و فشار گاورنر افزايش مي يابد.

    سيستم انتقال قدرت پيوسته متغير (CVT)
    ايده استفاده از سيستمهاي انتقال قدرت پيوسته متغير از سالها قبل مطرح شده بود ولي تنها در چند سال اخير سازندگان اتومبيل به آن رو آورده اند. بر خلاف سيستم هاي انتقال متداول دستي اتوماتيک درCVT ، نسبت دنده هاي مجزا با نسبتهاي قابل تنظيم پيوسته جايگزين مي شود. سيستم CVT مي تواند به طور ثابت نسبت دنده خود را براي بهبود راندمان موتور و ايجاد يک منحني

    گشتاور- سرعت مناسب تغيير دهد. اين ويژگي باعث بهبود مصرف سوخت و نيز شتاب گيري در مقايسه با سيستم هاي انتقال قدرت متداول مي شود.
    علي رغم اينکه يک دهه است که سيستم CVT در اتومبيلها استفاده مي شود، ولي محدود بودن گشتاور و پايين بودن قابليت اطمينان آنها بکارگيري اين سيستم را محدود کرده است.

    انواع CVT

    اصولاً CVT ها سه جز اساسي دارند :

    يک تسمه لاستيکي يا فلزي با توان کششي بالا
    يک قرقره متغير ورودي
    يک قرقره متغير خروجي

    CVT
    ها همچنين ريزپردازنده ها و سنسورهايي نيز دارند اما اجزاي اصلي و کليدي آنها همان سه مورد بالا مي باشد. امروزه تحقيقات زيادي بر روي انواع گوناگوني از سيستمهاي انتقال قدرت پيوسته متغير انجام شده که برخي از آنها عبارتند از : CVT نوع تسمه فشاري ،
    CVT
    نوعtoroidal يا محرک کششي ،CVT نوع تسمه اي الاستومر با قطر متغير ، CVT با هندسه متغير و CVT نوع محرک کششي انحرافي و انواع ديگري که تحقيقات روي آنها ادامه دارد.

    CVT
    نوع تسمه فشاري

    در اين نوع که پر کاربردترين نوع از سيستمهاي CVT است، يک تسمه توان را بين دو قرقره مخروطي که يکي ثابت و ديگري متحرک است منتقل مي کند. هر قرقره از دو مخروط با زوايايي حدود 20 درجه تشکيل مي شود که يک تسمه V شکل نيز روي شيار بين دو قرقره سوار مي شود. بسته به فاصله بين مخروطهاي هر قرقره مقدار دور تسمه روي هر قرقره مشخص مي شود. (شکل2-19) چنانچه
    دو مخروط به هم نزديک باشند، قطر حلقه تسمه روي آن قرقره زياد و اگر خوا از هم دور شوند، قطر حلقه کم مي شود. وقتي قطر يک قرقره افزايش مي يابد، قطر طرف ديگر کاهش مي يابد تا سفتي تسمه حفظ شود. جهت اعمال نيروي لازم براي تنظيم فاصله بين مخروطهاي هر قرقره مي توان از فشار هيدروليک، نيروي گريز از مرکز يا فنرهاي کششي استفاده کرد.


    شکل2-19 CVT نوع تسمه فشاري

    همانطور که ديديم به صورت تئوري و با استفاده از اين روش بينهايت نسبت انتقال مي توان ساخت. در واقع مي توان گفت شايد بهترين گزينه براي سيستم انتقال قدرت همين CVT باشد. اما بايد توجه داشت که تسمه مي تواند بلغزد يا کش بيايد که اين خود سبب افت راندمان مي گردد. اما با استفاده از مواد جديد در ساخت تسمه ها اين افت را حتي الامکان کاهش داده اند. يکي از مهمترين پيشرفتها در اين زمينه استفاده از تسمه هاي فولادي است. (شکل2-20) اين تسمه هاي انعطاف پذير از چندين نوار باريک فلزي (بين 9(12- که بصورت محکمي روي هم قرار گرفته اند تشکيل شده است. اين تسمه هاي فلزي نمي لغزند و دوام بالايي دارند و امکان انتقال گشتاورهاي بزرگتري با استفاده از آنها وجود دارد. اين تسمه ها همچنين کم سروصدا تر از تسمه هاي لاستيکي کار مي کنند.


    شکل2-20 مدلي از تسمه هاي فولادي مورد استفاده در CVT نوع تسمه فشاري

    در اين نوع CVT يک سنسور، خروجي موتور را حس کرده و سپس يک مدار برقي فاصله بين قرقره ها و در نتيجه کشش تسمه را افزايش يا کاهش مي دهد. تغيير پيوسته فاصله بين قرقره ها مشابه عمل تعويض دنده مي باشد.

    CVT
    نوعtoroidal يا محرک کششي

    در اين نوع ازCVT قرقره ها و تسمه ها توسط ديسکها و غلتکهاي انتقال قدرت جايگزين مي شوند. اگرچه اين سيستم کاملاً متفاوت از سيستم قبل بنظر مي آيد، ولي همه اجزا آن قابل مقايسه با CVT از نوع تسمه فشاري مي باشد. به اين صورت که :يک ديسک به موتور متصل است که در واقع معادل قرقره محرک است.ديسک ديگر به شفت متحرک متصل است که معادل قرقره متحرک است. غلتکها نيز بين ديسکها عمل مي کنند، همانند تسمه که در شيار بين قرقره ها قرار دارد.غلتکها در امتداد دو محور مي چرخند. آنها حول محور افقي گردش مي کنند و حول محور عمودي کج مي شوند که اين امر سبب مي شود که غلتکها با ديسک در سطوح مختلف تماس پيدا کنند و همين سبب ايجاد نسبتهاي انتقال گوناگون مي شود. مثلاً هنگاميکه يکي از لبه هاي غلتکها با نقطه با قر کم دسک محرک در تماس باشد، لبه ديگر غلتکها بايستي نقطه با قطر زياد ديسک متحرک را لمس مي کند؛
    که نتيجه آن کاهش در سرعت و افزايش گشتاور است و برعکس. شکل2-21




    شکل2-21 CVT نوعtoroidal يا محرک کششي در حالتهای مختلف از انتقال قدرت

    CVT
    نوع تسمه اي الاستومر با قطر متغير

    در اين نوع CVT ، از يک تسمه مسطح و انعطاف پذير که روي تکيه گاههاي متحرک قرار گرفته استفاده مي شود. اين تکيه گاهها مي توانند شعاع را تغيير داده و در نتيجه نسبت انتقال نيرو را عوض کنند. (شکل2-22) با اين وجود، در نسبتهاي دنده بالا تکيه گاهها جدا شده و يک مسير ناپيوسته دنده را ايجاد مي کنند که منجر به مشکلاتي نظير خزش و لغزش مي گردد.





    شکل2-22 CVT نوع تسمه اي الاستومر با قطر متغير

    انواع ديگر CVT

    انواع ديگري از CVT نيز وجود دارد، ولي کاربرد آنها به اندازه نوع فشاري و Toroidal گسترش نيافته است. در نوع محرک کششي انحرافي از يک محور مخروطي و لولا براي تعويض دنده در CVT استفاده مي شود و يا برعکس. به اين ترتيب يک نسبت دنده پيوسته ايجاد مي شود.

    در CVT با هندسه متغير از چرخ دنده هاي خورشيدي قابل تنظيم براي تغيير نسبت دنده ها استفاده مي گردد. اين نوع CVT بيشتر شبيه CVTهاي متداول و سيستم انتقال قدرت معمولي قابل انعطاف مي باشد.

    مزاياي CVT

    رانندگان اغلب با تعويض نرم دنده مواجه نيستند، ولي در سيستم CVT عمل تغيير نسبت انتقال به نرمي صورت مي گيرد، بنحوي که راننده يا مسافران تنها شتاب گرفتن اتومبيل را احساس مي کنند. از نظر تئوري،CVT باعث خرابي کمتر موتور و انتقال مطمئن تر توان خواهد شد، در حاليکه تعويض سريع دنده و دنده هاي مجزا باعث مي شود که موتور در سرعتي غير از سرعت بهينه کار کند. علاوه

    بر اين سيستم CVT راندمان و عملکرد بهتري دارد. در شکل2-23 راندمان انتقال توان يک گيربکس پنج سرعته (درصد توان منتقل شده موتور توسط سيستم انتقال) آورده شده است. راندمان متوسط اين گيربکس 86 درصد و راندمان ط يک گيربکس دستي 97 درصد مي باشد. در شکل2-24 نيز محدوده راندمان چند نوع سيستم CVT جهت مقايسه با راندمان گيربکس آورده شده است.


    شکل2-23


    شکل2-24 محدوده راندمان چند نوع سيستم CVT

    مشاهده مي شود که راندمان سيستم هاي CVT نسبت به گيربکسهاي اتوماتيک بهتر است. علاوه بر اين به دليل اينکه سيستمهاي CVT اين امکان را براي موتور فراهم مي کنند که بتوانند صرف نظر از سرعت خودرو در نقطه طراحي کار کنند، مصرف سوخت اتومبيل نيز کاهش يافته و در نقطه بهينه قرار مي گيرد. آزمايشات نشان مي دهد که مصرف سوخت با استفاده از CVT ، 10 درصد کمتر از
    مصرف سوخت با استفاده از يک گيربکس چهار سرعته اتوماتيک مي باشد.

    معايب CVT
    توسعه سيستم هاي CVT به دلايل مختلفي کند بوده است. از جمله اينکه به دليل عملکرد مطلوب گيربکسهاي دستي و اتوماتيک و کاهش مصرف سوخت با استفاده از آنها نيازي به سيستم هاي CVT احساس نمي شد. يکي از معايب اصلي مدلهاي اوليهCVT ، لغزش بين تسمه و غلت آنها بود، زيرا فاقد دندانه بوده و نمي توانستند يک اتصال مکانيکي صلب را ايجاد کنند. محرکهاي اصطکاکي معمولاً در معرض لغزش هستند، مخصوصاً در گشتاورهاي بزرگ. در مدلهايي از CVT که در سالهاي 1950 و 1960 استفاده مي شد، موتورها براي جبران لغزش، در دورهاي بالاتري کار مي کردند، به خصوص هنگام شتاب گيري از حالت سکون و گشتاور ماکزيمم. يکي از راه حلهاي ساده براي اين مشکل، استفاده از CVT در اتومبيلهايي است که موتور آنها گشتاور کمي توليد مي کنند. شايد بيشتر از هر
    علتي، هزينه اين نوع سيستمها مانع از رشد و توسعه آنها شده است

  10. #16
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض میل گاردان

    میل گاردان

    وظیفه میل گاردان انتقال گشتاور پیچشی گیربکس به دیفرانسیل بوده میل گاردان در خودروهای
    که چرخ های محرک در جلو وجود دارد به کار نمیرود میل گاردان نیروی پیچشی زیادی تحمل میکند
    بر طبق قرار داد اکثر اتومبیل های که شامل دستگاه تولید نیرو و دستگاه انتقال قدرت و دستگاه
    کلاچ در جلو می باشند ولی دستگاه محرک واقعی خودرو در عقب واقع است و برای انتقال نیرو
    به دستگاه محرک در عقب اجزای مخصوصی لازم است که این کار را انجام می دهند که در مهندسی
    اتومبیل "محور حرکت " نامیده می شود
    1- قفل های میل گاردان
    قفل های میل گاردان برای این منظور به کار می رود که انتقال نیرو را با سرعت زاویه ای ثابتی انجام
    دهند . قفل گاردان سبب ارتباط محورها به طور قابل انعطاف می شوند تا اجازه انتقال نیرو در وقتی
    که زاویه های بین محورها تغییر پیدا کرد را بدهند خرابی جاده و قابلیت انعطاف میله های معلق به
    ندرت امکان هم محور بودن قفل گاردان وجود دارد یک قفل گاردان نیز ممکن است بین محور زنده و
    دوک چرخ جلو (پلوس) وجود داشته باشد که می تواند نیرو را به چرخ ها منتقل کند قفل گاردان شامل
    اجزای زیر است
    مفصل هوک : قفل گاردانی که خیلی متداول است به نام مفصل هوک نامیده می شود این قفل
    اولین مورد استعمال در محورهای حرکت خودرو بوده است و متداول بوده است به طور زوجی مورد
    استفاده واقع می شوند به علت این که در مورد چرخ های جلو محرک باشند به کار بردن مفصل
    هوک حجم زیادی را اشغال خواهد کرد در این مورد مفصل مخصوص سرعت ثابت که کوچکتر است
    به کار می برند
    مفصل مخصوص سرعت ثابت : این مفصل خیلی متداول است چون اجزای ارتعاش به چرخ ها
    می دهد مفصل مخصوص حرکت زاویه ای عضو محرک را طوری جهت می دهد که عضو به حرکت
    دراورنده دارای همان سرعتی باشد که عضو محرک دارد
    2- میل گاردان
    میل گاردان برای این در اتومبیل به کار میرود که گشتاور را از فاصله بین دستگاه انتقال نیرو به
    گردانده نهایی منتقل کند
    3- اتصال کشویی میل گاردان
    چون چرخ های عقب در ضمن عبور از چاله ها دارای حرکت عمودی می شوند لازم و ضروری است
    که وسیله ای برای تغییر دادن طول به میل گاردان در هنگام تغییر وضع چرخ ها وجود داشته باشد این
    عمل به وسیله اتصال کشویی انجام می شود حال که به طور خلاصه عملکرد هر یک از اجزای فوق
    را درک کردید به بررسی کلی هر یک از انها می پردازیم
    توضیحات جامع در مورد میل گاردان
    میل گاردان میله ای فولادی تا اندازه ای قطور و بسیار محکم و کاملا صاف و راست می باشد که
    نیروی گیربکس را به دیفرانسیل منتقل می کند چون گیربکس با دیفرانسیل فاصله دارد و از طرف
    دیگر در یک سطح مساوی قرار ندارند با بالا و پایین رفتن چرخ های عقب .دیفرانسیل هم بالا و پایین
    میرود به همین جهت و برای این که اسیبی به میل گاردان نرسد در دو سر میل گاردان دو عدد چهار
    شاخه که یک سر ان به شفت گیربکس و سر دیگر ان به دنده پیستون دیفرانسیل وصل شده که این
    مجموعه را میل گاردان و قفل های گاردان می گویند
    میل گاردان ممکن است توپر یا تو خالی ساخته شده باشند نوع تو خالی برای موتورهای با کارکرد
    سنگین ارجعیت دارد چون وزن کمتری دارند و در نتیجه دارای قدرت انتقال گشتاور بیشتری میباشند
    میله های تو خالی معمولا از لوله درزدار ساخته می شوند لوله ها که از ورقه های فولاد کم ذغال
    تهیه می شوند به وسیله الکتریکی یا گاز جوش داده می شوند ایجاد صدا در زیر میل گاردان به
    خصوص زمانی که گاز را کم می کنیم و یا که به طور ناگهانی روی پدال فشار می دهیم دلیل ان این
    است که از ناحیه چهار شاخه لقی به وجود امده است به سبب این که موارد فوق و سایر معایب کم
    تر شود و برای این که از نیروی گریز از مرکز میل گاردان به موقع گردش جلوگیری شود و سعی شده
    است که در حد امکان میل گاردان را کوتاه تر بسازند
    یک مزیت عالی کوتاه بودن میل گاردان این است که از نیروی موتور کاسته نمی شود و به طور کامل
    به دیفرانسیل منتق می گردد و اتومبیل دارای قدرت بیشتری می باشد به همین دلیل در بسیاری
    از اتومبیل ها دیفرانسیل را در جلو قرار می دهند و البته در بسیاری دیگر اتومبیل ها دارای دو
    دیفرانسیل می باشند مثل اتومبیل جیپ . خرابی قفل گاردان گیر کردن کشویی گاردان خوردگی
    بلبرینگ های چهار شاخه گاردان, تعویض دنده معکوس در دور زیاد و فشار اوردن به اتومبیل در جایی
    که بکسواد می کند موجب بردین میل گاردان می شود
    میل گاردان و چهار شاخه های ان
    نیروی موتور از طریق گیربکس توسط میل گاردان به دیفرانسیل منتقل می شود در ضمن به خاطر
    حرکت به عقب به سمت بالا و پایین بعلت فنربندی و پستی و بلندی جاده و لرزش اتومبیل و تغییر
    فاصله بین گیربکس و دیفرانسیل در دو انتهای میل گاردان از چهار شاخه و کشویی گاردان استفاده
    می شود میل گاردان به صورت میله توخالی ساخته و سپس بالانس کرده و مورد استفاده قرار
    می گیرد قسمت کشویی گاردان به وسیله روغن گیربکس روغن کاری شده و کاسه وچهار شاخه
    را هنگام نصب از گیربکس پر می کند و در مواردی از گیربکس خور استفاده می شود
    انواع میل گاردان
    میل گاردان را به صورت یک تکه و دو تکه می سازند در اتومبیل هایی که فاصله بین گیربکس
    و موتور حداکثر 5/ 1 متر باشد از گاردان یک تکه و بیش از این فاصله از گاردان دو تکه استفاده
    می شود چون اگر طول گاردان یک تکه زیاد بلند باشد در سرعت زیاد دچار اشکال می شود به
    همین دلیل از نوع دو تکه استفاده می کنند در میل گاردان دو تکه علاوه بر داشتن چهار شاخه
    در سر و ته ان و کشویی در جلو در ناحیه وسط دارای بلبرینگ و لاستیک ضربه گیر می باشد
    معایب میل گاردان
    خرابی و سائیدگی کاسه ساچمه چهار شاخه
    هنگام حرکت اولیه و رها کردن کلاچ ایجاد تقه می کند و در سرعت زیاد اتاق اتومبیل را به لرزش در
    می اورد
    خرابی و سائیدگی کشویی گاردان
    هنگام حرکت اتومبیل تولید صدا و هنگام حرکت تولید تقه می کند معمولا میل گاردان نیازی به
    بازرسی و نگهداری به خصوص ندارد و فقط هر چند وقت یک بار باید چهار شاخه گاردان را مورد
    بررسی قرار داد
    کشویی گاردان
    حرکت اکسل روی فنرها به طور مداوم فاصله بین جعبه دنده و دیفرانسیل را کم می کند بنابراین
    محور گاردان نیز باید طول خود را کاهش دهد این عمل به وسیله کشویی گاردان امکان پذیر است
    در ضمن کشویی گاردان در هر 5000 کیلومتر بهتر است گریس کاری شود
    هزار خار
    در اتومبیل های اکسل جلو یا اتومبیل های موتور عقب و اکسل عقب گاردان به کار نرفته است
    و نیروی محرکه از جعبه دنده و دیفرانسیل به چرخ ها منتقل می شود و نیم شفت ها به چهار شاخ
    مجهزند و به وسیله اتصال های کشویی (هزار خار) به دیفرانسیل متصل هستند گرفتن ضربه های
    شدید در اکسل جلو یا عقب هنگامی که اتومبیل موتور جلو با اکسل عقب حرکت در میاید ضربه
    وارده به جعبه دنده به وسیله محور گاردان بلند گرفته می شود بدین ترتیب کمی پیچیده و دوباره
    به جای اول خود باز می گردد در اتومبیل ای اکسل جلو با موتور و اکسل عقب نیم شفت ها که نیروی
    محرکه را انتقال می دهند برای پیچیدگی خیلی کوتاه هستند در اینجا عمل ضربه گیر به وسیله چهار
    شاخ متصل می شود این بوش ها عمل ضربه گیری را انجام می دهند



    منبع: اولین دایره المعارف جامع اتومبیل در ایران جلد3(حسین منوچهر پارسا)

  11. #17
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض دیفرانسیل

    دیفرانسیل

    دیفرانسیل یکی از اعضای سیستم انتقال قدرت می باشد دیفرانسیل بعد از میل گاردان قرار
    می گیرد البته در صورتی که خودرو دارای میل گاردان باشد اگر خودرو دارای میل گاردان
    نباشد دیفرانسیل بعد از گیربکس قرار خواهد گرفت و بعد از دیفرانسیل پلوس ها قرار دارند
    زمانی که یک اتومبیل دور میزند باید چرخی از ان که در طرف خارج پیچ است با سرعت بیشتری
    نسبت به چرخ دیگر بچرخد اگر بخواهیم بدون ترمز گرفتن بچرخیم و همچنین هنگامی که یک چرخ
    از روی یک برجستگی عبور می کند باید از چرخ دیگر تندتر بچرخد دیفرانسیل این عمل را امکان پذیر
    می کند دیفرانسیل دستگاهی است که نیروی حاصله از موتور را موقعی که وسیله نقلیه به طور
    مستقیم و در سطح صاف حرکت می کند به طور مساوی بین چرخ های عقب تقسیم می کند ولی
    موقع دور زدن و یا چپ و راست رفتن و هنگام گردش ها یا در دست انداز نیروی موتور را به نسبت
    احتیاج بین چرخ های عقب تقسیم می نماید قطعات دیفرانسیل در داخل پوسته یا محفظه ای که
    معمولا ان را کله گاوی می گویند قرار دارند در داخل این جعبه که دنده کرانویل و دنده پینیون و چهار
    هرز گرد کوچک و شش عدد بلبرینگ و دو دنده سر پلوس چرخ ها قرار گرفته اند به طور خلاصه
    می توان گفت که نیروی موتور به وسیله کلاچ به جعبه دنده و از گیربکس توسط میل گاردان به
    دیفرانسیل و از دیفرانسیل به پلوس چرخ ها منتقل و چرخ ها به حرکت در می ایند با گردش میل
    گاردان دنده پینیون هم می چرخد و چون دنده کرانویل با دنده پینیون درگیر است کرانویل را به حرکت
    در می اورد و به همراه خود هرز گردها را هم می چرخاند اگر چرخ های اتومبیل در سطح صاف
    حرکت کنند دنده هرز گرد با دنده های پلوس حرکت و چرخشی ندارد ولی اگر چرخ ها هماهنگی
    نداشته باشد و اتومبیل در حال دور زدن باشد باید یک چرخ که در زاویه تنگ قرار گرفته است اهسته
    گردش نماید در این موقع دنده های هرز گرد بر خلاف دنده های پلوس به حرکت در ایند و سبب
    سریع تر گردانیدن یکی از دنده های پلوس می شوند (چرخی که مقاومت کمتری را تحمل می کند)
    دنده های هرز گرد که تعداد انها دو یا چهار عدد می باشد نقش مهمی در دیفرانسیل دارند کار انها
    تنظیم دور چرخ در سر پیچ ها می باشد

    وظیفه دیفرانسیل عبارتند از
    1- 90 درجه تغییر جهت گردش گاردان 2- ازدیاد گشتاور 3- تعدیل دور چرخ های عقب هنگام دور
    زدن یا حرکت در میدان

    به این معنی که هنگامی که اتومبیل در میدان حرکت می کند چرخ سمت داخل میدان دایره کوچک
    تری را طی می کند در صورتی که چرخ سمت خارج میدان دایره بزرگ تری را طی می کند نتیجه این
    که یک چرخ خارجی دور بیشتر و چرخ داخلی دور کمتری می زند امکان این تغییر دور وظیفه چرخ دنده
    های داخلی دیفرانسیل می باشد مثال دیگر هنگامی که چرخ اتومبیل داخل جوی اب یا جدول گیر
    می کند در صورت حرکت چرخ ها چرخ داخل چاله ثابت ولی چرخ دیگر به سرعت حرکت می کند
    دیفرانسیل اتومبیل های سواری را به صورت یک پارچه و مفصلی می سازند که نوع یک پارچه ان
    مثل پیکان و نوع مفصلی ان مثل بنز و بی ام و را میتوان نام برد ولی همگی تقریبا دارای قطعات
    مشابه یکدیگر می سازند

    هوزینگ در دیفرانسیل (کله گاوی)
    وظیفه اصلی هوزینگ و چرخ دنده داخلی ان تعدیل یا تنظیم دور چرخ ها هنگام دور زدن یا حرکت در
    میدان ها می باشد
    هنگامی که اتومبیل به طور مستقیم حرکت می کند چرخ ها چه محرک چه متحرک با دور مساوی
    دوران می کنند ولی هنگامی که در میدان ها یا مسیر های منحنی شکل چرخ های قوس خارجی
    میدان مسافت بیشتری طی می کنند و چرخ های قوس داخلی میدان مسافت کمتری را طی
    می کنند هرگاه هر دو چرخ به کمک یک محور به یکدیگر متصل بودند چرخ ها هنگام دور زدن روی
    زمین کشیده می شوند و سایش زیاد لاستیک و انحراف اتومبیل حتمی خواهد بود به همین دلیل
    محور محرک را به دو قسمت تقسیم کرده و هر یک را پلوس می نامند بدین ترتیب گردش نامساوی
    چرخ ها محرک امکان پذیر میشود برای این که بتوان هر دو پلوس را به کمک یک گاردان به حرکت
    دراورد انها را به کمک "جعبه هوزینگ"به یکدیگر متصل می کنند در دیفرانسیل پینیون کرانویل را به
    حرکت در می اورد و بدین ترتیب "هوزینگ" که به کرانویل متصل است به حرکت در می اید
    در انتهای هر پلوس یک چرخ دنده مخروطی به نام دنده پلوس در جعبه هوزینگ قرار دارد که این دنده
    ها به کمک دو دنده دیگر که انها را دنده هرز گرد (ساتلیت) می گویند به یگدیگر مربوط می سازد
    دنده های هرز گرد روی محور خود ازاد هستند و می توانند در مواقع لزوم حول ان دوران نمایند مسیر
    انتقال نیرو از جمله هوزینگ به محور دنده ها هرز گرد و از انها به دنده های پلوس و بالاخره به پلوس
    ها و چرخ صورت می گیرد هنگام حرکت مستقیم پلوس ها ودر نتیجه هر دو چرخ دارای دور یکسان
    هستند هرز گردها حول خود دوران ندارند و همراه جعبه هوزینگ به حرکت گردشی خود ادامه
    می دهند و عمل اتصال بین پلوس ها جعبه دنده هوزینگ به حرکت گردشی خود ادامه می دهند و
    عمل اتصال بین پلوس و جعبه هوزینگ انجام می دهند و در نتیجه فقط انتقال نیرو به دنده پلوس را
    انجام می دهند
    1- هوزینگ 2- واشر مسی 3- دنده پلوس 4- هرز گرد 5- دنده پلوس 6- کرانویل
    هنگام طی مسیر منحنی یا دور زدن چرخ داخلی چون مسیر کوتاه تری را طی می کند باید دور
    کمتری نسبت به چرخ خارجی بزند در این حال هرز گرد مربوط به دنده پلوس چون نمی تواند تمامی
    دنده را دور جعبه دنده هوزینگ منتقل کند سرعتش کم می شود و در نتیجه روی ان لغزیده و
    بنابراین حول محور خود به دوران در می ایند این حرکت اضافی به دنده پلوس دیگر منتقل شده و ان
    را با دور بیشتری می گرداند چرخ خارجی دور بیشتری و مسافت بیشتری را طی می کند
    دنده هرز گرد تنها هنگامی طی مسیرهای منحنی یا دور زدن عمل نمی کند بلکه در مواقعی که به
    نحوی اصطکاک بین دو چرخ متفاوت باشد یا بار یکی از لاستیکها از دیگری کمتر باشد وارد عمل
    می گردد هرگاه مثلا چرخی در سطح متفاوت زمین یخ زده قرار گیرد و چرخ دیگر در سطح خشک در
    این حال چرخ با اصطکاک کم تا دو برابر دور جعبه هوزینگ می گردد در حالی که چرخ دیگر حرکتی
    ندارد و در این حال وسیله نقلیه قدرت حرکت را نخواهد داشت زیرا نیروی اصطکاک موجود در چرخ
    در حال بکسواد کافی برای اتومبیل نیست برای این گونه موارد در بعضی از وسایل نقلیه سنگین از
    قفل کن دیفرانسیل استفاده می کنند قفل کن دیفرانسیل دو پلوس را با یکدیگر یک پارچه می کند و
    اتومبیل را در مکان برفی و غیره ممکن می سازد


    منبع : اولین دایره المعارف اتومبیل در ایران جلد3(حسین منوچهر پارسا)

  12. #18
    داره خودمونی میشه GTB 599's Avatar
    تاريخ عضويت
    Oct 2009
    محل سكونت
    shz
    پست ها
    151

    پيش فرض

    آقا دمت گرم!!

    خیلی کامله.

  13. این کاربر از GTB 599 بخاطر این مطلب مفید تشکر کرده است


  14. #19
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض

    آقا دمت گرم!!

    خیلی کامله.
    خواهش میکنم وظیفه هست شما لطف کن از این ببعد خواستی منت سرما بزاری و تشکر کنی از دکمه تشکر استفاده کن اینجوری یکم ..

  15. 2 کاربر از 2299 بخاطر این مطلب مفید تشکر کرده اند


صفحه 2 از 2 اولاول 12

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •