تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 3 اولاول 123 آخرآخر
نمايش نتايج 11 به 20 از 27

نام تاپيک: مجموعه موتور خودرو

  1. #11
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض میل لنگ و فلایویل

    میل لنگ و فلایویل
    میل لنگ میله منکسری است که فقرات موتور را تشکیل می دهد بطور مستقیم بایا غیر مستقیم نیروی
    خود را از میل لنگ دریافت می کندبه قسمتی از بدنه اصلی موتور که میل لنگ در انجا قرار می گیرد
    محفظه میل لنگ علاوه بر نگاه داشتن وتحمل ان اجازه چرخش میل لنگ را در داخل کپه های خود که
    همگی در یک امتداد قرار دارند را می دهند در اکثر موتورها محفظه میل لنگ یا بلوک سیلندر یا بدنه اصلی
    موتور به طور واحد و یک تکه ریخته گری می شود وظیفه میل لنگ عبارت است از تبدیل حرکت رفت و
    برگشتی (خطی) پیستون به حرکت چرخشی یا دورانی می باشد
    قسمتهای مختلف میل لنگ
    هر میل لنگ دارای تعدادی تکیه گاه ثابت یا (انگشتی ) و تعداد لنگ های متحرک یا انگشتی متحرک
    البته تعداد لنگهای متحرک در موتورهای خطی به نسبت تعداد سیلندرهای موتور می باشد در صورتی
    که در موتورهای وی شکل برا ی هر لنگ متحرک دو عدد شاتون بسته می شود تعداد انگشتی های
    ثابت بستگی به طول میل لنگ دارد هر چه طول بزرگتر باشد تعداد ثابتها هم زیادتر می باشد وم معمولا
    افزایش تعداد ثابت ها در میل لنگ یک موتور سبب کاهش بارها و فشارها شده و در نتیجه تنشها و لرزش
    های وارد بر میل لنگ کم شده و موتور نرم و یکنواخت کار می کند
    لنگ گیری میل لنگ
    (بالانس کردن میل لنگ ) برای متعادل ساختن میل لنگ در مقابل هر لنگ وزنه ای به میل لنگ اضافه
    می شود و میل لنگ با نهایت دقت باید متعادل گردد چون نیروهای نامتعادل سبب لرزش و فشارهای
    زیاد روی یاتاقانهای ثابت میل لنگ شده و باعث خمیدگی یا پیچیدگی میل لنگ می گردد برای جلوگیری
    از این وضع بایستی میل لنگ به طور استاتیکی و دینامیکی بالانس شود
    روغن کاری میل لنگ
    میل لنگ دارای مجاری روغن بوده این مجاری تکیه گاههای ثابت میل لنگ به طور مستقیم با مجاری
    بلوک تماس داشته و بوسیله مجاری مورب مجاری ثابت به لنگ های متحرک وصل می شود روغن از
    لنگ های ثابت به لنگهای متحرک و از انجا از سوراخ شاتون دیواره سیلندر و بوش گژن پین را روغن کاری
    می نماید سپس بوسیله رینگ روغن از جداره سیلندر جمع اوری و به کارتر برگردانده می شود
    طرز ساختن میل لنگ
    میل لنگ یک قطعه ریخته گری یکپارچه است از الیاژهای بسیار سخت فولاد که از نیکل و کروم و مولیبدن
    مانگام و فولاد تشکیل شده است که این قطعه با عملیات حرارتی و ابکاری و چکش کاری تهیه شده و
    دارای استحکام مکانیکی قابل توجهی می باشد
    نوسان گیر میل لنگ
    ضربه هایی که به میل لنگ وارد می شود و در ان نوسان پیچشی ایجاد می کند موقعی که پیستون در
    زمان احتراق بسمت نقطه مرگ پایین حرکت می کند نیروی وارد شده به میل لنگ از یک تن نیز تجاوز
    می کند این نیروها تمایل دارند که لنگ میل لنگ را در جهت گردش بپیچاند یعنی حرکت ان لنگ از سایر
    قسمتهای میل لنگ جلو می افتد یک لحظه بعد نیرو از روی میل لنگ برداشته می شود و لنگ تمایل به
    پیچیدن در جهت عکس می کند و می خواهد در وضعیت اول خود نسبت به سایر قسمتهای میل لنگ
    برگردد این پیچش در جهت معکوس که پس از هر زمان در میل لنگ تولید می شود یک حرکت نوسانی
    در میل لنگ بوجود می اورد
    اگر این نوسان پیچشی کنترل نشود ممکن است در یک دور معین این نوسانات به حالت تشدید دراید و
    موجب شکستن میل لنگ می شود برای کنترل نوسانات پیچشی از دستگاهی بنام نوسان گیر یا دستگاه
    تعادل پیچشی میل لنگ استفاده می شود که این دستگاه معمولا در جلوی میل لنگ سوار می شود و
    شامل پولی پروانه نیز می باشد
    فلایویل
    درقسمت انتهای میل لنگ فلایویل قرار دارد فلایویل که بنام چرخ طیار یا چرخ لنگر نیز خوانده می شود
    وزنه سنگینی است که در کار موتور تاثیر بسزایی دارد و عملیات زیر به عهده فلایویل قرار دارد
    الف : در زمان احتراق که پیستون از نقطه مرگ بالا به نقطه مرگ پایین می اید جلوی ضربه را گرفته و
    لرزش موتور را از بین می برد
    ب: چون قدرتی که از طرف پیستون به میل لنگ داده می شود یکنواخت نیست موجب می شود که
    سرعت میل لنگ کم یا زیاد شود اینرسی فلایویل تمایل دارد که انرا با سرعت ثابت حرکت دهد بنابراین
    فلایویل در موقعی که میل لنگ تمایل به افزایش سرعت داشته باشد قدرت را گرفته و هنگامیکه تمایل به
    کاهش سرعت داشته باشد قدرت به ان پس میدهد این عمل ضربات وارده از پیستون را خنثی کرده و
    مانع شکسن و پیچش میل لنگ می شود بزرگی و سنگینی فلایویل نسبت عکس باتعداد سیلندرها
    دارد مثلا فلایویل ماشین چهار سیلندر از فلایویل ماشین هشت سیلندر بزرگتر و همین طور سنگین تر
    می باشد
    ج: نیروی انفجاری را در خود ذخیره نموده و برای تکمیل عملیات سه گانه بعدی به میل لنگ کمک می کند
    د: در سطح خارجی (محیط میل لنگ) دنده های مخصوصی نصب شده که به منظور گردانیدن موتور به
    وسیله دستگاه الکتریکی استارت این دنده با دنده استارت درگیر شده و باعث گردش میل لنگ و روشن
    شدن موتور می شود
    ج : فلایویل یکی از قطعات دستگاه انتقال نیرو محسوب شده و نیروی موتور بوسیله کلاچ از این قطعه
    به جعبه دنده منتقل می شود فلایویل روی صفحه مدور نعلبکی شکلی که در انتهای میل لنگ
    قر دارد و بنام فلانچ معروف است توسط پیچشهای متصل می شود در مرکز دایره فلانچ سوراخی
    وجود دارد که بعنوان تکیه گاه سر شفت ورودی گیربکس بوده و برای جلوگیری از اصطکاک داخل
    سوراخ از بوش یا بلبرینگ استفاده شده است در ضمن در جلوی میل لنگ چرخ دنده میل لنگ قرار
    گرفته که با زنجیر یا تسمه یا درگیری مستقیم با دنده میل سوپاپ درگیر می شود که این دنده
    نصف دنده میل سوپاپ بوده ضمنا نیروی میل لنگ به وسیله پولی سر میل لنگ و تسمه پروانه
    باعث گردش پولی پروانه و پولی دینام می شود
    لوله خروجی گازهای داخل محفظه میل لنگ
    چون در موقع کار کردن موتور مقداری گاز در محفظه میل لنگ بوجود می اید و این گازها باعث ایجاد
    فشاردر داخل محفظه میل لنگ و کارتر می گردد و در صورتی که این گازها بخارج فرستاده نشود
    باعث میشودکه در اثر فشاری که بوجود می اید روغن از اطراف کارتر و یا قسمتهای دیگر ریزش کند
    بنابراین برای برطرف کردن این نقیصه لوله ای در محفظه میل لنگ در نظر گرفته شده که گازها از
    لوله مذکور بخارج فرستاده می شوند در موتورهایی که اخیرا ساخته می شود گازهای حاصل از
    محفظه میل لنگ را به وسیله لوله ای به صافی هوا برده و از انجا در موقع مکش پیستون بداخل
    سیلندر هدایت شده و در موتور مصرف می گردد از این عمل دو نتیجه گرفته می شود یکی اینکه
    تخلیه گازها بهتر و به سهولت انجام می گیرد و دیگر اینکه گازها هدر نرفته و در موتور می سوزد
    عیوب میل لنگ
    1-اصولا بعد از باز کردن میل لنگ و شستشوی ان 2- تشخیص عیوب ان با ازمایشات مختلف و اندازه
    گیری با وسایل ابزار دقیق 3- تعویض میل لنگ در صورت لزوم یا تعمیر و بهسازی ان و بستن مجدد ان
    یک میل لنگ باید بدلیل زیر تعوض گردد
    الف : ادر سایز شدن بیش از حد مجاز از اندازه داده شده در کاتالوگ
    ب: سوختن انگشتی یا لنگ های ثابت و متحرک که از تغییر رنگ انها قابل تشخیص است
    ج: بریدن یا شکست میل لنگ
    د: داشتن ترک عرضی روی انگشتی ها
    ح: وحود تابیدگی –خمیدگی – پیچیدگی بیش از حد
    و: وجود خش و خط بسیار عمیق
    ز: از بین رفتن قوس کنارهای لنگ ها – در ثابت ها و متحرک ها
    ازمایشهای میل لنگ
    الف : خراشیدگی میل لنگ
    ب: ازمایش ترک خوردگی میل لنگ
    ج:ازمایش بردیگی یا شکستگی میل لنگ
    د: انزاه گیری دو پهن بودن میل لنگ
    ز: اندازه گیری خمیدگی میل لنگ
    ه:ازمایش پیچیدگی میل لنک
    ر: ازمایش مخروطی شدن میل لنک
    ازمایشهای فلایول (چزخ طیار یا چرخ لنگر)
    ساده ترین کنترل فلایویل موقعی است که فلایویل در محل خودش یعنی روی میل لنگ و موتور سوار
    و همچنین برای کنترل ان می توان از پایه های جناغی بلند و یا مرغک تراش استفاده کنیم
    الف: کنترل مسطح بودن فلایویل (تاب نداشتن)
    ب: کنترل مرکز بودن محل بلبرینگ شفت
    ج: کنترل لنگی عمودی فلایویل
    د: کنترل دنده فلایویل
    ه: بررسی و دراوردن دنده فلایویل
    خ: خط افتادن دنده فلایویل
    ز: گشاد شدن محل پیچ های فلایول
    منبع : اتومکانیک به زبان ساده (مهندس احمد امیر تیموری)

  2. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  3. #12
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض گیت سوپاپ یا گاید یا راهنما

    گیت سوپاپ یا گاید یا راهنما

    گیت سوپاپ قطعه ای است که ساق سوپاپ داخل ان به بالا و پایین حرکت کرده و کار ان جلوگیری
    از حرکت عرضی سوپاپ می باشد گیت سوپاپ بر دو نوع یکپارچه و قابل تعویض می باشد اگر گیت
    احتیاج به تعمیر داشته باشد در نوع اول انرا برقو کاری می کنند و در صورت نیاز در حالت شکستگی
    گیت تراشکار انرا تراشیده و گیت نو و به اندازه استاندارد بجای ان جا می زنند در نوع دوم انرا تعویض
    می کنند برای تعویض گیت سوپاپ انرا از سمت فنر سوپاپ جا می زنند قبل از در اوردن گیت ارتفاع
    انرا تا سرسیلندر توسط عمق سنج کولیس یادداشت و یا علامت گذاری کرده تا گیت نو را در ان حد
    جا بزنند سپس توسط سنبه مخصوص که قطر خارجی نوک در حدود یک میلیمتر کمتر از قطر داخلی
    گیت است را داخل گیت قرار داده و با چکش یا پرس انرا خارج کرده سپس گیت جدید را از طرف فنر
    سوپاپ جا میزنند
    عیوب گیت
    1- گرفتن کربن داخل گیت که توسط دریل و فرچه مخصوص کربن گیری می شود در گیت کربن
    گرفته سوپاپ براحتی حرکت نمی کند
    2- دو پهن بودن گیت که باعث گیر کردن ساق سوپاپ و علل دیگر خواهد شد و توسط بررسی
    قابل تشخیص است
    3- سائیدگی گیت و لقی بیش از اندازه ساق سوپاپ داخل گیت . عیوبی که در اثر لقی ساق
    سوپاپ در گیت بوجود می اید عبارتند از الف: روغن سوزی در موتورهایی که سوپاپ در
    سرسیلندر قرار دارد ب: بدکار کردن موتور در دور ارام بعلت هوا کشیدن از فاصله بین ساق و
    گیت در سوپاپ ورودی ج : از اببندی افتادن سوپاپ بعلت هم مرکز نبودن گیت یا سیت

    لاستیک گیت سوپاپ
    برای جلوگیری از نفوذ روغن به اطاق احتراق یا نشت هوا به داخل می باشد و بر دو نوع می باشد
    الف: رینگ لاستیکی که در زیر واشر نگهدارنده فنر سوپاپ قرار گرفته
    ب : کاسه نمدی بوده و روی گیت سوپاپ در سرسیلندر قرار می گیرد

    سیت سوپاپ
    قسمتی از سرسیلندر که نشیمنگاه سوپاپ روی ان قرار می گیرد سیت سوپاپ می نامند
    تماس نشیمنگاه با سیت سوپاپ موجب بسته شدن مجرای ورود یا خروج خواهد شد مقدار عرض
    تماس بین سیت و نشیمنگاه باید از 2 میلیمتر بوده تا مقاومت گاز را در موقع خروج کمتر کرده و
    عمل انتقال گاز بخوبی انجام شود اگر سطح نشیمنگاه سوپاپ باریک باشد سوپاپها بهتر اببندی
    می شود ولی سطوح پهن تر نشیمنگاه حرارت سوپاپ را بهتر از خود منتقل می نماید معمولا عرض
    سطح نشیمنگاه سوپاپ باید 1 تا 2.5 میلیمتر باشد سیت هایی که پهن تر هستند بوسیله دو فرز
    یکی با زاویه 15 درجه و دیگری با زاویه 75 درجه که نتیجه ان سبب کم شدن پهنای سیت شده و
    عمل اب بندی بهتر انجام می شود جنس سیت ها از نیکل کرم یا الیاژهای فولادی می باشد سیت
    را معموا بوسیله بوش کشهای مخصوص از جای خود بیرون می اورند

    عیوب سیت سوپاپ
    1- سیت سوپاپ را از نظر خط و خش پله دار شدن وجود ترک داغ و لب پریدگی یا حفره های کوچک
    بررسی می کنیم در صورت مشاهده عیوب فوق سیت سوپاپ را با فرز مخصوصی اصلاح می کنیم
    2- سوراخهای ریز و خط و خش های جزئی و کم عمق را هنگام اببندی سوپاپ می توان برطرف نمود



    منبع : مهندس محمد رضا افضلي

  4. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  5. #13
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض خرابي هاي سوپاپ

    خرابي هاي سوپاپ

    هيچ‌كس دوست ندارد مشكلات موتوري مانند: روغن‌سوزي، نشتي حاصل از فشار، سر و صداي اجزاي وابسته به سوپاپ يا خرابي آشكار سوپاپ داشته باشد. بنابراين تلاش زيادي انجام مي‌شود تا قطعات فرسوده و يا آسيب ديده، هنگام تعويض يا بازسازي سرسيلندر به حالت ابتدايي خود برگردند و درست كار كنند، اما گاهي مشكلاتي از سوپاپ به‌وجود مي‌آيند و هزينه‌هاي سنگيني به بار مي‌آورند.
    چگونه مي‌توان مانع اين خسارات شد؟ با تشخيص علل خرابي سوپاپ و حصول اطمينان از اينكه هنگام تعويض و يا تعمير سوپاپ‌ها، سيت‌ها، گايدها و ديگر اجزاي وابسته به سوپاپ، هيچ چيز از قلم نيفتاده است.
    عملكرد سوپاپ به چند دليل از مهم‌ترين بخش‌هاي بازسازي موتور است: اول اينكه نياز به دقت زيادي دارد. اگر تلرانس‌ها و شكل هندسي سوپاپ صحيح نباشد، يقيناً با مشكل مواجه خواهيد شد. دوم اينكه در عملكرد سوپاپ بايد به جزئيات توجه شود. منظور از جزئيات، قطعات فرسوده‌اي است كه به نظر سالم مي‌رسند، اما در حقيقت سالم نيستند و نياز به بازسازي يا تعويض دارند. بهترين توصيه اين است كه اگر به سالم بودن قطعه شك داريد، آن را دور بيندازيد. اگر به شرايط ساق سوپاپ‌ها، گايدها، نگهدارند‌ه‌ها، خارها، فنرها، انگشتي‌ها (اسبك‌ها) و ميل تايپيت‌ها دقت نكنيد، با مشكل مواجه مي‌شويد. عدم توجه به جزئياتي مانند ارتفاع سوپاپ، ارتفاع فنر سوپاپ، فاصله مجاز بين ساق سوپاپ و گايد، تنظيم انگشتي، پهناي سيت و موقعيت تماس آن شما را به دردسر مي‌اندازد. همچنين عملكرد سوپاپ نياز به مقدار زيادي تجربه كارگاهي دارد. براي حل مشكل براي مثال، سوپاپ، ابتدا بايد علت پديد آمدن آن مشكل را پيدا كنيد.
    اگر علت شكستن سوپاپ، عدم تنظيم فاصله بين گايد سوپاپ و سيت آن باشد، تعويض سوپاپ مشكلي را حل نمي‌كند. سوپاپ جديد صرفاً زماني به درستي كار مي‌كند كه اين فاصله تنظيم شده باشد در غير اين صورت، عدم تنظيم باعث خستگي و شكست مجدد سوپاپ مي‌شود. اگر علت سوختن سوپاپ، داغ كردن سرسيلندر باشد، تعويض سوپاپ سوخته مشكل تراكم را حل نمي‌كند زيرا اگر نقص قسمتي كه داغ مي‌شود برطرف نشود، سوپاپ جديد نيز داغ شده و مجدداً مي‌سوزد.
    اگر سايش گايد به علت عدم تنظيم انگشتي با ارتفاع ساق سوپاپ باشد، تعويض گايد فرسوده با گايدي جديد و تعويض بوش سيلندر يا يك سوپاپ با سوپاپي اورسايز1 مشكل روغن‌سوزي را حل نمي‌كند. اگر ارتفاع ساق سوپاپ به درستي تنظيم نشود، تعمير گايد نيز فايده‌اي ندارد.
    بنابراين آناليز علل خرابي پيش از تعمير، حائز اهيمت است. سوپاپ‌هاي شكسته يا سوخته همانند گايدهاي فرسوده، سيت‌هاي ترك خورده و ديگر قطعات مشابه آسيب‌ديده، نتيجه واكنش‌هاي زنجيرهاي هستند. به اين ترتيب، يك مشكل، مشكل ديگري را به‌وجود مي‌آورد و در نهايت منجر به خرابي سوپاپ مي‌شود. بنابراين، تعويض قطعات بدون تشخيص علل خرابي، كاري بيهوده است.
    تعميركاران براي پيشگيري از خسارات بايد 4 مرحله ذيل را انجام دهند:
    1. آناليز مقدار سايش در كلگي سوپاپ با توجه به الگوهاي موجود و اجزاي وابسته به سوپاپ‌ها، هنگامي كه كلگي سوپاپ به درستي مونتاژ نشده باشد. بازرسي دقيق، هر نوع شرايط غيرعادي كه مشكلات اضافي را به وجود مي‌آورند، آشكار مي‌كند.
    2. بازرسي تمامي اجزاي وابسته به سوپاپ و كلگي آن به‌گونه‌اي كه تمامي قطعات فرسوده يا آسيب ديده تشخيص داده شده و آنها را تعويض يا تعمير كنند.
    3. دقت زياد به كيفيت محصول به‌گونه‌اي كه قسمت‌هاي تعمير شده به درستي تعمير شده باشند.
    4. توجه به جزئيات، ابعاد بحراني و شكل هندسي اسبك‌ها به طوري كه از مونتاژ قطعات مطمئن شوند.

    اجتناب از عيوب
    عوامل متعددي مي‌توانند باعث خرابي سوپاپ شوند. سوپاپ‌هاي معيوب، مهم‌ترين چيزي هستند كه هيچ‌كس در مورد خود آنها صحبت نمي‌كند. در حالي كه دليل دوم خرابي عملكرد سوپاپ‌ها همين است. تنش‌هاي حرارتي و مكانيكي زياد، اولين دليل است.
    براساس تحقيق يكي از توليدكنندگان سوپاپ، يك پنجم (7/20درصد) خرابي‌هاي سوپاپ به علت وجود عيوبي در درون خود سوپاپ‌هاست. بيش از 10 سال از تحقيق در اين زمينه مي‌گذرد. امروزه همان آلياژهاي پايه و روش‌هاي ساخت كه در آن زمان وجود داشت با كنترل‌هاي كيفي به روش‌هاي مختلف، استفاده شوند. ماشين‌هاي CNC و كنترل آماري فرايند2 وارد فرايندهاي ساخت شده‌اند تا خطاهاي انساني كاهش يابد، اما مانند بسياري از توليدات انبوه ديگر، عيوبي به واسطه اشتباهات سهوي به‌وجود مي‌آيند. بنابراين، اگر سوپاپ‌هاي نامناسب را جدي نگيريد، ممكن است دچار شكست نابهنگام شوند.
    عيوب عبارتند از:
    وجود ناخالصي‌هاي متالورژيكي و آخال‌ها در ماده اوليه كه باعث ضعيف شدن سوپاپ مي‌شوند، اشكالات فورجينگ كه ترك‌هاي ميكروسكوپي، خلل و فرج يا جدايش در فلز به‌وجود آورده و منتهي به شكست مي‌شوند، جوشكاري ناقص بين ساق و كلگي سوپاپ‌ها در سوپاپ‌هاي دو تكه كه باعث جدا شدن كلگي سوپاپ مي‌شود، جوشكاري ناقص در ساق سوپاپ‌هاي توخالي كه باعث شكستگي سوپاپ مي‌شود، عمليات حرارتي نامناسب كه مانع از سخت شدن يا آنيل كامل سوپا مي‌شود و به سايش سرعت مي‌دهند، خطاهاي ماشيني كه اشكالات ابعادي يا صافي سطح نامناسب را به‌وجود آورده و اين مسائل مي‌توانند باعث پديد آمدن انواع مشكلات ديگر شوند. اگر پيش از نصب متوجه اين عيوب نشويم، مشكلات ديگر پيش مي‌آيند و در نهايت، چسبندگي ضعيف كروم سخت، باعث مي‌شود آبكاري ساق سوپاپ پوسته پوسته شود.
    بهترين راه حصول اطمينان از سوپاپ سالم و عاري از عيوب اين است كه:
    1. سوپاپ را بازرسي مي‌كنيم تا مطمئن شويم تلرانس‌ها در حد مجاز هستند (قطر ساق، شيار ساق، طول كلي و غيره) عيوب آشكاري وجود نداشته باشد (مثل شكاف، حفره و ترك‌هاي نازك و غيره)
    2. منبع تأمين سوپاپ‌هاي شما توليدكننده‌اي معتبر و قابل اطمينان باشد.
    سوپاپي كه از نظر ظاهري از ديگري زيباتر به نظر مي‌رسد، نمي‌تواند از كيفيت لازم برخوردار باشد. قيمت مناسب اگرچه مطلوب است، اما سوپاپ ارزان قيمت، غيرقابل استفاده است. بنابراين از توليدكنندگان ممئن سوپاپ از نظر كيفيت خريد نكنيد. سوپاپ را از توليدكننده‌اي معتبر كه از محصول خود دفاع و آن را ضمانت مي‌كند خريد كنيد.
    چرا سوپاپ‌ها خراب مي‌شوند؟
    هر سوپاپي در اثر رانندگي در مسافت‌هاي طولاني فرسوده مي‌شود، اما بعضي سوپاپ‌ها بسيار زودتر از موعد فرسود مي‌شوند و علت آن سوختگي يا شكست است.
    اجازه بدهيد ابتدا در مورد سوختگي صحبت كنيم. سوپاپ‌هاي دود بيشتر در معرض سوختگي هستند چرا كه بيش از سوپاپ‌هاي هوا داغ مي‌شوند. سوپاپ‌هاي هوا به‌وسيله هواي ورودي و سوخت خنك مي‌شوند. بنابراين در دماي 800 درجه فارنهايت كار مي‌كنند. از ديگر سو سوپاپ‌هاي دود از خنك شدن محروم بوده و احتراق گازهاي داغ از دريچه خروجي خارج مي‌شود. سوپاپ‌هاي دود به‌طور متوسط در دماي 1200 تا 1350 درجه فارنهايت كار مي‌كنند و همين عامل باعث آسيب‌پذيري بيشتر آنها از نظر سايش و سوختگي نسبت به سوپاپ‌هاي هوا مي‌شود.
    درجه حرارت كاري بالاتر نياز به آلياژ مستحكم‌تر دارد، بنابراين سوپاپ‌هاي دود را معمولاً از فولاد ضدزنگ مي‌سازند يا اينكه كلگي آنها را از فولاد ضدزنگ مي‌سازند (معمولاً از نوع آلياژ2Nا-21 يا 4Nا-21 با درصد بالاي كروم و نيكل). براي مصارف سنگين بنزين و ديزل جايي كه حرارت معضل بسيار بزرگي است، از پوشش مستحكم STELLITEا3 براي ساخت سوپاپ دود جهت كنترل سايش استفاده مي‌شود.
    خنك شدن سوپاپ‌هاي هوا و دود به تماس فيزيكي آنها با سيت و گايد سوپاپ بستگي دارد. حدو 75 درصد از گرماي احتراق كه از سوپاپ خارج مي‌شود از سيت سوپاپ عبور مي‌كند. بنابراين تماس مناسب سيت براي پيشگيري از سوختن سوپاپ‌ها ضروري است. بقيه 25 درصد گرماي ساق سوپاپ از طريق گايدها خارج مي‌شود. گاهي در مصارف سنگين، ساق توخالي سوپاپ‌ها با فلز سديم پر مي‌شود تا گرماي بيشتري از طريق ساق براي خنك شدن سوپاپ انتقال يابد.
    هر چيزي كه در خنك كردن سوپاپ و يا ايجاد گرماي بيش از حد در سوپاپ يا كلگي آن دخالت داشته باشد باعث از كار افتادن نابهنگام سوپاپ مي‌شود. لايه رسوب روي سطح سوپاپ و سيت مي‌تواند اثر عايق را به منظور كاهش خنك كردن سوپاپ داشته باشد و آن را داغ كند. بنابراين اگر سيت سوپاپ، باريك يا غير هم مركز باشد، آب‌بندي بين سوپاپ و سيت سوپاپ ضعيف مي‌شود. اگر رسوبات روي نقطه‌اي بنشينند يا در جايي ديگر پوسته پوسته شوند، باعث نشتي شده و مركز حرارتي بر روي سوپاپ به‌وجود مي‌آورند كه باعث كانال‌زني4 مي‌شود.
    فنرهاي سوپاپ ضعيف از تماس مناسب كلگي سوپاپ با سيت سوپاپ پيشگيري كرده و گرماي بيش از اندازه در سوپاپ‌ها ايجاد مي‌كنند. سيت ضعيف يا گايدي كه درست در جاي خود نصب نشده باشد، مي‌تواند باعث هدايت گرما به كلگي سوپاپ شده و در نتيجه آن را بسوزاند.
    عدم توجه به ارتفاع سوپاپ هنگام نصب آن به سوختگي سوپاپ مي‌انجامد. وقتي سوپاپ‌ها و سيت‌ها سنگ‌زني شده يا ماشينكاري مي‌شوند، بيشتر از قبل در سرسيلندر فرو مي‌روند. اين امر باعث مي‌شود كه ساق آنها بالاتر قرار گرفته و موقعيت هندسي انگشتي‌ها را به هم بزند. در نتيجه عملكرد سوپاپ‌ها ضعيف مي‌شود وقتي كه موتور داغ مي‌شود، اگر شكل هندسي مناسب به وسيله سنگ‌زني سر ساق سوپاپ‌ها با حالت اول برگردانده نشود اينچ تجاوز مي‌كند. در غير اين صورت بايد منتظر سنگ‌زني لايه سختكاري سطحي سر سوپاپ باشيد. سيت سوپاپ‌ها بايد از نظر ارتفاع به‌درستي نصب شوند. راه ديگر نصب سوپاپ‌هايي با كلگي نسبتاً اورسايز است كه بالاتر از سيت سوار شده و ماشينكاري سيت را جبران كنند.
    پسرفت سوپاپ‌ها در موتورهاي قديمي‌تر كه در كاميون، زيردريايي و مصارف كشاورزي و صنعتي كاربرد دارند، به فقدان سيت‌هاي سوپاپ مستحكم وابسته است. راه‌حل، استفاده از سيت‌هاي سختكاري شده است. استفاده از استلايت يا سوپاپ‌هاي سختكاري سطحي شده هنگامي كه سوپاپ‌ها در معرض سايش هستند نيز لازم به نظر مي‌رسد.
    اگر درجه حرارت كاري زياد شود، مشكلات خنك‌كاري در موتور باعث گيرپاژ و سوختن سوپاپ‌ها مي‌شود. خنك‌كننده ضعيف، ترموستات خراب، واترپمپ ضعيف، گرفتگي رادياتور، فن خنك‌كننده يا سوئيچ خراب فن و غيره، همگي باعث داغ شدن موتور و انبساط سوپاپ مي‌شوند و اگر از حد مجاز تجاوز كنند موجب سايش يا گير كردن سوپاپ به گايدهاي سوپاپ مي‌شود. اگر گيرپاژ سوپاپ‌ها برطرف شود باعث سوختن آنها مي‌شود و اگر به پيستون بچسبند، خراب خواهند شد.
    انسدادهاي ايجاد شده در اثر ريخته‌گري سرسيلندر يا واشر سرسيلندرهايي كه سوراخ‌هاي خنك‌كاري مناسبي ندارند باعث ايجاد نقاط گرمايي شده و مشكلاتي را براي سوپاپ و گايدهاي آنها ايجاد مي‌كنند. بنابراين، نصب درجه‌سنج داخل سرسيلندر به انتقال مناسب گرما كمك مي‌كند.
    سوپاپ‌ها گاهي به علت دماي احتراق بالا داغ مي‌شوند. عواملي نظير احتراق كند، مخلوط ناقص سوخت (اغلب به دليل نشتي خلا) و انفجار (به علت فشار بيش از اندازه يا سوخت با درجه اكتان پايين) يا احتراق زودرس (در قسمت‌هاي داغ كه در اثر رسوبات محفظه سوخت يا شمع به‌وجود مي‌آيد) نقشي مهم ايفا مي‌كنند. همچنين وجود نقص‌هايي در اگزوز نظير مسدود شدن مبدل كاتاليزوري يا لوله اگزوز شكسته نيز مي‌تواند باعث داغ كردن سوپاپ‌ها شود.

    شكست سوپاپ‌ها
    شكست كه نوع ديگري از خرابي سوپاپ است، براي سوپاپ‌هاي هوا و دود اتفاق مي‌افتد. شكست سوپاپ‌ها در يكي از 2 محل زير اتفاق مي‌افتد:
    1. جايي كه كلگي سوپاپ به ساق اتصال دارد
    2. محل شيارهاي نيم خارها كه تا انتهاي ساق ماشينكاري مي‌شوند.
    در هر دو حالت، شكست خبري بد است، زيرا تكه‌هاي سوپاپ به داخل محفظه احتراق افتاده و باعث خرابي‌هاي بزرگ در پيستون و سرسيلندر مي‌شوند.
    دلايل شكست كلگي سوپاپ شامل خستگي به علت ثابت نبودن سوپاپ (به دليل عدم رعايت پارامترهم مركزي سيت‌ها كه باعث شده هر دفعه كه سوپاپ مي‌نشيند، ساق آن خم شود)، ضربات مكرر (به علت تكان‌هاي بيش از حد سر سوپاپ)، انبساط (به علت گرماي بيش از حد يا rpm) و شوك حرارتي (تغيير ناگهاني دما هنگام خاموش كردن ناگهاني موتوري كه با قدرت بالا كار مي‌كرده است) مي‌باشد. در سوپاپ‌هاي 2 تكه، محل اتصال كلگي و ساق جايي است كه اغلب در معرض ترك خوردگي و جدايش است نه به اين دليل كه سوپاپ معيوب است بلكه علت آن وجود فشار بيش از حد در اين قسمت به علت اتصال 2 آلياژ متفاوت با يكديگر است.
    شكست در ساق سوپاپ مي‌تواند نتيجه فشار بيش از حد در دو طرف آن باشد و يا زماني كه ارتفاع ساق نصب شده مناسب نباشد و باعث عدم تنظيم انگشتي شود. همچنين شكست مي‌تواند در اثر ضربه سنگيني ايجاد شود كه مانع مي‌شود اجزاي وابسته به سوپاپ هنگامي كه سوپاپ بسته مي‌شود، جلوي ضربه را بگيرند. دليل ديگر شكست در سر ساق سوپاپ، پوسيدگي يا خراش‌هايي است كه در نيم خارهاي نگهدارنده سوپاپ‌هاي آن وجود دارد و ميل بادامك يا اسبك‌ها را با هم با ارتفاع زياد به حركت در مي‌آورد.

    مشكلات ديگر سوپاپ‌ها
    علاوه‌بر سوختگي و شكست، مشكلات ديگري نيز وجود دارند. بعضي از اي مشكلات عبارتند از:
    - سوپاپ‌هايي كه خم مي‌شوند: معمولاً علت آن فاصله بسيار كم سوپاپ و پيستون است. دلايلي كه در اينجا عنوان مي‌شوند شامل زنجير يا تسمه تايمينگ شكسته، فنرهاي سوپاپ عف يا شكسه، در جا گاز دادن، گيرپاژ سوپاپ (لقي نامناسب گايد يا روغنكاري و گرماي بيش از حد) و لقي نامناسب سوپاپ و پيستون (بالا قرار گرفتن سوپاپ، پيستون‌هاي نامناسب، سر سوپاپ‌هاي بيش از حد سنگ خورده و غيره) است.
    - ساق سوپاپ‌هاي كه فرسوده مي‌شوند: براي سوپاپ‌هايي كه مايل‌ها كار كرده‌اند، اين اتفاق طبيعي است، اما سائيدگي ممكن است بعلت لقي نامناسب گايد، گرماي بيش از حد، عدم روغنكاري يا روغن كثيف باشد. استفاده از نوع نامناسب كاسه نمد ساق سوپاپ (لاستيك گيت سوپاپ) نيز مي‌تواند عاملي مؤثر باشد.
    كاسه نمد ساق سوپاپ ميزان روغني كه گايدها را چرب مي‌كند، كنترل خواهد كرد. كاسه نمدهاي ثابت5 به بهترين نحو ممكن، ميزان روغن را كنترل مي‌كنند، زيرا روي گايدها باقي مانده و مانند پاك‌كننده‌اي غلتكي، روغن را از روي ساق سوپاپ‌ها پاك مي‌كنند. كاسه نمدهايي ثابت در اغلب موتورهاي O.H.Cا6 كه ميل بادامك آنها در سرسيلندر قرار دارد، استفاده مي‌شوند. زيرا جريان روغن نياز به كنترل بيشتري دارد. از ديگر سو، كاسه نمدهاي چتري يا حلقوي با سوپاپ‌ها بالا و پايين رفته به گايدها اجازه ورود روغن بيشتر را مي‌دهند. بنابراين جايگزيني كاسه نمد ثابت به‌جاي كاسه نمد چتري يا حلقوي مي‌تواند روغن گايد را از آن بگيرد و در بعضي مصارف، مشكل گيرپاژ به‌وجود آورد.
    به همين علت بعضي كارشناسان عقيده دارند كه بايد نوع فابريك (اصلي) كاسه نمد را كه روي موتور بوده است، استفاده كنيد. بعضي ديگر ترجيح مي‌دهند ميل تايپيت‌هاي موتور را عوض كنند تا كاسه نمدهاي ثابت، روغن‌سوزي را كاهش دهند. همچنين ارتقا دادن كاسه نمد به كاسه‌هاي گرانتر مثلاً از جنس VITON7 مشكل خم شدن كاسه نمدها را حل مي‌كند، اما اگر كاسه نمد ثابت جايگزين شود، بهترين راه براي پيشگيري از ايجاد مشكل، استفاده از آنها در سوپاپ‌هاي هوا، توجه زياد به فواصل ساق سوپاپ تا گايد (نبايد خيلي كم باشد) و استفاده از سوپاپ ‌هاي با ساق آبكاري شده از كروم سخت است كه در برابر سائيدگي، بيشتر از سوپاپ‌هاي آبكاري نشده مقاومت دارند.
    موتورهاي جديد با سرسيلندرهاي آلومينيمي كه اكنون توليد مي‌شوند، داراي گايدهاي پودري هستند. اين گايدها از جنس پودر با پايه آهني و حاوي گرافيت مي‌باشند. اين نوع گايدها نيازي به روغن براي نرم شدن ندارند و خطر سايش را كاهش مي‌دهند. اين نوع گايدها تمايل به ترد شدن دارند بنابراين به جاي اينكه آزاد باشند بايد به داخل هدايت شوند.
    هنگام اندازه‌گيري ساق سوپاپ‌ها به‌خاطر داشته باشيد كه اغلب ساق سوپاپ‌هاي فابريك (OE) باريك مي‌شوند. معمولاً انتهاي ساق سوپاپ‌ها در حدود 0.001 اينچ كوچكتر از سر ساق آنها از نظر قطر بوده تا بتوانند افزايش انبساط حرارتي در انتهاي داغ سوپاپ را جبران كنند. بنابراين اندازه‌اي كه گرفته مي‌شود براي مطالعه دقيق سايش ساق مهم است. اگر سوپاپ OE با سوپاپي كه داراي ساق استريت شده است، جايگزين شود (بدون باريك شدن) سوپاپ دچار گيرپاژ مي‌شود، مگر اينكه لقي گايد تا حدي، افزايش يابد.
    سر ساق سوپاپ به شكل قارچ درآمده يا آسيب ديده: انگشتي‌ها را نيز براي پوسيدگي يا آسيب‌ديدگي چك كنيد. ارتفاع نامناسب ساق سوپاپ مي‌تواند هر زمان كه سوپاپ باز و بسته مي‌شود، باعث سائيدگي سر ساق شود. بلند بودن بادامك‌ها و انگشتي‌ها مي‌تواند مشكلي مشابه اين مورد را به وجود آورد. به همين دليل است كه استفاده از انگشتي‌هاي با سرهاي گرد به‌جاي انگشتي‌هاي بازويي توصيه مي‌شود. اگر سوپاپ‌ها بيش از حد، سنگزني شوند تا بتوان ارتفاع ساق را تنظيم كرد، ساق آسيب مي‌بيند. سنگزني لايه سختكاري شده سطحي، فلز نرم را در معرض تماس مستقيم با انگشت‌ها قرار مي‌دهد. شكل نامناسب سر انگشتي‌ها، اصطكاك و سايش را افزايش مي‌دهد و باعث آسيب‌ديدگي سر ساق سوپاپ مي‌شود.
    آخرين نكته در آناليز خرابي سوپاپ‌ها اين است كه تعويض سوپاپ خراب با سوپاپي جديد بدون حل مشكلات گذشته، فايده‌اي نخواهد داشت. پيروي از تكنيك‌هاي پذيرفته شده و رعايت مسائل مربوط به سيت‌ها (رعايت فاصله‌ها، موقعيت مناسب سيت و پهناي آن)، چك كردن و تنظيم مناسب ارتفاع ساق سوپاپ و ارتفاع فنر سوپاپ تعويض شده، رعايت فاصله ساق، گايد و نيم خار سوپاپ و بر طرف كردن ديگر مشكلات موتور نظير گرماي بيش از حد، صداي انفجار هوا/ سوخت يا مشكلات مربوط به تايمينگ و غيره، مانع از تكرار خرابي سوپاپ‌ها و خسارات حاصل از آن مي‌شود.

    منبع : وبلاگ مقالات خودرو (اکبر آجامی)

  6. این کاربر از 2299 بخاطر این مطلب مفید تشکر کرده است


  7. #14
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض تايمينگ متغير سوپاپ

    تايمينگ متغير سوپاپ

    طول مدت زمان و لحظه ای که در آن سوپاپهای ورودی و تخلیه باز و بسته میشوند ، تنها در دور موتور خاص و مشخصی حداکثر بازده را ایجاد میکند و هر چه دور موتور تغییر بیشتری نماید ، بازده موتور کاهش پیدا میکند ، به همین دلیل مهندسن سیستمی را در موتورهای جدیدتر ابداع کرد ه اند که تایمینگ یا زمانبندی با توجه به دور موتور تغییر پیدا می نماید

    اکثر علاقمندان به اتومبیل و صنایع خودروسازی با وازه VVT-i که روی بدنه انواع تویوتا های جدید ، سیستم Vanos موتورهای ب ام و و سیستم V-Tec هوندا تا حدودی آشنا هستند و بعضا جویای مفهوم آن شده اند .این وازه ها هر یک معرف سیستم تایمینگ یا زمانبندی متغیر باز و بسته شدن سوپاپها در موتورهای ساخت کارخانه های مربوطه می باشند . هدف از ارائه چنین سیستمهائی افزایش بازده موتور در تمام شرائط کاررد آن اعم از دور موتور مختلف و شرائط محیطی متفاوت می باشد. در موتورهای قدیمی تر متخصصین با در نظر گرفتن شرائطی که موتور برای آن در نظر گرفته شده میل سوپاپ با تایمینگ مناسب را برای آن انتخاب نموده اند که البته این امر دارای محدودیتهای زیادی است ، بعنوان مثال میل سوپاپ اصطلاحا درجه بالا برای مسابقات و افزایش بازده در دور بالا بسیار مناسب بوده که این افزایش قدرت در دور بالا به قیمت کاهش چشمگیر گشتاور و قدرت در دورهای میانی و پائین موتور می شود و عملا موتور را در دورهای پائین ( مثلا در شهر) غیر قابل استفاده می نماید .
    طول مدت زمان و لحظه ای که در آن سوپاپهای ورودی و تخلیه باز و بسته میشوند ، تنها در دور موتور خاص و مشخصی حداکثر بازده را ایجاد میکند و هر چه دور موتور تغییر بیشتری نماید ، بازده موتور کاهش پیدا میکند ، به همین دلیل مهندسن سیستمی را در موتورهای جدیدتر ابداع کرد ه اند که تایمینگ یا زمانبندی با توجه به دور موتور تغییر پیدا می نماید . قبلا از بررسی این سیستم ابتدا اشاره ای خواهیم داشت به طرز کار موتور چهار زمانه .
    هنگامی که پیستون در وضعیت TDC ) نقطه مرگ بالا یعنی بالاترین نقطه در داخل سیلندر ) قرار دارد ، سوپاپهای ورودی در حالی که پیستون به سمت پائین در حرکت است باز میشوند ، در این هنگام با آغاز پائین رفتن مخلوط هوا و سوخت به داخل سیلندر مکیده میشوند که به این مرحله مکش گفته میشود .
    هنگامی که پیستون به پائین ترین نقطه ممکنه در داخل سیلندر میرسد ، سوپاپهای ورودی بسته شه و مخلوط هوا و سوخت در داخل سیلندر محبوس می گردد . در مرحله بعد پیستون به سمت بالا حرکت کرده و به تدریج مخلوط سوخت و هوا را فشرده میسازد که به این مرحله تراکم (Compression) گفته میشود . شمع هنگامی که پیستون مجددا به بالاترین نقطه ممکن میرسد ( یا نزدیک به آن میشود ( جرقه می زند . انفجار کنترل شده حاصله ، پیستون را با نیروی زیادی به پائین رانده و نیروی مکانیکی تولید مینماید که به آن مرحله تولید نیرو با قدرت گفته میشود . بعد از رسیدن پیستون به پائین ترین نقطه ممکن ، سوپاپ اگزوز باز شده و بر اثر بالا آمدن مجدد پیستون ، گازهای حاصل از احتراق تخلیه میگردند که به این مرحله تخلیه گفته میشود . در طی این مراحل که در تمام موتورهای چهار زمانه بنزینی مشترک است ، زمان باز و بسته شدن سوپاپها اهمیت زیادی داشته و در استفاده بهینه از سوخت و ایجاد حداکثر بازده موثر است . در این مقاله سعی شده عوامل موثر بر تعیین و تنظیم تایمینگ سوپاپها هر چند بطور اجمالی مورد بررسی قرار گیرد .
    ● بسته شدن سوپاپ ورودی :
    سوپاپ ورودی معمولا چند درجه ( منظور از چند درجه ، مقدار زاویه دوران میل لنگ است ) بعد از پائین ترین وضعیت ممکنه پیستون در داخل سیلندر و در حالی که پیستون برگشت به سمت بالا را در داخل سیلندر آغاز نموده ، بسته میشود ،چرا ؟
    به نظر میرسد اگر سوپاپ ورودی در حالی که پیستون به سمت بالا در حال حرکت است باز بماند مقدار زیادی از مخلوط هوا و سوخت از مسیر ورود به بیرون رانده شود ، ولی در عمل چنین اتفاقی رخ نمی دهد ، زیرا با توجه به سرعت بسیار زیاد ورود مخلوط به سیلندر ) حدود ۸۰۰ کیلومتر در ساعت ) ، مخلوط انرژی جنبشی پیدا کرده و بعد از رسیدن پیستون به پائینترین وضعیت در داخل سیلندر جریان آن ادامه پیدا کرده و حتی اندکی پس از شروع مرحله بالا رفتن پیستون جریان ادامه دارد . این مرحله تا ابد ادامه پیدا نمیکند و پیستون بالا رونده در مقطعی خاص و در صورتی که سوپاپ ورودی باز باشد به انرژی جنبشی مخلوط غلبه کرده و آنرا به داخل مسیر ورودی سیلندر پس میزند .
    پس ، بهترین وضعیت پر شدن یا اشباع سیلندر هنگامی صورت میگیرد که بسته شدن پیستون تا لحظات اولیه پس زد مخلوط به تعویق افتد ، یعنی ضمن بهره گیری از حداکثر ( انرژی جنبشی ) مخلوط ، از هدر رفتن آن جلوگیری شود و سیلندر تا حد اکثر ممکن از مخلوط پر شود .
    ● باز شدن سوپاپ اگزوز :
    اگر سوپاپ ورودی بعد از رسیدن پیستون به پائین ترین وضعیت ممکنه (TDC) در داخل سیلندر بسته نشده باشد و یا سوپاپ اگزوز که قبلا راجع به آن گفتیم در هنگام رسیدن پیستون به پائین ترین وضعیت ممکن باز شود چه اتفاقی خواهد افتاد ؟ اگر معتقدید که چنین اتفاقی ممکن نیست ، درست حدس زده اید . در واقع سوپاپ اگزوز قبل از رسیدن پیستون به پائین ترین وضعیت ممکن ، باز میشود . پیستون در مرحله تولید نیرو تحت تاثیر گازهای گرم به پائین رانده شده و نیروی تولید شده خودرو را به جلو می راند . با این تفاسیر چرا بعضا طراحان و مهندسین سعی دارند تا سوپاپ اگزوز کمی زودتر باز شده و مقداری از فشار داخل سیلندر کم شود؟
    برای درک بهتر دلیل باز شدن سوپاپ اگزوز کمی قبل از رسیدن پیستون به پائین ترین وضعیت ممکن ، باید اشاره ای به مرحله بعدی که مرحله تخلیه سیلندر است داشته باشیم، تخلیه گازهای خروجی از طریق سوپاپ اگزوز ، در هنگام بالا آمدن پیستون نیازمند نیرو میباشد ، که این نیرو توسط مل لنگ وارد میگردد ، اگر سوپاپ اگزوز هنگامی که هنوز مقداری فشار حاصل از احتراق در سیلندر باقی مانده باز شود ، باعث می گردد که مقداری از گازهای حاصل از احتراق تحت تاثیر این فشار قبل از حرکت پیستون به بالا از سیلندر خارج شوند . با کاهش مقدار گازها ، نیروی مورد نیاز برای تخلیه سیلندر کم شده و نتیجتا بازده موتور افزایش پیدا می کند
    ● Overlap یا باز بودن همزمان سوپاپها:
    پیستون در مسیر خود به سمت بالاترین وضعیت ممکن الباقی گازهای حاصل از احتراق را به بیرون می راند . جریان گازهای خروجی نیز مثل جریان هوای ورودی دارای انرژی جنبشی است یعنی اینکه حتی بعد از رسیدن پیستون به بالاترین وضعیت ممکن و شروع مرحله پائین آمدن پیستون جریان گاز خروجی ادامه دارد ، بدین ترتیب میتوان بسته شدن سوپاپ را تا بعد از رسیدن پیستون به بالاترین وضعیت ممکن به تعویق انداخت .
    لازم بیادآوری است که هدف مکش بیشترین حجم مخلوط هوا و سوخت میباشد زیرا نیروی موتورهای درون سوز از احتراق مخلوط سوخت و هوا در داخل سیلندر ایجاد میگردد . بهترین مکش هنگامی صورت میگیرد که سوپاپ ورودی قبل از رسیدن پیستون به بالاترین وضعیت ممکن باز شود . در این لحظه سوپاپهای ورودی و سوپاپهای اگزوز به طور همزمان باز میباشند که این مرحله را Overlap یا مدت زمان باز بودن همزمان سوپاپهای ورودی و خروجی می نامند .
    در اینجا این سؤال مطرح میشود که چرا گازهای خروجی که توسط پیستون به بیرون رانده میشوند ، وارد منیفولد ورودی نمیگردند ، جواب این است که طراحی مناسب منیفولد اگزوز و فشار نسبی کمتر داخل آن باعث میشوند که گازهای خروجی تحت تاثیر فشار کم منیفولد خروجی ( اگزوز ) افزایش سرعت پیدا کرده و از سیلندر خارج گردند ، انرژی جنبشی گازهای خروجی نیز بنوبه خود باعث کاهش فشار داخل سیلندر و مکش بیشتر مخلوط هوا و سوخت به داخل آن میگردند .
    لحظه بسته شدن سوپاپ ورودی مهمترین نکته در تایمینگ میل سوپاپ است ، هر چند که تمام مراحل آن از اهمیت به سزائی برخوردارند . به عنوان مثال تایمینگ صحیح باز شدن سوپاپ خروجی در واقع نقطه تعادلی از کاهش مقدار کمی از نیروی تولید شده در مرحله تولید نیرو و کاهش مقداری از بار گازهای خروجی در مرحله تخلیه است ، طول مدت Overlap نیز شدیدا در دور موتور تاثیر گذار است . در موتورهائی که مجهز به سیستم تایمینگ سوپاپ معمولی هستند ، رابطه بین تایمینگ سوپاپها ثابت است . در موتورهائی که دارای یک میل سوپاپ هستند این مسئله به شکل بادامکهای روی میل سوپاپ بستگی داشته و در موتورهای مجهز به دو میل سوپاپ به زاویه میل سوپاپها نسبت به یکدیگر بستگی دارد ( در هنگام تنظیم تایمینگ در موتورهای مجهز به دو میل سوپاپ در بالای سر سیلندر (DOHC) ، پرش یک دندانه فولی سر سیلندر باعث تغییر در میزان Overlap میگردد ) . تایمینگ سوپاپها بستگی زیادی به انرژی جنبشی جریان گاز دارد ، لازم به ذکر است که هر چقدر سرعت جریان گاز بیشتر شود ، انرژی جنبشی آن به همان نسبت افزایش پیدا میکند . بدین ترتیب تغییر تایمینگ با توجه به سرعت ( دور ) موتور ، مزیتهای زیادی در بر دارد . با استفاده از این سیستم میتوان جریان گازهای ورودی و خروجی را در تمام دورهای موتور به بهترین نحو تنظیم نمود و نتیجتا گشتاور بیشتری را در تمام دورهای موتور ایجاد کرد و باعث گسترش دامنه و محدوده تولید نیروی موتور گردید .
    ● تایمینگ متغیر سوپاپ :
    انواع سیستمهای تایمینگ متغیر سوپاپ مختلفی وجود دارند که تفاوتهای مکانیسم های عملکردی آنها نسبت به عملکرد کلی شان از اهمیت کمتری برخوردار است . تا چند وقت پیش در اکثر سیستمهای تایمینگ متغیر میل سوپاپ ، تنها یکی از دو میل سوپاپ موتور متغیر بود که البته این تغییر تنها به میزان یک پله انجام می گرت . در این سیستم در زمان افزایش دور موتور و یا در محدوده مشخصی از آن ، ECU ( واحد کنترل الکترونیکی ) تایمینگ میل سوپاپ را تغییر میدهد و بدین ترتیب یکی از میل سوپاپها در وضعیت آوانس یا ریتارد قرار میگیرد .
    در خیلی از موتورهائی که مجهز به دو میل سوپاپ در سر سیلندر میباشند (DOHC) این نوع سیستم باعث میگردد تایمینگ سوپاپهای اگزوز ( بر خلاف تصور عمومی که حاکی از اهمیت بیشتر سوپاپهای ورودی است ) تغییر پیدا کند ، البته در برخی انواع نادرتر ، تایمینگ سوپاپهای ورودی تغییر میکند .
    نمونه ای از نوع دوم در برخی اتومبیلهای پورشه مشاهده میگردد . در یکی از مدلهای Porsche ۹۱۱ که مجهز به سیستم Vario Cam است ، این سیستم باعث میگردد تا تایمینگ سوپاپ ورودی بعد از رسیدن دور موتور به ۱۳۰۰ دور در دقیقه ، ۲۵ درجه تغییر کند و نتیجتا محفظه احتراق بهتر پر و خالی شود و گشتاور افزایش پیدا کند . بعداز رسیدن دور موتور به حد ۵۹۲۰ دور در دقیقه ، تایمینگ ۲۵ درجه کاهش پیدا میکند و به حد اولیه ( دور آرام ) باز می گردد و عملکرد موتور در دور موتور بالا را بهبود می بخشد . در مواقعی که درجه حرارت روغن موتور بالا رفته باشد این تغییر در دور موتور ۱۵۰۰ دور در دقیقه انجام می گیرد .
    سیستمهای اولیه که در آن تنها تایمینگ یک میل سوپاپ تغییر پیدا میکند هر چند که بهتر از سیستمهای تایمینگ ثابت عمل میکنند ، با این وجود کاملا قانع کننده نیستند . موتورهای مجهز به این سیستم تنها در دو حالت و دور موتور خاص دارای عملکرد بهینه هستند . واضح است که تغییرات کوچک و متعدد تایمینگ حتی اگر در مورد یکی از میل سوپاپها اعمال شود بهتر است و اگر تایمینگ هر دو میل سوپاپ قابل تغییر باشد نور علی نور خواهد بود . دراین حالت تایمینگ هر دو میل سوپاپ دائما با توجه به شرائط عملکرد موتور ، در حال تغییر خواهند بود .
    BMW اولین شرکت بود که از سیستم دو میل سوپاپ متغیر استفاده نمود و آنرا Double Vanos نامید ، ( سیستم Single Vanos آنها تنها بر یک میل سوپاپ تاثیر گذار بود ) . در موتورهای مجهز به Double Vanos ، تایمینگ هر یک از میل سوپاپها تا ۶۰ درجه تغییر میکند ، البته در موتورهای V۸ مدل M۵ میل سوپاپ ورودی تا ۵۴ درجه و میل سوپاپ اگزوز " تنها " ۳۹ درجه قابل تنظیم است و بدین ترتیب Overlap ( مدت زمان باز بودن همزمان سوپاپهای ورودی و خروجی ) از ۸۰ درجه تا ۱۲- درجه قابل تنظیم است . منظور از ۱۲- درجه این است که سوپاپهای اگزوز ۱۲ درجه قبل از باز شدن سوپاپهای ورودی بسته میشوند .
    ● لیفت (lift)متغیر سوپاپ :
    سیستم VTEC ساخت HONDA از این جهت مشهور است که در آن لیفت و تایمینگ سوپاپ قابل تغییرند . در سیستم HONDA ، میل سوپاپهای هر سیلندر دارای دو بادامک بلند اضافی و دو انگشتی اضافی میباش که در دور موتورهای پائین هرز میگردند . در دور موتور خاص ( معمولا دور موتور بالا ) پیمهای هیدرولیکی که بطور الکترونیکی کنترل میشوند هر سه انگشتی را به یکدیگر قفل کرده و نتیجتا بادامکهای بلندتر وارد عمل میشوند . بدین ترتیب تغییر تایمینگ و لیفت سوپاپ در یک مرحله صورت میگیرد و باعث تغییر عمده ای در عکس العمل موتور میگردد .
    موتور ۲ZZ – GE تویوتا با حجم cc ۱۸۰۰ که در نسل آخر تویوتا سلیکا مورد استفاده قرار گرفته است نیز از تایمینگ و لیفت متغیر سوپاپ بهره میبرد . سیستم لیفت متغیر تویوتا هم بر سوپاپهای ورودی و هم بر سوپاپهای اگزوز تاثیر گذار است ، در این موتور تنظیم لیفت بلند میل سوپاپ در ۶۰۰۰ دور در دقیقه فعال میشود . بادامکهای بلند ، لیفت سوپاپ ورودی را ۵۴ درصد افزایش داده و به mm ۱۱.۲ میرسانند ، لیفت سوپاپ اگزوز نیز با ۳۸ درصد افزایش به mm ۱۰ میرسد .
    میل سوپاپهائی که دارای لیفت زیاد هستند ، باعث افزایش مدت زمان باز ماندن سوپاپ ورودی میگردند ، بدین ترتیب هر Overlap سوپاپها از چهار درجه ( در حالت تنظیم ورودی کاملا ریتارد و لیفت دور پائین ) و ۹۴ درجه ( در حالت فول آوانس و لیفت دور بالا ) متغیر است . Overlap ۹۴ درجه معمولا در موتورهای کاملا مسابقه ای (Full race) به چشم می خورد . لازم به ذکر است نسل قبلی تویوتا سلیکا (Celica) که مجهز به موتور ۵S – FE و تنها دارای Overlap ۶ درجه بود و موتور اسپرتی cc ۲۰۰۰ با نام ۳S – GE در اولین مدل سلیکا دیفرانسیل جلو تنها ۱۴ درجه Overlap داشت .
    تایمینگ میل سوپاپ ورودی با توجه به دور موتور ، وضعیت پدال گاز ، زاویه سوپاپ ورودی ، درجه حرارت مایع خنک کننده موتور و حجم هوای ورودی تغییر میکند . تایمینگ میل سوپاپ ورودی در هنگام آغاز به کار موتور ( استارت ) ، سرد بودن موتور ، دور آرام و خاموش کردن موتور ، تا حد ممکن ریتارد میشود . یک پیم کنترل کننده تایمینگ میل سوپاپ را در هنگام استارت و در مرحله پس از آن قفل مینماید تا جائی که فشار روغن مناسب برقرار شود ( این تدبیر برای جلوگیری از سر و صدای اضافی موتور اتخاذ شده است ) .
    در سیستم VVTI تویوتا ، تایمینگ میل سوپاپ تا ۴۳ درجه نسبت به زاویه میل لنگ متغیر است . البته سیستم لیفت متغیر نیز در طول مدت زمان باز بودن سوپاپ تاثیر گذار است و بدین ترتیب تایمینگ را به ۶۸ درجه میرساند ( با توجه به اینکه در وضعیت حداکثر ریتارد سوپاپ ورودی در دور موتور متوسط ، تایمینگ ۱۰- ( ۱۰ درجه قبل از TDC ) تا حداکثر آوانس سوپاپ ورودی در دور بالا که ۵۸ درجه قبل از TDC ( بالاترین وضعیت قرار گرفتن پیستون در سیلندر ( است متغیر می باشد ( .
    سیستم لیفت متغیر از مکانیسم تعویض بادامک برای افزایش لیفت سوپاپهای ورودی و خروجی بعد از رسیدن دور موتور به ۶۰۰۰ دور در دقیقه استفاده میکند . این سیستم هیدرولیکی توسط ECU موتور که بخشی از سخت افزار کنترل هیدرولیکی آن با سیستم VVTI مشترک است استفاده میکند . اطلاعات ورودی های آن عبارتند از : زاویه و دور میل لنگ، حجم جریان هوا ، وضعیت دریچه گاز ، زاویه میل سوپاپ ورودی و درجه حرارت مایع خنک کننده . سیستم لیفت متغیر قبل از افزایش درجه حرارت مایع خنک کننده تا ۶۰ درجه سانتیگراد فعال نمیشود . این مکانیسم شامل میل سوپاپها با دو دست بادامک میباشد که یک دست آن برای دور پائین تا دور متوسط است و سری دوم برای دورهای بالاتر موتور به کار میرود ( لیفت بالا ) . کل سیستم شامل هشت انگشتی برای هر جفت سوپاپ ، دو انگشتی ( که در طرف داخلی میل سوپاپها قراردارند ) و یک دریچه کنترل روغن که در انتهای میل سوپاپ ورودی قرار دارند ، میباشد .
    با وجود اینکه این نوع سیستمهای تایمینگ و لیفت متغیر تک مرحله ای باعث افزایش قدرت میگردند ، با این حال در کاربرد واقعی بسیار خام عمل مینمایند ، به عنوان مثال تغییر تک مرحله ای در گشتاور موتور در یک موتور توربوچارج شده قابل تحمل نمیباشد .
    ● تایمینگ و لیفت متغیر سوپاپ :
    چند خودرو ساز دیگر نیز از تغییر تایمینگ و لیفت تک مرحله ای استفاده مینمایند . جدیدا BMW سیستم Valvetronic را ارائه نموده که تحولی چشمگیر در این رابطه است . این سیستم به طور نامحسوس و غیر منقطع تایمینگ را در یکی از میل سوپاپها و لیفت سوپاپهای ورودی را تغییر میدهد . جالب ترین نکته در این سیستم عدم استفاده از پروانه دریچه گاز است زیرا موتور بازده حجمی خود را با تغییر لیفت سوپاپ ورودی تنظیم مینماید .
    سیستم Valvetronic بر گرفته از سیستم Double Vanos ساخت همین شرکت است که تایمینگ میل سوپاپهای ورودی و خروجی ( اگزوز ) را به طور غیر منقطع تغییر میدهد و علاوه بر آن با استفاده از یک اهرمی که بین میل سوپاپ و سوپاپهای ورودی قرار دارد ، لیفت سوپاپهای ورودی را نیز تغییر میدهد . محور مخصوصی فاصله اهرم را از میل سوپاپ تغییر میدهد ، وضعیت محور فوق توسط یک سیستم الکتریکی تعیین میشود . وضعیت اهرم در واقع لیفت را به دستور سیستم مدیریت موتور کوچک یا بزرگ مینماید .
    سیستم Valvetronic تنها از لحاظ عدم قابلیت لیفت سوپاپهای خروجی از سیستمهای الکترونیکی پنوماتیک ( بادی ) مورد استفاده در موتورهای مسابقه ای F۱ ، که عملکرد سوپاپها به طور مستقل از هم و به طور انفرادی کنترل می کنند ، کم قابلیت تر است .
    پس نتیجه میگیریم هر گونه قابلیت تغییر در تایمینگ با لیفت سوپاپ برای بهبود قابلیت تنفس ( تبادل هوا ) در هر محدوده عملکرد موتور باعث بهبود قابلیتهای آن میگردد . هر چقدر تنظیمات دقیق تر و تعداد سوپاپهای قابل تنظیم بیشتر باشد ، نتیجه نهائی بهتر خواهد شد و علاوه بر افزایش بازده باعث افزایش نرمی کارکرد و تسریع و بهبود عکس العمل موتور در تمام محدوده دور موتور آن میگردد . در موتورهای معموی تغییر زاویه میل سوپاپ و افزایش آوانس باعث بهتر شدن بازده موتور در دور بالا میشود . هر چند که عملا نری کارکد و بازده موتور را در دور پائین و دور متوسط بازده مختل میکند ( مثل میل سوپاپهائی که اصطلاحا به آنها فول ریس گفته میشود ( . در نقطه مقابل این نوع میل سوپاپها انواع معمولی قرار دارند که با وجود نرمی عملکرد در دور پائین و متوسط قادر به ارائه حداکثر بازده موتور در دور بالا هستند که به آنها انواع شهری یا معمولی گفته میشود .
    سیستمهای متغیر امروزی که در این مقاله سعی نمودیم نگاهی هر چند کلی به سیر تکامل و آخرین تحولات آن داشته باشیم در واقع حداکثر بازده موتور را چه در دور پائین و متوسط و چه در دور بالا ایجاد مینماید . ضمن آنکه نرمی عملکرد موتور در دور آرام و راحتی استارت آن در سرما و گرما را تضمین مینماید .

    منبع : ماهنامه خودرویاب - شماره۴ - دکتر رضا لواسانی

  8. #15
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض تایمینگ سوپاپها و فیلر گیری و قیچی سوپاپها

    تایمینگ سوپاپها و فیلر گیری و قیچی سوپاپها
    در مبحث اشنایی با کار موتور در دو زمان مکش و تخلیه فرض شد که سوپاپ هوا و دود در نقطه ای
    مرگ بالا و مرگ پایین باز و بسته می شود قبلا نیز توضیح داده شد که در تعریف چهار عمل زمان تئوری
    باز و بسته شدن سوپاپها بیان شده است در صورتی که عملا و همانطوریکه از روی شکل مشخص
    می باشد سوپاپ دود در زمان احتراق 45 در جه قبل از نقطه مرگ پایین باز می شود البته قابل ذکر است
    که این مقدار در ماشینهای مختلف با هم فرق دارند و تا 5 درجه بعد از نقطه مرگ بالا یعنی در زمان مکش
    باز نگهداشته شود این زمان بخاطر این است که مقداری بیشتر دود از سیلندر خارج گردد موقعیکه سوپاپ
    دود 45 درجه قبل از نقطه مرگ پایین باز می شود فشار گاز بمیزان قابل توجهی تنزل پیدا می کند و مقدار
    کمی قدرت تلف می گردد ولی در عوض مقدار بیشتری دود از سیلندر خارج می شود و به تنفس موتور
    کمک می کند به همین ترتیب باز کذاشتن سوپاپ گاز تا 45 درجه بعد از نقطه مرگ پایین در زمان تراکم به
    مخلوط گاز زمان بیشتری برای وارد شدن به سیلندر می دهد تایمینک سوپاپ بستگی به شکل برامدگی
    بادامک میل سوپاپ و ارتباط چرخ دنده یا چرخ زنجیر میل لنگ و یل سوپاپ دارد تغییر دادن وضعیت چرخ
    دنده ها نسبت به یکدیگر زمان باز و بسته شدن سوپاپها را تغییر می دهد مقدار باز شدن زودتر از موقع را
    اوانس یا پیش عمل و دیر بسته شدن پیش از موقع را ریتارد یا پس عمل می گویند
    دلیل وجود اوانس سوپاپ هوا (تایمینگ سوپاپ ها )
    1- کمک به خروج دود 2- بالاتر رفتن راندمان حجمی بعلت بیشتر باز بودن سوپاپ هوا
    دلیل وجود ریتارد سوپاپ هوا (تایمینگ سوپاپ ها )
    بالاتر رفتن راندمان حجمی – پر شدن بیشتر بخاطر سرعت هوا بعلت فشار منفی خلا که بر اثر پایین رفتن
    پیستون بوجود امده است
    دلیل وجود اوانس سوپاپ دود (تایمینگ سوپاپ ها )
    برای اینکه زمان بیشتری برای تخلیه دود – پایین امدن فشار هوا در اواخر مرحله احتراق و جلوگیری از
    فشار دود در مرحله تخلیه
    دلیل وجود ریتارد سوپاپ دود (تایمینگ سوپاپ ها )
    کمک به تخلیه کامل دود بر اثر سردی و گرمی مخلوط و دود –باز بودن بیشتر برای تخلیه کاملتر
    فیلر گیری موتور و لزوم ان
    فیلر گیری یکی از مهمترين و ضروری ترین عملی است که تعمیر کار باید این عمل (فیلرزدن )را انجام دهد
    هر جسمی بر اثر حرارت منبسط شده و بر طول و قطر و حجمش افزوده می شود قطعاتی که در موتور
    بکار رفته اند در مقابل حرارت انبساط پیدا می کنند که در هنگام طراحی موتور با محاسبه این مقدار
    انبساط را بخوبی جبران می کنند یکی از سیستمهای که انبساط در انها محسوس بوده و برای کار موتور
    تاثیر بسزایی دارد سیستم حرکت سوپاپها می باشد که کارخانه سازنده با توجه به جنس و حجم و ضریب
    انبساط قطعات مقداری فاصله بین انها در نظر گرفته است تا در هنگام انبساط این فاصله پر شود و کار باز
    و بسته شدن سوپاپها مختل نگردد در صورت عدم وجود این لقی قطعات در برابر گرما منبسط شده و
    چون میدان حرکتی در جهت طولی ندارند به هم فشار اورده باعث سائیدگی تاب برداشتن و خرابی
    قطعات می گردند مقدار این لقی توسط کارخانجات سازنده اندازه گیری و اعلام شده و انرا با فیلر اندازه
    و تنظیم میکنند
    نکات لازم برای فیلر گیری موتور
    1- شناخت سوپاپها برای فیلر گیری 2- مقدار لقی و فاصله مجازی که باید برای سوپاپها با فیلر میزان
    کنیم بدست اورده باشیم 3- این مقدار لقی بسته به دستور کارخانه باید در حالت سرد یا گرم برای
    فیلر گیری موتور ماشین ضروری است 4- شناخت احتراق سیلندر های مورد نظر برای فیلر گیری از
    راههای مختلف 5- اماده کردن فیلر با شناخت نوع ماشین و تبدیل فیلر در صورت نیاز قبل از تشریح
    فیلر گیری به شناخت حالات و بدست اوردن ترتیب ان می پردازیم
    قیچی سوپاپهای موتور
    قیچی سواپ ها در کار موتور تاثیر زیادی دارد برای اینکه یک سیلندر در حالت تنفس قرار گیرد لازم است
    سوپاپ هوای ان شروع به باز شدن کند وقتی که پیستون از نقطه مرگ بالا بطرف نقطه مرگ پایین حرکت
    می کند و سوپاپ هوا باز است و در حالت تخلیه که پیستون از نقطه مرگ پایین به طرف نقطه مرگ بالا
    حرکت می کند سوپاپ دود باز است تا دود از داخل سیلندر تخلیه شود در قسمت تایمینگ سوپاپها دیدیم
    که سوپاپ هوا چند درجه مانده که پیستون به نقطه مرگ بالا برسد باز شده که این نوع باز شدن را
    اوانس سوپاپ هوا نامیدیم زمانی که میل لنگ را می چرخانیم ابتدا سوپاپ دود باز شده تا در زمان تخلیه
    دود تخلیه شود و سپس سوپاپ دود شروع به بسته شدن کرده و در انتهای بسته شدن سوپاپ دود
    دود سوپاپ هوا شروع به باز شدن می کند این حالت یعنی اخر بسته شدن سوپاپ دود و اول باز شدن
    سوپاپ هوا را قیچی سوپاپ (اله کلنگی) یا بالانس می گویند باز و بسته شدن سوپاپ را میتوان از روی
    فنر یا حالات اسبک و در موتورهای میل سوپاپ رو ز شکل بادامک میل سوپاپ تشخیص داد برای فیلر
    گیری صحیح باید زمان سوپاپ ها و فاصله اسبک یا تایپت را با هم میزان کرد که تایمینگ سوپاپها در انها
    تاثیر نداشته باشد و با توجه به دیاگرام سوپاپ متوجه می شویم زمانی که پیستون در حالت احتراق
    است تایمینگ سوپاپ ها در ان هیچ گونه تاثیری ندارد پس بهترین حالت برای فیلر گیری زمانی است که
    یک سیلندر در اول حالت احتراق باشد و پیستون در نقطه مرگ بالا باشد در مجموع دانستن قیچی
    سوپاپها برای یک تعمیر کار ضروری می باشد
    منبع : اتومکانیک به زبان ساده ( مهندس احمد امیر تیموری)

  9. #16
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض منیفولد و سوپاپ 1

    منیفولد و سوپاپ 1
    منیفولدهای ورودی متغیر
    1- منیفولدهای طول متغیر
    2- سیستم ورودی انعکاسی
    انواع تایمینگ متغیر سوپاپ
    با سیستم تغییر بادامک VVT 1-
    با سیستم بادامک مرحله ای VVT 2-
    با سیستم های تغییر بادامک + بادامک مرحله ای VVT3-
    منیفولدهای ورودی متغیر
    منیفولدهای ورودی متغیر از اواسط دهه 90 بطور گسترده رایج شدند. با استفاده از این سیستم گشتاور پایین در
    دور متوسط افزایش یافته بدون این که تاثیری بروی مصرف سوخت یا قدرت در دورهای بالا داشته باشد. بد ین
    وسیله انعطاف پذیری موتور بهبود می یابد. یک منیفولد معمولی برای قدرت درسرعت بالا یا گشتاو در دورپایین
    و یا یک توازن بین آنها بهینه سازی می شود اما منیفولد ورودی متغیر یک یا بیش از دومرحله برای انجام وظیفه
    در سرعت مختلف موتورمطرح میکند گفته میشود نتایج استفاده ازاین سیستم شبیه استفاده ازسیستم تایمینگ
    متغیرسوپاپ(VVT) می باشد اما مزیت منیفولد ورودی متغیر این است که گشتاور دور پایین را بیش ازقدرت در
    در دور بالا افزایش می دهد. بنابراین این سیستم برای خودروهای چهار در(sedan) که هر روز سنگین و سنگین
    تر می شوند خیلی مفید می باشد. با افزایش خودروهایی که خصوصیات اسپورت دارند مانند Ferrari 360 M و
    550 M از منیفولدهای ورودی متغیر در کنار تایمینگ متغیر سوپاپ برای قابلیت بهتر در حرکت استفاده می شود
    . در مقایسه با VVT منیفولدهای ورودی متغیرارزانترمی باشند. برای این که فقط به چند منیفولد ریخته گری
    شده و تعداد کمی سوپاپهای الکتریکی احتیاج دارند در مقابل VVT به تعدادی کار انداز هیدر دقیق ومناسب
    و یا حتی تعدادی بادامک مخصوص و میل بادامک نیاز دارد. منیفولدهای ورودی دو نوع میباشند: منیفولدورودی
    ورودی با طول متغیر و منیفولدهای ورودی انعکاسی . هر دو آنها از هندسه منیفولدهای ورودی برای رسیدن به
    یک هدف مشابه استفاده می کنند.
    منیفولد ورودی طول متغیر
    منیفولدهای ورودی طول متغیرمعمولا در خودروهای سواری چهار در(sedan) استفاده می شوند.دربیشتر
    طراحی ها از دو منیفولد با طول متفاوت برای تغذیه هر سیلندر استفاده میشود. منیفولدهای با طول بلند برای
    دورهای پایین و منیفولدهای کوتاه برای دورهای بالا استفاده میشوند. فهمیدن اینکه چرا دور بالا به منیفولد کوتاه
    احتیاج دارد ساده است چون که با استفاده از آن مکش موتور بطور آزادانه و آسان صورت می گیرد. اما چرا در
    دورهای پایین منیفولدهای با طول بلند مورد نیاز است ؟
    چونکه استفاده از لوله های بلندتر باعث کاهش فرکانس هوای ورودی به سیلندر میشود به گونه ای که با کاهش
    دور موتور تطابق زیادی دارد و باعث بهتر پر شدن سیلندر می شود و بدین ترتیب گشتاور خروجی را افزایش
    می دهد. از طرف دیگر منیفولد ورودی بلند تر جریان هوا را به آرامی هدایت می کند که باعث بهتر مخلوط شدن
    سوخت و هوا می شود.
    بعضی از سیستمهای طول متغیرارائه شده سه مرحله دارند که از این نوع درAudi V8 استفاده شده است.
    درحقیقت Audi از منیفولدهای جداگانه استفاده نمی کند. در عوض از یک منیفولد ورودی دورانی که ورودی آن
    در مرکز روتور آن واقع است استفاده می کند. چرخش مجرای ورودی به وضعیتهای مختلف باعث ایجاد طولهای
    مختلف در منیفولد می شود.
    ترتیب احتراق به گونه ای است که سیلندرها بطور متناوب از هر یک از محفظه ها تنفس می کنند که باعث ایجاد
    یک موج فشاری بین آنها م شود. اگر فرکانس موج فشار با دور تطابق داشته باشد می تواند به پرشدن سیلندر
    کمک کند بدین ترتیب راندمان مکش افزایش یافته. فرکانس تولیدی به سطح مقطع لوله های متصل شده بستگی
    دارد. با بستن یکی ازآنها دردور پایین سطح مقطع به خوبی فرکانس را کاهش می دهد بدین گونه گشتاورخروجی
    در دور متوسط افزایش می یابد. در دور بالا سوپاپ باز شده و بهتر پر شدن سیلندر را فراهم می کند.
    سیستم ورودی انعکاسی در مدلهای مختلف پورشه استفاده شده که اولین آن 964 Carrier بود. در مدل 993
    پورشه این سیستم را با منیفولد طول متغیر سه مرحله ای به نام Varioram ترکیب کرد. بخاطر اینکه این سیستم
    فضای زیادی را اشغال می کرد در مدل 996 فقط ازسیستم ورودی انعکاسی استفاده شد. هوندا NSX نیز ازدیگر
    استفاده کنندگان نادر سیستم ورودی انعکاسی می باشد.
    کمتر از rpm5000 (چپ Aوراست بالا):لوله های بلند وسیستم انعکاسی غیر فعالند.
    RPM5800-5000 )چپB و راست وسط) : لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی . یکی از لوله
    های متصل شده ورودی انعکاسی بسته است.
    RPM5800 (چپ C و راست پایین ): لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی و هر دو لوله سیستم
    ورودی انعکاسی باز میشود .
    خلاصه منیفولدهای ورودی متغیر
    مزایا
    بهبود گشتاور تحویلی در دور پایین بدون کاهش قدرت در دور بالا و ارزانتر بودن نسبت به تایمینگ متغیرسوپاپ
    VVT)).
    معایب
    تقریبا فضای زیادی اشغال می کند و تاثیری در افزایش گشتاور در دور بالا ندارد.
    Toyota T-VIS
    بیشتر موتورهای 4 سوپاپ اولیه در دورهای پایین و متوسط گشتاور خوبی تولید نمی کردند. برای اینکه سطح
    ورودی بزرگتر باعث کاهش جریان هوا می شد. مخصوصا درسرعتهای پایین جریان هوای آرام در منیفولد
    ورودی یک مخلوط سوخت و هوای ناقص را فراهم می کند. بنابر این باعث ایجاد دتونیشن (Knock) و کاهش
    قدرت و گشتاور می شود. بنابراین موتورهای 4 سوپاپ در دورهای بالا قوی می باشند اما در دورهای پایین
    ضعیف بودند تا وقتیکه تکنولوژی منیفولدهای ورودی متغیر رایج شد. شورولت Cosworth Vega که در دور
    پایین ضعیف بود این کار را انجام داد.
    منیفولد ورودی دورانی برای موتورهای V6مرسدس بنز مدلهای SLK,CLS,E-class که برای کاهش وزن از
    جنس منیزیم ساخته می شوند. در واکنش به آن در واسط دهه 80 سیستم ورودی متغیر تویوتا T-VIS را تولید
    کرد. T-VIS به سرعت کم جریان هوا در منیفولد شتاب میدهد. تئوری این مسئله ساده می باشد. منیفولد ورودی
    برای هر سیلندر به دو زیرمنیفولد (sub-manifold) تقسیم میشود که درنزدیکی سوپاپ ورودی به یکدیگرمتصل
    متصل میشوند. یک سوپاپ پروانه ای نیز به یکی ا ز زیر منیفولدها اضافه شده است. در دورهای کمتراز تقریبا
    4650 rpm سوپاپ پروانه ای برای افزایش سرعت در منیفولد می بایست بسته باشد. در نتیجه مخلوط خوبی را
    در منیفولد بدست می آوریم موتورهای تزریق مستقیم از استفاده ازاین سیستم محرومند. زیراسیستم تزریق
    مستقیم فضای زیادی را در منیفولد اشغال می کند
    تایمینگ متغیر سوپاپ VVT
    تئوری
    بعد از اینکه تکنولوژی چند سوپاپ ( Multi Valve) در طراحی موتورها استاندارد شد تایمینگ متغیر سوپاپ
    مرحله بعدی افزایش راندمان موتور می باشد.همانطور که می دانید سوپاپ ها تنفس موتور را فراهم می کنند.
    تنظیم تنفس که همان تنظیم سوپاپ های ورودی و خروجی می باشد بوسیله شکل و زاویه بادامک ها کنترل می
    شود. برای بهینه سازی تنفس موتور به تنظیم سوپاپ مختلف در دورهای متفاوت نیاز می باشد. وقتی که دور
    افزایش می یابد مدت زمان کورس مکش و تخلیه کاهش می یابد بنابراین هوای تازه به میزان کافی نمی تواند
    سریع وارد محفظه احتراق شود درحالیکه گازهای اگزوز نیز با سرعت کافی محفظه احتراق را ترک نمی کنند.
    بنابراین بهترین راه حل باز شدن زودتر سوپاپ ورودی و دیرتر بسته شدن سوپاپ خروجی می باشد. بعبارت
    دیگر زمان قیچی (Overlapping) سوپاپ ورودی و خروجی با افزایش دور موتور باید افزایش یابد. مهندسین
    سابقا بهترین تایمینگ سوپاپ را بصورت توافقی انتخاب می کردند. برای مثال یک وانت بخاطر بازده بهتر در
    دور پائین ممکن است زمان قیچی کمتری را بکار گیرد اما یک ماشین مسابقه ای بخاطر قدرت بیشتر در دور بالا
    ممکن است زمان قیچی قابل ملاحظه ای را بکار گیرد. در خودروهای سواری معمولی ممکن است تایم سوپاپ
    بهینه برای دور متوسط بکار گرفته شود تا هم در دور کم قابلیت خوبی داشته باشد و همچنین قدرت در دور بالا
    خیلی کاهش نیابد و شبیه موتورهای دیگر که برای یک دور معین بهینه سازی میشوند نباشند. با تایمینگ متغیر
    سوپاپ قدرت و گشتاور می تواند در یک محدوده عریض بهینه شود.
    بیشترین نتایج قابل توجه عبارنتد از :
    Ø موتور می تواند در دور بالاتری کار کند بنابراین حداکثر قدرت تولید می شود. برای مثال قدرت ماکزیمم
    Ø موتور نیسان 2 لیتری Neo VVL 25% بیشتر از نمونه بدون VVT آن می باشد.
    Ø افزایش گشتاور در دور پائین ، بنابراین نیروی محرکه بهبود می یابد. برای مثال موتور فیات

    بلند شدن متغیر سوپاپ Variable Lift
    در بعضی از طراحی ها بلند شدن سوپاپ می تواند بر حسب دور موتور متغیر باشد. در دوربالا افزایش بلند شدن
    شدن سوپاپ ورود هوا و خروج گازهای اگزوز را تسریع می کند بنابراین تنفس موتور را بهبود می بخشد. البته
    بلند شدن این چنینی در دور آرام اثر معکوسی شبیه ناقص مخلوط شدن سوخت و هوا ایجاد میکند بنابراین بازده
    را کاهش می دهد و یا حتی منجر به خاموش شدن موتور (misfire) می شود. بنابراین بلند شدن سوپاپ باید بر
    . طبق دور موتور باشد.
    منبع : مهندس مهدی ملازم (مشهد مقدس)

  10. #17
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض منیفولد و سوپاپ 2

    منیفولد و سوپاپ 2
    انواع مختلف VVT
    1- VVT با سیستم تغییر بادامک


    سیستم 3 مرحله ای VTEC هوندا
    هوندا آخرین مدل VTEC ، 3 مرحله ای را در موتور sohc Civic در ژاپن بکار برد.این مکانیزم 3 بادامک
    با تایمینگ و پروفیل بلند کردن سوپاپ متفاوت دارد.
    توجه داشته باشید که ابعادشان نیز متفاوت میباشد. بادامک میانی (تایمینگ دور بالا و حداکثر بلند شدن سوپاپ )
    در دیاگرام بالا نشان داده شده است که بزرگترین بادامک نیزمیباشد. بادامک سمت راست آن ( تایمینگ دورآرام و
    متوسط بلند شدن سوپاپ ) که سایز آن متوسط می باشد. بادامک سمت چپ ( تایمینگ دور آرام و حداقل بلند
    شدن سوپاپ ) که کوچکترین بادامک نیز می باشد.
    مکانیزم عملکرد آن مطابق شرح ذیل می باشد:
    مرحله 1 ( دور آرام ) : 3 قطعه اسبک بطور آزادانه حرکت می کنند. بنابراین اسبک سمت چپ سوپاپ ورودی
    سمت چپ را به میزان کمی بلند میکند. اسبک سمت راست نیز سوپاپ سمت راست را به میزان متوسط بلند می
    کند. تایمینگ هر دو بادامک در مقایسه با بادامک میانی که فعلا فعال نمی باشد حدودا برای دور آرام می باشد.
    مرحله 2 ( دور متوسط ) : فشار هیدرولیکی ( قسمت نارنجی رنگ در شکل ) اسبکهای سمت چپ و راست را به
    یکدیگرمتصل میکند درحالیکه اسبک میانی و بادامک آن به کارخودشان ادامه می دهند. ازآنجائیکه بادامک سمت
    سمت راست بزرگتر از بادامک سمت چپ می باشد بادامکهای متصل شده به یکدیگر حرکت خود را در واقع از
    بادامک سمت راست می گیرند. در نتیجه هر دو سوپاپ ورودی در تایمینگ دور آرام ولی با بلند شدن متوسط کار
    می کنند مرحله 3 ( دور بالا ) : فشار هیدرولیک هر 3 اسبک را به یکدیگر متصل می کند. از آنجائیکه بادامک
    میانی بزرگترین بادامک می باشد هر دو سوپاپ بوسیله بادامک دور بالا حرکت می کنند. بنابراین تایمینگ دور
    بالا و حداکثر بلند شدن سوپاپ فراهم می شود.
    2- VVT با سیستم بادامک مرحله ای
    این سیستم ساده ترین و ارزانترین و رایجترین مکانیزمی است که امروزه استفاده می شود. با اینکه سیستم
    کوچکی می باشد کارآیی موتوررا افزایش می دهد.اساسا این سیستم تایمینگ سوپاپها رابوسیله تغییرمرحله
    ای زاویه میل میل بادامک تغییر می دهد. برای مثال در دور بالا میل بادامک سوپاپ ورودی به میزان 30 درجه
    گردش کرده و باعث زودتر باز شدن سوپاپهای ورودی می شود. این حرکت بوسیله سیستم مدیریت موتور بر
    طبق نیاز و بوسیله دنده های سوپاپ هیدرولیکی بکار می افتد.توجه داشته باشید که VVTبا سیستم بادامک
    مرحله ای نمی تواندمدتزمان باز بودن سوپاپ را تغییر دهد آن فقط اجازه زودتر باز شدن یا دیرتر باز شدن سوپاپ
    را می دهد. البته نتیجه زودتر باز شدن زودتر بسته شدن نیز میباشد.همچنین این سیستم برخلاف VVT با
    سیستم تعویض بادامک میران بلند شدن سوپاپ را تغییر نمی دهد. این سیستم ازساده ترین و ارزانترین انواع
    VVT می باشد برای اینکه هرمیل بادامک فقط به یک کارانداز هیدرولیکی یاز دارد و برخلاف سیستم های دیگر
    که برای هر سیلندر یک مکانیرم مجزا بکار گرفته می شود.
    پیوسته یا گسسته
    ساده ترینVVT با سیستم بادامک مرحله ای فقط در 2 یا 3 زاویه ثابت می تواند تنظیم شود که از بین 0 تا 30
    درجه انتخاب می شود. بهترین سیستم جابجائی متغیر پیوسته می باشد که بر حسب دور موتور یک مقدار
    اختیاری بین 0 تا 30 درجه را انتخاب می کند. بدیهی است این سیستم تایمینگ مناسبی را برای هر دور فراهم
    میکند.بنابراین انعطاف پذیری موتور را به میزان زیادی افزایش می دهد. هرچند که تغییر آن بسیار آرام و قابل
    توجه می باشد.
    میل بادامک ورودی و خروجی
    در بعضی از طراحی ها مانند سیستم BMW Double Vanos هم در میل بادامک ورودی و هم در میل بادامک
    خروجی از سیستم VVT بادامک مرحله ای استفاده می شود. این باعث افزایش زمان قیچی سوپاپها شده
    وراندمان را افزایش می دهد.
    این نشان می دهد که چرا راندمان BMW M3 3.2 (100hp/litre) از مدل قبلی آن M3 3.0 (95hp/litre) که
    فقط در میل بادامک ورودی از این سیستم استفاده می کند بیشتر است. در مدل E46 3-series Double Vanos
    , ماکزیمم محدوده جابجائی میل بادامک ورودی 40 درجه و میل بادامک خروجی 25 درجه می باشد.
    مزایا
    ساده و ارزان می باشد. VVT پیوسته گشتاور تحویلی را در تمام دورها افزایش می دهد.
    معایب
    نداشتن سیستم بلند شدن سوپاپ و مدت زمان باز بودن بطور متغیر. بنابراین قدرت ماکزیمم آن از VVT با سیستم
    تعویض با کمتر م باشد.
    BMW'S Vanos
    فهمیدن عملکرد این سیستم از روی عکس آسان است. در انتهای میل بادامک یک دنده مورب بسته شده است. دنده مورب
    به یک درپوش که می تواند از میل بادامک دور و یا به آن نزدیک شود متصل شده است. بدلیل اینکه محور میل بادامک با
    دنده مورب موازی نمیباشد اگر درپوش به سمت میل بادامک فشرده شود زاویه میل بادامک افزایش می یابد به همین
    ترتیب کشیدن درپوش به سمت عقب باعث کاهش زاویه میل بادامک می شود.


    آیا فشرده شدن یا کشیده شدن بوسیله فشار هیدرولیکی تعیین می شود؟ در سمت راست درپوش دو محفظه وجود دارد
    که با روغن پر می شوند ( این محفظه ها بترتیب با رنگهای سبز و زرد در شکل مشخص شده است) و یک پیستون باریک
    که در جلوی درپوش بسته شده است این دو محفظه را ازهم جدا می کند. روغن ازطریق سوپاپهای مغناطیسی وارد
    محفظه ها می شود که فشار روغن را برای فعال شدن محفظه ها کنترل می کند. بعنوان مثال اگرسیستم مدیریت موتور
    به سوپاپ محفظه سبز سیگنال ارسال کند آن سوپاپ باز شده و سپس فشار هیدرولیک باعث حرکت پیستون شده و آن را
    به سمت عقب فشار می دهد به همراه آن درپوش نیز به سمت میل بادامک نزدیک می شود بنابراین این جابجائی باعث
    افزایش زاویه می شود.


    3- VVT با سیستم های تعویض بادامک + بادامک مرحله ای
    ترکیب تعویض بادامک و بادامک مرحله ای می تواند هر دو نیازمندی قدرت در دور پائین و دور بالا و انعطاف
    پذیری در تمام محدوده دورموتوررا برآورده کند. اما ناچارا پیچیدگی بیشتری دارد. درزمان نوشتن این مقاله فقط
    پورشه وتویوتا چنین طرحی داشتند .هرچند درآینده ماشین های مسابقه ای بیشترو بیشترازاین طرح استفاده
    خواهند کرد .
    Toyota VVTL-I
    VVTL-I تویوتا پیشرفته ترین طرح VVT می باشد . وظایفی که این سیستم بخوبی انجام می دهد عبارنتد از:
    Ø تایمینگ متغیر سوپاپ بادامک مرحله ای پیوسته
    Ø بلند شدن سوپاپ متغیر دو مرحله ای بعلاوه مدت زمان باز بودن متغیر
    Ø هم برای سوپاپهای ورودی و هم برای سوپاپهای خروجی استفاده می شود.
    شبیه VVT-I تایمینگ متغیرسوپاپ بوسیله تغییرزاویه که بوسیله جلو یا عقب رفتن میل بادامک بوسیله راه انداز
    هیرولیکی که در انتهای میل سوپاپ متصل شده انجام می شود. تایمینگ متغیر بر حسب دور موتوروشتاب و غیره
    محاسبه می شود. هرچند تغییرات در یک محدوده عریض در حدود 60 درجه صورت می گیرد بنابراین شاید این
    سیستم کاملترین طرح تا به امروز باشد. چه چیزی VVTL-I را نسبت به VVT-I معمولی ممتاز می کند؟ همه
    می دانند که L نشانه ای برای بلند شدن سوپاپ ( Valve Lift) می باشد. شبیه VTEC سیستم تویوتا ازیک اسبک
    برای کار انداختن هر دو سوپاپ ورودی استفاده می کند. این سیستم همچنین دو بادامک دارد که باعث فعال
    شدن اسبکها می شوند. بادامک ها شکلهای متفاوت دارند یکی با پروفیل بزرگتر برای افزایش مدت زمان باز
    بودن سوپاپ در دور بالا و دیگری با پروفیل کوچکتر برای دور آرام . در دورآرام بادامک دورآرام اسبکها را ازطریق
    یک رولبرینگ ( برای کاهش اصطکاک ) بکارمیاندازد. بادامک دوربالاهیچ تاثیری براسبک ندارد زیرا فضای زیرا
    فضای کافی در زیر تایپیت هیدرولیکی وجود دارد.
    در مقایسه با VTEC هوندا وسیستمهای مشابه سیستم تویوتا تایمینگ متغیر پیوسته دارد که به افزایش انعطاف
    پذیری موتور در دور آرام و دور بالا کمک می کند. بنابراین این سیستم مسلما امروزه بهترین طرح می باشد. هر
    چند ساخت آن شاید خیلی پیچیده و خیلی گران باشد.
    مزایا
    VVT پیوسته گشتاورتحویلی درتمام دورها راافزایش میدهد و مدت زمان بلند شدن متغیر دارد که باعث افزایش
    قدرت در دور بالا می شود.
    معایب
    خیلی پیچیده و گران می باشد .
    Porsche Variocam Plus
    سیستم Variocam Plus پورشه طرح پیشرفته Variocam که درمدلهای Carrera و Boxster استفاده میشود.
    Variocam ابتدا درسال 1991 در مدل 968 تولید شد. این سیستم اززنجیرتایمینگ برای تغییرزاویه میل بادامک
    میل بادامک استفاده میکرد بنابراین تایمینگ متغیر 3 مرحله ای را فراهم می کرد. این طرح یک طرح انحصاری
    و بی نظیر می باشد اما آن نسبت به کاراندازهای هیدرولیکی دیگر تولید کنندگان واقعا نا مرغوب می باشد بویژه
    که آن اجازه تغییر زاویه زیاد به میل بادامک را نمی دهد . بنابراین پورشه Variocam Plus را در مدل Turbo
    911 استفاده کرد و سرانجام از یک راه انداز هیدرولیکی متداول بجای زنجیر استفاده کرد. هر چند مدل Plus
    بعلاوه بلند شدن متغیر سوپاپ تغییرات زیادی پیدا کرده است و این سیستم از تایپیت های هیدرولیکی نیز
    استفاده می کند . همانطوری که در شکل زیر دیده می شود .هر سوپاپ میتواند بوسیله سه بادامک فعال شود .
    مرکزی سوپاپ را به میزان کمی بلند می کند ( 3mm) و مدت زمان باز بودن سوپاپها کوتاه می باشد. بعبارت
    دیگر این بادامک دور آرام می باشد . دو بادامک خارجی دقیقا شبیه هم می اشند با تایمینگ برای دور بالا و
    سوپاپ ها را به میزان بیشتری بلند می کنند ( 10 mm) . انتخاب نوع بادامک بر حسب تایپیتهای متغیر صورت
    می گیرد که شامل یک تایپیت داخلی و یک تایپیت خارجی می باشد . آنها بوسیله یک کارانداز هیدرولیکی که یک
    پین را از میان آنها عبور می دهد به یکدیگر قفل می شوند. با این روش بادامک دوربالاسوپاپ ها را فعال می کند
    که باعث افزایش مدت زمان باز بودن و میزان بلند شدن سوپاپ می شود. اگر تایپیت ها به یکدیگر قفل نباشند .
    سوپاپها ازطریق تایپیتهای داخلی فعال میشوند وتایپیتهای خارجی مستقل ازسوپاپها حرکت می کنند. بنظر می
    رسد این مکانیزم فوق العاده ساده و کوچک می باشد. تایپیتهای متغیر فقط کمی سنگین ترازتایپیت های
    معمولی میباشد ولی فضای بیشتری اشغال نمی کند. با این وجود این سیستم قفط برای سوپاپ های ورودی
    استفاده می شود.
    مزایا
    گشتاور خروجی در دورآرام و متوسط را افزایش می دهد و مدت زمان بازبودن و میزان بلند شدن متغیرآن قدرت
    را در دور بالا افزایش می دهد.
    معایب
    دارای پیچیدگی زیاد و هزینه بالائی می باشد.
    منبع : مهندس مهدی ملازم (مشهد مقدس 1387)

  11. #18
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض توربوشارژ

    توربوشارژ
    وظیفه توربو شارژ دمیدن هوا با فشار به داخل سیلندر می باشد توربوشارژ با این کار در خروج دود
    کمک کرده در ضمن توربوشارژ با این کار هوای بیشتری به داخل سیلندر تزریق می کند این کار
    توربوشارژ باعث بهتر پر کردن سیلندر خواهد شد و راندمان موتور افزایش می یابد

    تامین هوای بیشتر در واقع مهیا ساختن اکسیژن بیشتر برای انجام احتراق بوده و این امر سبب
    احتراق بهتر سوخت در محفظه احتراق و در نهایت قدرت بیشتر موتور خواهد بود
    در موتورهای دیزل دو زمانه از یک دمنده به همین منظور استفاده می شود که قبلا شرح داده شد
    فشار هوای ارسالی توسط دمنده تنها اندکی از فشار جو (فشار اتمسفر) بیشتر است و بنابراین
    اثر توربو شارژ را ندارد
    توربو شارژ نیروی خود را از دودهای خروجی موتور می گیرد

    تامین هوای موتور(توربوشارژ)
    موتورهایی که توربو شارژ ندارد به عنوان موتورهای بدون توربو شارژ یا موتورهای معمولی یاد
    می شوند زیرا در این موتورها به علت حرکت پیستون در داخل سیلندر عمل مکش هوا به داخل
    سیلندرها انجام می شود به این ترتیب هوای داخل سیلندر با فشار جو تامین می گردد حتی در
    شرایط ایدال فشار هوای ورودی در داخل سیلندرها به فشار جو نمی رسد و در عمل به مقدار
    قابل توجهی کمتر از ان می باشد
    توربو شارژ جریان هوای ورودی به محفظه احتراق را تقویت نموده و باعث افزایش فشار ان به
    نسب دو برابر فشار جو می گردد این امر سبب افزایش قدرت خروجی و گشتاور موتور از 25 تا
    40 درصد بسته به طراحی توربوشارژ و موتور می شود

    توربو شارژر
    توربوشارژر شامل یک کمپرسور و یک توربین می باشد که هر دو روی شفت نصب شده اند و
    توربین توسط گازهای خروجی حاصل از احتراق چرخانیده می شود به این ترتیب انرژی این گازها
    که در صورت نبودن توربوشارژ تلف می شد برای چرخانیدن کمپرسور استفاده می شود و هوای
    بیشتری برای سیلندرها موتور تامین می کند توربو شارژ دارای یک قسمت دوار (روتور) است که
    شامل یک شفت می باشد و یک سر ان توربین و سر دیگر ان یک کمپرسور نصب شده است این
    قسمت دوار داخل یک پوسته قرار گرفته که دارای دو محفظه یکی توربین و دیگری برای کمپرسور
    می باشد گازهای خروجی موتور مستقیما وارد محفظه توربین شده و توربین و در نتیجه کمپرسور
    را با سرعت بالایی به چرخش وا می دارند از هوا از مرکز محفظه کمپرسور مکیده شده و تحت
    فشار قرار گرفته و توسط نیروی گریز از مرکز که بواسطه سرعت بسیار بالای چرخش کمپرسور
    ناشی می شود به درون موتور رانده می شود به این ترتیب هوای بیشتری به داخل سیلندر
    ارسال می گردد اگر سوخت بیشتری به داخل سیلندرها تزریق شود انرژی گازهای خروجی نیز
    افزایش یافته و در نتیجه سرعت چرخش توربوشارژ نیز بالاتر می رود این امر سبب افزایش هوای
    تامین شده برای موتور می گردد

    اجزای توربوشارژ
    اجزای توربو شارژ عبارتند از توربین در سمت راست و کمپرسور در سمت دیگر (بستگی به دید )
    محور دوار در وسط حامل توربین و کمپرسور می باشد و از داخل دارای مجرایی است که در ان
    روغن به منظور روغنکاری و خنک کاری محور و یاتاقان جریان دارد پوسته محفظه توربین دارای
    پره های ثابت می باشد که به عنوان نازل های حلقوی عمل می کنند گازهای خروجی موتور روی
    پره های ثابت پوسته محفظه چرخیده و سپس با سرعت بسیار زیاد روی پره های توربین برخورد
    می نماید

    انواع توربو شارژ
    همه توربو شارژ ها به یک طریق عمل می کنند اما چگونگی ورود گازهای خروجی به داخل توربین
    متفاوت می باشد سه نوع توربوشارژ وجود دارد این سه نوع عبارتند از نوع حلزونی ساده و نوع
    حلزونی با افزایش سرعت و نوع ضربانی

    توربوشارژ حلزونی ساده
    این نوع توربوشارژ دارای یک معبر تنها می باشد که گازهای خروجی موتور را به چرخ توربین منتقل
    می کند حلزون یک معبر مارپیچ در درون پوسته محفظه توربین می باشد که مقطع ان ثابت نبوده
    و کاهش می یابد
    این تغییر به دلیل ثابت نگهداشتن سرعت گازهای خروجی هنگام عبور از طول حلزن می باشد
    گازهای خروجی به طور پیوسته از حلزون عبور کرده و وارد توربین می شوند گازها از میان پره های
    توربین عبور کرده و باعث چرخش توربین شده و سپس توربین را ترک و وارد اگزوز می شوند
    چرخ کمپرسور به همراه توربین روی یک شفت نصب شده است پره های کمپرسور دارای انحنا
    بوده و تحت تاثیر نیروی گریز از مرکز هوا را فشرده می سازد هوای فشرده شده با سرعت زیاد
    و فشار کم از لبه پره های کمپرسور جدا می شود هوا از دیفیوز عبور نموده وارد قسمت حلزونی
    پوسته کمپرسور می شود این امر سبب می گرد از انکه هوا مستقیما وارد محفظه احتراق شود
    ان کاهش و فشار ان افزایش یابد

    توربوشارژ حلزونی با افزاینده سرعت
    این نوع توربوشارژ دارای یک حلزون و یک افزاینده سرعت (پره های ثابت) یا دو حلزون و دو مجرا
    می باشد گازهای خروجی وارد منیفولد دود و از انجا وارد حلزونها شده اما بجای انکه مستقیما
    وارد چرخ توربین شوند از پره های ثابت روی پوسته توربین عبور نموده و با زاویه مناسب بسیار
    زیاد و با انرژی بالاتر با پره های توربین برخورد می نماید سمت کمپرسور توربو شارژ همانطور
    که قبلا در نوع حلزونی توضیح داده شد عمل می کند

    توربوشارژ نوع ضربانی
    استفاده از این نوع توربوشارژ یک منیفولد دود نوع ضربانی را طلب می کند زیرا از ضربات دودهای
    خروجی که از سیلندرها موتور خارج می شود استفاده می کند این امر سبب افزایش سرعت
    توربوشارژ می شود
    منیفولد نوع ضربانی دارای معبری از هر سیلندر می باشد که در انتها به دو کانال اصلی جداگانه
    تبدیل می شوند این دو کانال به دو کانال روی پوسته توربین می پیوندند منیفولد دارای مقطع نسبتا
    کوچکی می باشد تا از ضربات بهره بیشتری ببرد زیرا در منیفولد بزرگتر اتلاف بیشتر است شکل
    منیفولد به گونه ای طرح گشته تا از جریان گازهای ازاد نیز به خوبی گازهای توده ای استفاده کند
    در حین شتاب گیری این امر اجازه می دهد انرژی گازهای خروجی سریعا به توربین رسیده و شتاب
    موتور بهبود یابد
    برای بهره بردن بهتر از گازهای توده ای سیلندرها بطور یک در میان با توجه به ترتیب احتراق به
    یک کانال مرتبط گشته اند مثلا در یک موتور شش سیلندر که ترتیب احتراق 4-2-6-3-5-1 می باشد
    سیلندرهای 1و2و3 به یک کانال و سیلندرهای 4و5و6 به کانال دیگر متصل می گردند به این ترتیب
    باعث می شود توده های دود بیشتر از هم جدا باشند و اثر بیشتری خواهد داشت


    منبع : موتورهای دیزل (مهندس مجید امینی و مهندس مهدی افقی)

  12. #19
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض موتور وانكل

    موتور وانكل
    موتور دورانی یک موتور احتراق داخلی است درست مثل موتور اتومبیل ولی کاملا متفاوت با موتور های مرسوم پیستونی کار می کند.در یک موتور پیستونی حجم مشخصی از فضا (سیلندر) متناوبا چهار کار متفاوت را انجام می دهد.مکش ،تراکم ،احتراق ،و خروج دود.موتور دورانی همین کار را انجام می دهد اما هر کدام در جای مخصوص خوذ انجام می شود و این شبیه این است که برای هر کدام از چهار مرحله یک سیلندر جداگانه داشته باشیم و پیستون به طور پیوسته از یکی به بعدی حرکت کند.

    موتور دورانی که مخترع آن دکتر فلیکس وانکل بود، گاهی موتور وانکل یا موتور دورانی وانکل نامیده می شود.در این مقاله می آموزیم که موتور دورانی چگونه کار می کند.

    مانند یک موتور پیستونی،موتور دورانی از فشار تولید شده هنگام احتراق مخلوط سوخت و هوا استفاده می کند.در موتور پیستونی،این فشار در سیلندر جمع می شود و پیستون را به جلو و عقب می راند.میل لنگ حرکت رفت و برگشتی پیستون ها را به حرکت دورانی تبدیل می کند.

    در یک موتور دورانی،فشار حاصل از احتراق،در یک اتاقک ایجاد می شود که این اتقک قسمتی از فضای موتور است که به وسیله ی وجه روتور مثلثی شکل پدید می آید و موتور دورانی از این اتاقک به جای پیستون استفاده می کند.

    روتور و محفظه ی یک موتور دورانی در Mazda RX-7

    این قسمت ها جایگزین پیستون ها،سیلندر ها،سوپاپ ها،میل سوپاپ و میل لنگ در موتور پیستونی می شود.روتور مسیری را طی می کند که در این مسیر هر سه گوش روتور با محفظه در تماس باقی می ماند و سه حجم مجزای گاز را ایجاد می کند.وقتی روتور می چرخد،این سه حجم متناوبا منبسط و منقبض می شوند.همین انقباض و انبساط است که هوا و سوخت را به داخل موتور می کشد،آن را متراکم می کند و انرژی قابل استفاده آن را می گیرد و سپس دود را خارج می کند.

    در ادامه به داخل موتور دورانی خواهیم پرداخت تا قسمت هایش را بشناسیم اما اینک به مدل تازه ی موتور دورانی نگاهی می اندازیم:

    مزدا RX-8 :

    شرکت مزدا در تولید و توسعه ی خودرو هایی که از موتور دورانی استفاده می کنند سابقه ی طولانی دارد. مزدا RX-7 که در 1978 به فروش رسید موفق ترین خودرو با موتور دورانی بوده است. ولی قبل از آن خودرو ها،کامیون ها و حتی اتوبوس هایی با موتور دورانی تولید شده بودند.سرآغاز آن ها نیز Cosmo sportدر 1967 بود.آخرین سالی که RX-7 در آمریکا فروخته شد سال 1995 بود ولی موتور دورانی در آینده ی نزدیک به بازار برمی گردد .


    مزدا RX-8 خودرو جدیدی از شرکت مزدا است که یک موتور دورانی جدید و برتر به نام Renesis را عرضه کرده است.این موتور که موتور بین المللی سال 2003 نامیده شد،به صورت طبیعی مکش دارد و یک موتور 2 روتوره می باشد که قدرت آن 250 اسب بخار است.
    موتور دورانی یک سیستم جرقه و تحویل سوخت دارد که شبیه به قسمتهای مشابه در موتور پیستونی هستند.در ادامه به معرفی بخش های اصلی موتور دورانی می پردازیم:



    روتور:

    روتور سه سطح محدب دارد که هر کدام همانند یک پیستون عمل می کند.هر سطح یک فرورفتگی دارد که حجم مخلوط هوا و سوخت را در موتور افزایش می دهد.


    در قسمت انتهایی هر سطح یک تیغه ی فلزی وجود دارد که اتاقک احتراق را آب بندی می کند و مانع خروج مواد از اتاقک احتراق می شود.همچنین حلقه های فلزی در هر طرف روتور وجود دارند که به اطراف اتاقک احتراق محکم می شوند.

    روتور یک سری دندانه های داخلی دارد که در مرکز یک لبه بریده شده اند.این دندانه ها با چرخ دنده هایی که به بدنه ی موتور محکم شده اند درگیر می شوند.این در گیر شدن مسیر و جهت حرکت روتور در داخل بدنه را مشخص می کند.

    بدنه:

    بدنه تخم مرغی شکل است.شکل اتاقک احتراق به گونه ای طراحی شده است که سه راس روتور همواره در تماس با دیواره ی اتاقک خواهند بود و سه حجم جدای گاز را ایجاد می کنند.

    هر قسمت بدنه به یک مرحله از عمل احتراق اختصاص دارد.این چهار مرحله عبارتند از:

    1-
    مکش

    2-
    تراکم

    3-
    احتراق

    4-
    تخلیه

    مجراهای مکش و تخلیه در بدنه طراحی شده اند. این مجرا ها سوپاپ ندارند.اگزوز خودرو مستقیما به مجرای تخلیه وصل می شود. مجرای مکش هم مستقیما به دریچه ی ساسات وصل می شود.

    محور خروجی:

    محور خروجی قطعه های گردی دارد که خارج از مرکز(خارج از محور میله) نصب شده اند. هر روتور روی یکی از این قطعات خارج از مرکز نصب می شود.این قطعه ها تقریبا شبیه میل لنگ عمل می کنند.هنگامیکه روتور مسیر خودش را درون بدنه طی می کند،به این قطعه ها فشار می آورد و از آن جاییکه قطعه ها خارج از مرکز اند،نیروی اعمال شده از روتور به قطعه ها گشتاوری بر میله وارد می کند و آن را می چرخاند.

    اکنون بیایید ببینیم این قسمت ها چگونه به هم متصل می شوند و چگونه نیروی حرکتی را ایجاد می کنند.

    یک موتور دورانی به صورت لایه ای سر هم می شود.موتور دو روتوره که ما بررسی کردیم 5 لایه اصلی دارد که به وسیله حلقه ای از غلاف های دراز کنار هم نگه داشته شده اند و سیال خنک کننده که در راههای مخصوص خود جریان دارد همه ی قطغات را در بر می گیرد.

    دو لایه ی انتهایی شامل مهره ها ، یاتاقان ها و شفت خروجی می باشد.آن ها همچنین دو قسمت اتاقک را که شامل روتور ها می شوند را به هم متصل می کنند.سطح داخلی این قطعات خیلی صاف و صیقلی می باشد که کمک می کند مهره های روی روتور کار خود را به خوبی انجام دهند.یک دریچه ورودی بر روی هر کدام از این قطعات انتهایی وجود دارد.

    یکی از دو قطعه انتهایی از یک موتور دو روتوره ی ونکل

    لایه ی بعدی (از بیرون به داخل) اتاقک تخم مرغی شکل روتور است که دریچه های اگزوز را شامل می شود.


    قسمتی از اتاقک روتور(به مکان مجرای تخلیه توجه کنید)

    قطعه میانی شامل دو دریچه ورودی می باشد که هر کدام از آن ها برای یکی از روتور هاست.این قطعه علاوه بر این دو روتور را از یکدیگر مجزا می کند لذا سطوح خارجی آن بسیار صاف است.
    قطعه ی میانی برای هر روتور یک دریچه ورودی دیگر فراهم می کند.
    در مرکز هر روتور یک چرخ دنده ی بزرگ داخلی وجود دارد که روی یک چرخ دنده ی کوجک تر حرکت می کند که این چرخ دنده ی کوچک به اتاقک موتور متصل شده است. این قسمت آن چیزی است که چرخش روتور را ایجاد می کند.روتور همچنین روی پوسته بزرگ و دایروی شفت خروجی حرکت می کند.
    در ادامه خواهیم دید که موتور چگونه نیروی محرک تولید می کند.
    موتورهای دورانی چرخه ی چهار زمانه ای را طی می کنند که شبیه چرخه ایست که موتور پیستونی در آن کار می کند.ولی در موتور دورانی نحوه ی رسیدن به هدف کاملا متفاوت است.

    قلب یک موتور دورانی،روتور آن است که معادل پیستون در موتورهای پیستونی می باشد.

    روتور روی یک پوسته ی بزرگ دایروی روی شفت خروجی نصب می شود.این پوسته از خط مرکزی شفت انحراف دارد و مانند یک دسته اهرم در جرثقیل های کوچک عمل می کند و به روتور قدرت لازم برای چرخاندن شفت خروجی را می دهد.هنگامی که روتور درون اتاقک می چرخد،پوسته را حول دایره هایی می چرخاند که به ازای هر دور روتور،پوسته 3 دور می چرخد.
    هنگامی که روتور درون اتاقک می چرخد سه قسمتی که توسط روتور در فضای اتاقک از هم جدا می شوند،حجمشان تغییر می کند(مطابق شکل بالا) این تغییر حجم باعث ایجاد عملیاتی شبیه به پمپ کردن می شود.حال به بررسی هر کدام از چهار مرحله ی موتور دورانی می پردازیم.

    1-
    مکش :

    فاز مکش هنگامی آغاز می شود که نوک روتور از دریچه ی ورودی عبور می کند.وقتی که دریچه مکش باز می شود در ابتدا حجم این قسمت در حداقل مقدار خود است و با ادامه حرکت روتور حجم افزایش می یابد و هوا به داخل کشیده می شود.
    وقتی راس دیگر روتور از دریچه مکش عبور می کند دیگر هوایی وارد این قسمت نمی شود و مرحله تراکم آغاز می شود.

    2-
    ترا کم:

    همچنانکه روتور به حرکت خود ادامه می دهد، حجم هوا کاهش می یابد و مخلوط هوا و سوخت متراکم می شود.زمانی که وجه روتور به مقابل شمع ها می رسد،حجم این قسمت به حداقل مقدار خود نزدیک می شود. در این هنگام عملیات احتراق آغاز می شود.

    3-
    احتراق:

    اکثر موتور های دورانی دو شمع دارند.زیرا اگر تنها یک شمع وجود داشت به خاطر اینکه اتاقک احتراق نسبتا دراز است،جرقه نمی توانست به خوبی و با سرعت مناسب گسترش پیدا کند.
    وقتی شمع ها جرقه می زنند،مخلوط هوا و سوخت آتش می گیرد و افزایش فشار روتور را به حرکت در می آورد.
    فشار حاصل از احتراق باعث می شود که روتور در جهتی حرکت کند که حجم افزایش یابد.گازهای احتراق منبسط می شوند و با حرکت دادن روتور نیروی محرکه تولید می کنند تا هنگامی که نوک روتور به دریچه تخلیه برسد.

    4-
    تخلیه:

    هنگامی که نوک روتور از دریچه ی تخلیه عبور می کند،گازهای احتراق که فشار بالایی دارند از اگزوز خارج می شوند.همچنانکه روتور به حرکت خود ادامه می دهد،اتاقک منقبض می شود و گازهای باقی مانده را به بیرون هدایت می کند.زمانی که حجم به حداقل مقدار خود نزدیک می شود، نوک روتور از کنار دریچه ی مکش عبور می کند و چرخه دوباره تکرار می شود.

    نکته ی ظریف در مورد موتور دورانی این است که هر کدام از سه وجه روتور همواره در حال طی کردن یک قسمت چرخه هستند (در یک دور چرخش کامل روتور،سه بار مرحله احتراق وجود دارد). ولی به خاطر داشته باشید که شفت خروجی به ازای هر دور چرخش روتور سه دور می زند که این یعنی به ازای هر دور چرخش شفت خروجی یک مرحله احتراق داریم.

    ویژگی های متعددی وجود دارد که موتور دورانی را از یک موتور پیستونی معمولی متمایز می کند:

    قسمتهای متحرک کمتر:

    در موتور دورانی تعداد قسمت های متحرک به مراتب کمتر از یک موتور پیستونی مشابه است.یک موتور دورانی دو روتوره سه قسمت متحرک دارد:دو روتور و یک شفت خروجی.حتی ساده ترین موتور پیستونی چهار سیلندر،حداقل 40 قسمت متحرک دارد:پیستون ها،میل بادامک،سوپاپ ها،فنر سوپاپ ها ،رقاصک ها،تسمه تایم،چرخ دنده ها و میل لنگ،میله های رابط.

    این تعداد کم قسمت های متحرک،قابلیت اطمینان موتورهای دروانی را بالا می برد.به همین دلیل است که بعضی از سازنگان فضاپیما،موتورهای دورانی را ترجیح می دهند.

    یکنواختی حرکت :

    همه ی قسمت های موتور دورانی در یک جهت و به طور پیوسته می چرخند و تغییر جهت های ناگهانی (مانند پیستون ها) وجود ندارد.

    موتورهای دورانی از نظر داخلی به وسیله ی وزنه های تعادلی چرخان ،که برای از بین بردن ارتعاشات نصب شده اند، متعادل می شوند.

    تحویل نیرو در موتورهای چرخان نیز یکنواخت تر انجام می شود.از آنجاکه هر مرحله احتراق در چرخس روتور به اندازه ی 90 درجه پایان می یابد و شفت خروجی به ازای هر دور روتور، سه دور می زند، بنابراین هر مرحله احتراق پس از 270 درجه چرخش شفت خروجی پایان می یابد. این بدان معنی است که یک موتور تک روتوره،برای 4/3 از هر دور چرخش شفت خروجی ، نیروی محرکه تولید می کند. این را مقایسه کنید با یک موتور تک سیلندر پیستونی که در آن احتراق در 180 درجه از دو دوران کامل اتفاق می افتد (یعنی 4/1 از هر چرخش میل لنگ)

    آرامتر بودن حرکت :

    از آن جا که روتور ها با سرعتی به اندازه 3/1 سرعت شفت خروجی می چرخند، قسمت های متحرک موتور دورانی آرامتر از قسمت های موتور پیستونی حرکت می کنند. که این موضوع قابلیت اطمینان موتور های دورانی را افزایش می دهد.

    چالش ها:

    معمولا ساختن یک موتور چرخان سخت تر از موتور پیستونی است.

    هزینه های تولید بالاتر می باشد زیرا تعداد موتورهای دورانی که تولید می شوند به اندازه تعداد موتورهای پیستونی نیست.

    موتورهای دورانی معمولا سوخت بیشتری مصرف می کنند زیرا بازده ترمودینامیکی موتور دورانی کم است.(به دلیل اتاقک احتراق بزرگ و دراز و ضریب تراکم پایین)
    منبع: وبلاگ اموزش سيستمهاي مختلف خودرو

  13. #20
    آخر فروم باز 2299's Avatar
    تاريخ عضويت
    Apr 2007
    محل سكونت
    همین نزدیکی
    پست ها
    1,332

    پيش فرض شبه توربین کالسکه ای

    شبه توربین کالسکه ای
    موتور شبه توربین کالسکه ای با وجود پیچیدگی بخش های اضافه اش،طرح ساده ای دارد.اجزای آن در ادامه توضیح داده شده است:
    استاتور (همان بدنه ی موتور) با شکل تقریبا تخم مرغی خود فضایی که روتور در آن می چرخد را تشکیل می دهد.بدنه چهار روزنه دارد:
    ●یک روزنه برای شمع(البته شمع می تواند روی درپوش بدنه نیز قرار گیرد.)
    ●یک روزنه که توسط درپوشی بسته شده است.
    ●یک روزنه برای ورود هوا
    ●یک روزنه برای خروج گازهای احتراق

    بدنه از دو طرف توسط دو درپوش بسته می شود.درپوش ها نیز سه روزنه دارند که بیشترین انعطاف پذیری را به موتور در نحوه ی استفاده می دهند.مثلا یک روزنه می تواند به عنوان ورودی از کاربراتور یا برای انژکتور دیزل یا بنزین استفاده شود.روزنه ی دیگر می تواند مکان جایگزین برای شمع باشد.و از روزنه ی سوم که بزرگتر است می توان به عنوان خروجی دود استفاده کرد.
    چگونگی استفاده از روزنه ها بسته به این است که مهندس خودرو می خواهد از موتور به عنوان یک موتور احتراق داخلی معمولی استفاده کند و یا به عنوان موتوری با ضریب تراکم بسیار بالا و احتراقی از نوع انفجار نوری(photo-detonation).
    روتور از چهار تیغه (به جای پیستون در موتور معمولی) تشکیل شده است.هر تیغه یک بخش پر کننده و یک شکاف برای قرارگیری بازوی گشتاور دارد.هر تیغه با اتصال مفصلی به تیغه ی بعدی و کالسکه ای متصل شده است.در کل چهار کالسکه ای(برای هر تیغه یک عدد) وجود دارد.هر کالسکه ای حول مفصل خود آزاد می چرخد و بنابراین همیشه با سطح داخلی بدنه در تماس باقی می ماند.
    هر کالسکه ای دو چرخ دارد.یعنی در کل هشت چرخ داریم.چرخ ها به روتور اجازه می دهند به نرمی بر روی دیواره ی استاتور دوران کند.همچنین پهنای جرخ ها باعث کاهش فشار در نقطه ی تماس روتور با بدنه می شود.
    موتور شبه توربین برای کار کردن نیازی به محور مرکزی ندارد اما برای یک خودرو نیاز به محور خروجی داریم تا قدرت را از موتور به چرخ ها منتقل کنیم.محور خروجی به کمک بازوهای گشتاور به روتور متصل شده اند.بازوهای گشتاور در شکاف تیغه ها قرار دارند و به چهار عدد نگه دارنده ی بازو ها متصل اند.
    وقتی همه ی قطعات را کنار هم قرار دهیم موتور به شکل زیر در می آید:

    توجه کنید که موتور شبه توربین هیچ یک از بخش های پیچیده ی یک موتور پیستونی را ندارد.میل لنگ،سوپاپ،پیستون،میل بادامک و... ندارد. و چون تیغه های روتور بر روی کالسکه ای و چرخ ها سوار شده اند اصطکاک کمی وجود دارد و این بدان معناست که روغن و کارتل غیر ضروری است.
    تا اینجا به بخش های اصلی موتور شبه توربین کالسکه ای نگاهی انداختیم.بیایید ببینیم این بخش ها چگونه با هم حرکت می کنند.پویا نمایی زیر چرخه ی احتراق را نشان می دهد.

    نخستین چیزی که باید به آن توجه داشته باشید این است که تیغه های روتور وقتی می چرخند چگونه حجم محفظه ها را تغییر می دهند.در ابتدا حجم افزایش می یابد و در نتیجه مخلوط سوخت و هوا وارد می شود.سپس حجم کاهش می یابد و در نتیجه مخلوط فشرده می شود.
    دومین چیزی که باید در نظر داشته باشید این است که چگونه احتراق در یک محفظه هنگامی که محفظه ی دیگر آماده ی احتراق است به پایان می رسد.با ایجاد کانال کوجکی در دیواره ی داخلی بدنه(نزدیک شمع) هگامی که کالسکه ای از روی آن رد می شود مقدار کمی از گاز داغ به محفظه احتراق بعدی که آماده ی مشتعل شدن است راه می یابد و در نتیجه احتراق پیوسته، مشابه توربین گازی هواپیما، رخ می دهد.
    در ادامه به مسایلی که کارایی و بازدهی موتور شبه توربین را افزایش می دهند اشاره می کنیم.چهار محفظه ی احتراق دو حالت پی در پی را ایجاد می کنند.حالت اول انقباض و انبساط در مرحله ی تراکم و احتراق است.حالت دوم تغییر حجم هنگام ورود هوا و خروج دود است.در یک گردش روتور،چهار احتراق رخ می دهد که هشت برابر تعداد احتراق ها به ازای یک دور گردش میل لنگ در موتور چهار سیلندر معمولی است.حتی در یک موتور ونکل(دورانی) در هر دور گردش روتور سه احتراق رخ می دهد پس از این نظر موتور شبه توربین بهتر است.
    مزایا و معایب:
    بدیهی است که قدرت خروجی بیشتر موتور شبه توربین آن را برتر از موتور پیستونی و دورانی کرده است.اما موتور شبه توربین بسیاری از مشکلات موتور دورانی را نیز حل کرده است.مثلا موتور دورانی با احتراق ناقص کمی هیدروکربن نسوخته تولید می کند.موتور شبه توربین با اتاق احتراقی که 30 درصد کوتاهتر است این مشکل را حل کرده است.چون ضریب تراکم بالاتری دارد و سوخت کاملتر می سوزد.و به همین دلیل موتور شبه توربین بازده سوخت بالاتری دارد.
    دیگر مزایای مهم موتور شبه توربین عبارتند از:
    ●لرزش ناچیز چون موتور کاملا بالانس است.
    ●شتاب بیشتر بدون وجود چرخ طیار
    ●گشتاور بیشتر در دور موتور پایین تر
    ●تقریبا بدون نیاز به روغن کاری
    ●سر و صدای کمتر
    ●انعطاف پذیری کامل در جهت گیری موتور.حتی واژگون
    ●قطعات متحرک کمتر و در نتیجه استهلاک کمتر
    در نهایت موتور شبه توربین می تواند با انواع مختلف سوخت ها کار کند. متانول،بنزین،نفت سفید،گاز طبیعی،گازوییل.حتی می تواند برای استفاده از هیدروژن نیز تنظیم شود.در نتیجه موتور شبه توربین تطبیق پذیری بالایی با سوخت های جدید و جایگزین دارد.
    کاربرد:
    با توجه به اینکه موتور درون سوز توسط کارل بنز در 1885 اختراع شد و حدود 120 سال اصلاحات طراحی را تجربه کرده است می توان گفت موتور شبه توربین در دوره ی کودکی خود به سر می برد.این موتور هنوز در جهان واقعیت به کار گرفته نشده تا بتوان گفت جایگزین مناسبی برای موتور پیستونی است.هنوز در حد نمونه ی آزمایشی ساخته می شود.خوش بینانه ترین پیش بینی این است که تا 2004 در خودرو های کارتینگ به کار گرفته شود.موتور شبه توربین تا دهه های آینده توانایی رقابت با موتور پیستونی را ندارد.
    در آینده موتور های شبه توربین را در چیزهایی جز خودرو نیز خواهید دید.چون قسمت وسط موتور خالی است ونیازی به وجود محور مرکزی ندارد،می تواند محل قرار گیری ژنراتور باشد.ممکن است در آینده این نوع موتور را در کشتی ها، نیروگاهها، کمپرسورهای هوا،خودرو های برف رو و اره موتوری ها ببینید.

    منبع : پارسی خودرو ( [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ] )

  14. 2 کاربر از 2299 بخاطر این مطلب مفید تشکر کرده اند


Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •