تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 4 از 8 اولاول 12345678 آخرآخر
نمايش نتايج 31 به 40 از 75

نام تاپيک: مهندسی عمران

  1. #31
    Banned
    تاريخ عضويت
    Nov 2008
    محل سكونت
    تــــهــرانـــــ /
    پست ها
    3,329

    پيش فرض






  2. این کاربر از Mahdi/s بخاطر این مطلب مفید تشکر کرده است


  3. #32
    Banned
    تاريخ عضويت
    Nov 2008
    محل سكونت
    تــــهــرانـــــ /
    پست ها
    3,329

    پيش فرض بزرگترین ساختمان کروی جهان

    گلوبن

    ساختمان گلوبن, بزرگترین ساختمان کروی جهان است و بواسط عظمتش از

    هر نقطه استکهلم دیده میشود و 60000 متر مربع مساحت, 110 متر شعاع
    و 16000 نفر گنجایش دارد. از برنامه های بزرگ اجرا شده در گلوبن میتوان
    از کنسرتهای مادونا, بریتنی اسپیرز,راکست, آبا, پاواروتی, فرانک سیناترا,
    بروس اسپرینگزتین, یو تو, پینک فلوید, فیل کالینز, راد استوارت, دایانا روس,
    راکست, اسپایس گرلز, بک استریت بویز, باب دیلان, بازدید پاپ ژان پل دوم,
    بازدید دالایی لاما, جشن پنجاهمین سالروز احداث سازمان ملل متحد,
    مسابقه بزرگ موسیقی اروپا , کنسرتهای ام تی وی یاد کرد.




    محاسبه شده است که اگر یک شیر آب را باز کنیم تا گلوبن را پر از آب

    نمائیم این کارمدت 40 سال بطول خواهد انجامید.

    در میان مهاجرین کشور سوئد, این تنها ایرانیان بوده اند که توانستد افتخار

    داشتن یک هنرمند بین المللی آن هم برای دو بار در گلوبن را داشته باشند.




  4. این کاربر از Mahdi/s بخاطر این مطلب مفید تشکر کرده است


  5. #33
    Banned
    تاريخ عضويت
    Nov 2008
    محل سكونت
    تــــهــرانـــــ /
    پست ها
    3,329

    پيش فرض







  6. این کاربر از Mahdi/s بخاطر این مطلب مفید تشکر کرده است


  7. #34
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    منشا زلزله ها

    سيد سعيد حسيني (كارشناس سازه)

    مقدمه
    چند سالي است كه وقوع زلزله هاي متعدد با قدرت و بزرگي هاي متفاوت در نقاط مختلف دنيا توجه جهانيان و مخصوصا مهندسان و معماران و دست اندركاران امر ساخت و ساز (شهري و روستايي) را به خود جلب كرده است. به طور متوسط در هر سال حدود 10 هزار نفر در اثر زلزله جان خود را از دست مي دهند . بر اساس مطالعات انجام شده توسط سازمان علمي فرهنگي ملل متحد (يونسكو) تلفات مالي ناشي از زلزله از سال 1926 تا 1950 بالغ بر 10 ميليارد دلار بوده است. در همين محدوده زماني شهرها و روستاهاي بسيار زيادي بر اثر زلزله با خاك يكسان شده‌اند. بزرگي بعضي از اين زلزله ها حتي بيش از 8 درجه در مقياس ريشتر۱ بوده است. به عنوان نمونه شهرهاي عشق آباد تركمنستان (1948)، آگادير مراكش در ساحل اقيانوس آتلانتيك (1960)، اسكوپيه مقدونيه (1963)، تانگ شان در كشور چين (1976)، مكزيكو سيتي (1985) را مي توان نام برد و در پايان مي توان زلزله ويرانگر اخير بم را مثال زدكه با قدرتي در حدود هفت درجه در مقياس ريشتر در مدت چند ثانيه جان و مال بيش از 30 هزار نفر از هموطنان عزيزمان را براحتي هرچه تمامتر گرفت.

    منشا زلزله
    با توجه به توضيحات فوق و با عنايت به اين مهم كه در اكثر مناطق كشورمان بدليل شرايط خاص زمين شناختي و موقعيت جغرافيايي، با خطر وقوع زلزله با شدت هاي مختلف رو به رو هستيم و به طور كلي ايران از كشورهاي لرزه خيز دنيا محسوب مي‌شود، از اين رو شناخت و مطالعه علل و عوامل وقوع زلزله كه از اساسي ترين مسائل مورد بحث مهندسي عمران در شاخه مهندسي زلزله به شمار مي آيد، اهميت خود را بيش از پيش نشان مي دهد. در اين زمينه علل و عوامل مختلفي به عنوان منشا زلزله ها شناخته شده‌اند. از جمله مهمترين اين عوامل مي توان به موارد زير اشاره كرد:
    ۱ -واكنش هاي درون زميني و حركت صفحات تكتونيكي زمين (Plate Tectonics)
    ۲- - فعاليت آتشفشان ها
    ۳- - آزمايش ها و انفجارهاي هسته اي و اتمي
    ۴- -ذخيره كردن آبهاي سطحي و شكسته شدن سد هاي عظيم آب
    ۵- - فرو ريختن غارهاي زير زميني و...
    اما در ميان عوامل فوق، نظريه حركت زمين ساخت صفحه اي (Plate Tectonics ) در بين لرزه شناسان بيشترين مقبوليت را يافته است و در واقع عامل ايجاد حدود 95 درصد از زلزله هاي بزرگ در جهان به حساب مي آيد و به عبارت ديگر ساير عوامل ايجاد زلزله، خود تابعي از اين عامل هستند .
    با پيشرفت سريع علم و تكنولوژي و با انجام اولين مسافرت به دور كره زمين و تهيه نقشه اوليه سطح زمين و سواحل قاره ها در قرون پانزدهم و شانزدهم، شباهت بسيار عجيب بين سواحل غربي آفريقا و شرقي آمريكاي جنوبي و تطبيق و جفت شدن آنها مطرح شد. در اويل قرن بيستم منشا كوه زايي براي كوه هاي جوان زمين و تطبيق كوه هاي جوان در طرف اقيانوس اطلس دلايلي براي حركت قاره ها و نظريه جابجايي آنها عنوان شد و تحقيقات پيرامون آن توسط آلفرد وگز سبب شد كه بالاخره وي نخستين كسي باشد كه توانست موضوع يكي بودن قاره ها را در ابتدا و حركت آنها طي ساليان دراز را مطرح و پيگيري كند. بر اين اساس در حدود 200 ميليون سال قبل، قاره ها به هم اتصال داشته و يك قاره واحد بنام پانگه آ(Pangaea)را تشكيل مي دادند.

    بر اساس نظريه فوق سطح زمين از يك پوسته سخت به ضخامت 70 تا 150 كيلومتر (ضخامت متوسط 100 كيلومتر )تشكيل شده است كه آن را سخت كره (Lithosphere) مي نامند . در زير ليتوسفر در درون زمين يك لايه با حالت خميري و داغتر و البته ضعيف تري نسبت به ليتوسفر بنام مذاب كره (Asthenosphere) قرار دارد.پوسته زمين در بعضي مناطق جغرافيايي بريده شده و صفحاتي را بوجود آورده است كه اين صفحات بي حركت نبوده و روي گوشته خميري زمين سر مي خورند و در نتيجه وضعيت نسبي و مرز بين آنها همواره در حال تغيير است.
    اين صفحات به دو نوع كلي قاره اي و اقيانوسي تقسيم مي شوند كه قاره ها روي پوسته گرانيتي نسبتا سبكي به ضخامت حدود 40 كيلومتر و اقيانوس ها روي پوسته بازالتي متراكم تري به ضخامت تقريبي 7 كيلومتر قرار دارند.حرارت درون زمين از مهمترين عوامل حركت و جا به جايي اين صفحات است. ابعاد صفحات اقيانوسي و موقعيت آنها در حال تغيير است و ماده سازنده آنها در حال تجديد . البته لازم به ذكر است كه سرعت ايجاد و گسترش صفحات با مقياس سانتيمتر در سال اندازه گيري مي‌شود.

    حركت هر چند كند صفحات باعث انباشت انرژي در صفحات زمين ساخت مي‌شود و در اثر رها شدن ناگهاني اين انرژي و انتشار امواج ارتعاشي در محل برخورد صفحات با همديگر، در سطح زمين زلزله هاي ويرانگري رخ مي دهد.
    اگر اين صفحات به هم نزديك شوند، در محل برخوردشان موجب كوه زايي مي شوند مثل حركت صفحات ايران و عربستان به طرف هم كه در محل برخوردشان سلسله جبال زاگرس را بوجود آورده اند . ولي اگر اين صفحات از هم دور شوند باعث ايجاد شكاف مي شوند به عنوان نمونه شكاف وسط اقيانوس اطلس از اين نوع است. صفحات اقيانوسي و قاره اي تفاوت هاي عمده اي با هم دارند از جمله اينكه صفحات اقيانوسي در محل برخورد در بعضي مناطق در زير همديگر فرو رفته و صفحه زيرين وارد لايه مذاب زمين شده و بعدا به مرور خود هم ذوب مي‌شود و اين صفحات در حاشيه شيارهاي بر آمده با نوار هاي بزرگ آتشفشاني موسوم به پشته اقيانوسي كه از كف اقيانوس ها عبور مي كنند ايجاد مي شوند، اما بر خلاف اين صفحات، صفحات قاره اي در پشته تشكيل نمي شوند و در گوشته هم فرو نمي روند . تفاوت ديگر اين دو نوع صفحه از نظر سن، جنس و تركيب شيميايي است .
    سن قاره ها نسبت به صفحات سازنده كف اقيانوس ها بسيار زيادتر بوده و در حدود يك ميليارد سال بيشتر است در حالي كه سن صفحات اقيانوسي از 200 ميليون سال تجاوز نمي كند. قاره ها همچون چوب پنبه روي آب به طور سرگردان در حركتند و اين حركت تابع سيالي است كه آنها را با خود مي كشاند و مثل همان چوب پنبه هيچگاه در سيال (گوشته مذاب زمين)فرو نمي روند.

    در نظريه زمين ساخت صفحه اي يا تكتونيك صفحه اي، كره زمين به هفت صفحه اصلي تقسيم شده است :1- صفحه آفريقا 2- صفحه اوراسيا (ورازي) 3- صفحه اقيانوس هند 4- صفحه اقيانوس آرام 5- صفحه قطب جنوب 6- صفحه آمريكا 7- صفحه نازكا. در اين نظريه، قاره ها نقش خاصي را بر عهده دارند. قاره ها همراه با صفحاتي كه روي آنها قرار دارند از هم جدا مي شوند، تغيير مكان مي دهند ولي هيچگاه در گوشته فرو نمي روند. وقتي دو قاره بهم نزديك شوند و بهم برخورد كنند در محل برخورد، انسداد و جوش خوردگي بوجود مي آيد. مثلا وقتي هندوستان از آفريقا جدا شد به صورت قطعه از آفريقا به طرف شمال به حركت در آمد و در حدود 40 ميليون سال قبل به آسيا برخورد، عظيم ترين رشته كوه جهان يعني رشته كوه تبت - هيماليا بوجود آمد . در نتيجه آسيا به شكل جديد در آمد زيرا هند به قاره آسيا جوش خورد و زايده مثلثي جنوب آسيا تشكيل شد. امروزه از اين برخورد اثري بر جاي مانده كه رودخانه يالونگ تسانگپو (Yalong Tsangpo )در نزديكي آن جريان دارد و مي توان آن را محل التيام و جوش خوردگي دانست. اصولا در محل اين جوش خوردگي ها ،گسل هاي فراواني وجود دارد كه بعضا زلزله هاي بسيار شديدي در آنها رخ مي دهد . البته بايد دانست كه واقعه برخورد هند به آسيا منحصر به فرد نيست، تمام قاره آسيا از قطعاتي درست شده است كه تدريجا و طي مراحلي به آن چسبيده اند. ايران هم قطعه اي از اَبَر قاره گندوانا به شمار مي رفته و احتمالا طي دوره كربونيفر يا ترياس به آسيا چسبيده است. البته قاره هاي اروپا و آفريقا نيز بارها به هم برخورد كرده‌اند و از آخرين برخورد آنها كوه هاي آلپ تشكيل شده است. زمين شناسان پيش بيني مي كنند كه برخورد بعدي لااقل در 20 ميليون سال آينده اتفاق خواهد افتاد و مديترانه را از بين خواهد برد . از تمام اين برخورد ها آثار التيام و جوش خوردگي به جاي مانده است.

    با وجود شناخت عوامل اصلي ايجاد زلزله ها در جهان ، هنوز روش يا برنامه خاصي براي پيش بيني زمان دقيق وقوع زلزله ها كه مي تواند تا حدود بسيار زيادي به كاهش تلفات وخسارات جاني و مالي ناشي از آن كمك كند، وجود ندارد . بنابراين مهمترين كاري كه در مواجهه با زلزله ها مي توان انجام داد اين است كه تا حد امكان كاري كنيم كه ميزان تلفات و خسارات مالي و جاني ناشي از آن به حداقل مقدار خود برسد زيرا به هيچ وجه نمي توان مانع از وقوع زلزله شد كه صد البته در اين ميان كاهش تلفات جاني در اولويت قرار دارد . از جمله مهمترين اين اقدامات رعايت اصول صحيح مهندسي در امر ساختمان سازي و اجراي تمام مراحل ساخت و ساز از ابتداي امر تا پايان كار اجرايي بر اساس قوانين و ضوابط ملي و بين المللي موجود در اين زمينه است. چيزي كه متاسفانه امروزه در بسياري از موارد بدليل ندانم كاري و سهل انگاري عمدي يا سهوي مسئولان و ناظران امر آن طوري كه بايد صورت نمي‌گيرد. كاري كه به جرات مي توان گفت كه مردمان سرزمين آفتاب تابان و خيلي از كشورهاي ديگر دنيا با برنامه ريزي مدون و منطقي و با اختصاص دادن بودجه لازم، به اين مهم دست يافته اند. اين كشورها با بكارگيري روش هاي صحيح و اصولي ساختمان سازي ،آموزش دادن و آشنا كردن مردم با راهكارهاي مواجهه با زلزله و كارهاي ديگر از اين دست توانسته اند فرهنگ زلزله را در ميان مردمان خود به خوبي جا بيندازند. به عنوان مثال در يكي از شهرهاي ژاپن زلزله حدودا 7 ريشتري يك نفر كشته داشته است در حالي كه در زلزله بم ما 30 هزار كشته داشتيم كه اين مثال خود گوياي همه ناگفته ها در مورد ساخت و ساز غير اصولي در كشورمان است.

    پي نوشت
    ۱ - مقياس ريشتر معرف انرژي آزاد شده توسط يك زلزله است.مثلا انرژي زلزله اي به بزرگي 5/8 ريشتر معادل انرژي آزاد شده از انفجار 30 ميليون تن TNT است. زلزله با بزرگي 2 ريشتر معمولاً كوچكترين زلزله اي است كه توسط انسان حس مي‌شود. بزرگي ريشتر با دامنه موج زلزله ثبت شده توسط لرزه نگار به صورت لگاريتمي تغيير مي كند ، يعني ازدياد بزرگي ريشتر به اندازه يك واحد متناظر با 10 برابر شدن دامنه موج و تقريبا 31 برابرشدن مقدار انرژي رها شده بوسيله زلزله است.
    ۲ - گسل معرف صفحه اي است كه حركات زمين در طول آن رخ مي دهد و مبدا حركت زمين در يك زلزله از آن ناشي مي‌شود .

    منبع : همشهري

  8. این کاربر از boomba بخاطر این مطلب مفید تشکر کرده است


  9. #35
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    تیرچه های پیش ساخته خرپایی


    مقدمه
    فن تیرچه و بلوک، تلفیق دو روش پیش ساختگی و بتن ریزی در محل است که در آن، قالب تحتانی به کلی حذف می شود. در این روش، فولادهای کششی و برشی ( عرضی ) و پوشش بتنی فولادهای اصلی، بصورت تیرچه های پیش ساخته در کارخانه تولید می شوند. در کارگاه، پس از قرار دادن تیرچه ها به فاصله های معین و شمعبندی زیر تیرچه ها، بلوکها را بین دو تیرچه مجاور قرار داده و سپس آرماتورهای حرارتی را نصب و بتن ریزی می نمایند ؛ به طوری که حداقل ضخامت بتن در روی بلوک، پنج سانتیمتر باشد. پیش از حصول مقاومت بتن پوششی، وزن بلوک ها و بتن توسط تکیه گاههای موقت تحمل می شود و پس از حصول مقاومت بتن پوششی، تیرهای T شکل چسبیده و مجاور هم لنگر خمشی حاصل از بارهای قائم سقف را تحمل، و به تیرهای اصلی منتقل می کنند.

    اجزای اصلی تشکیل دهنده سقف تیرچه و بلوک

    سقف اجرا شده با تیرچه و بلوک از انواع سقف های با پشت بند ( تیرک دار ) بتنی است که تحمل فشار به بتن بالایی با ضخامت حداقل پنج سانتیمتر واگذار می گردد و کشش توسط میلگردهای کششی تیرچه ( میلگردهای تحتانی تیرچه ) تحمل می شود. بتن بالایی همچنین، همانند یک دال نازک با دهانه ای برابر فاصله دو تیرچه، خمش موضعی را در محل بین دو تیرچه تحمل می کند. در این نوع سقف، تیرچه ها به فاصله حداکثر 70 سانتیمتر ( محور تا محور ) کنار هم و در امتداد دهانه کوتاهتر سقف قرار می گیرند و با بتن پوششی که در محل ریخته می شود و ضخامت آن حداقل پنج سانتیمتر است، تیرهای T شکل چسبیده و مجاور هم را تشکیل می دهند. برای پرکردن فاصله تیرچه ها، از عناصر گوناگون، مانند آجرهای توخالی، بلوکهای بتنی و حتی پلاستیک و چیزهای دیگر استفاده می شود. این عناصر پرکننده در سقف تحمل نیرو نمی کنند.

    بنابراین، سقف تیرچه و بلوک از اجزای اصلی، به شرح زیر تشکیل می شود :

    1- تیرچه

    2- بلوک

    3- میلگرد حرارتی و افت و میلگرد منفی

    4- بتن پوششی ( درجا )

    که نقش هریک از این اجزا در مراحل دو گانه باربری، یعنی مرحله حمل و نقل تیرچه و اجرای سقف و مرحله بهره برداری را، به ترتیب زیر می آوریم :

    1- تیرچه : عضو پیش ساخته ای است، متشکل از بتن و فولاد به مقطع تقریبی T، که در دو نوع تیرچه خرپایی و تیرچه پیش تنیده، تولید می شود و مانند همه قطعه های پیش ساخته در دو مرحله تحت اثر نیرو قرار می گیرد. این دو مرحله به علت اهمیت آنها باید به دقت مورد ملاحظه قرار گیرند :

    الف) مرحله اول باربری : در این مرحله باید تیرچه به تنهایی قادر به تحمل بار ناشی از وزن خود در هنگام حمل و نقل بوده و همچنین قادر به تحمل وزن مرده سقف ( وزن تیرچه، بلوک و بتن پوششی ) بین تکیه گاههای موقت ( شمعبندیها ) در زمان اجرای سقف باشد.

    ب) مرحله دوم باربری : این مرحله در تیرچه پس از حصول مقاومت بتن پوششی فرا می رسد که تکیه گاههای موقت اجرایی برداشته شده و تیرچه به عنوان عضو کششی مقطع تیرT تحمل نیرو می نماید.

    1-1 تیرچه پیش ساخته خرپایی : تیرچه پیش ساخته خرپایی فولادی و پاشنه بتنی تشکیل شده است و در صورتی که دارای قالب سفالی باشد، تیرچه کفشک دار نامیده می شود.

    تیرچه پیش ساخته خرپایی برای تحمل مراحل دوگانه باربری، از اجزای زیر تشکیل می شود :

    - عضو کششی - میلگردهای عرضی - میلگردهای بالایی

    عضو کششی : در مرحله اول باربری تیرچه، فولاد زیرین خرپا به عنوان عضو کششی خرپای تیرچه باید قادر به تحمل نیروی کششی ( حاصل از لنگر خمشی ) ناشی از وزن خود تیرچه در زمان حمل ونقل باشد و همچنین قادر به تحمل نیروی کششی ( حاصل از لنگر خمشی ) ناشی از وزن مرده سقف در فاصله محور تا محور تیرچه ها و بین دو تکیه گاه موقت ( شمعبندی ) باشد.

    در مرحله دوم باربری تیرچه، فولاد زیرین خرپا به عنوان عضو کششی تیر T عمل می کند.

    حداقل تعداد میلگرد کششی دو عدد بوده و سطح مقطع میلگردهای کششی از طریق محاسبه تعیین می شود. توصیه می شود قطر میلگردهای کششی از 8 میلیمتر کمتر و از 16 میلیمتر بیشتر نباشد. برای صرفه جویی در مصرف فولاد و پیوستگی بهتر آن با بتن، معمولا" از میلگرد آجدار، به عنوان عضو کششی استفاده می شود.

    میلگردهای عرضی : در مرحله اول باربری، میلگردهای عرضی همانند عضو مورب خرپا عمل می کنند و به کمک اعضای کششی و بالایی، ایستایی لازم را جهت تحمل وزن خود تیرچه ( در هنگام حمل و نقل ) و وزن مرده سقف بین تکیه گاههای موقت ( در هنگام اجرا ) تامین می نمایند. در مرحله دوم باربری تیرچه، میلگردهای عرضی، پیوستگی لازم بین میلگرد کششی خرپا و بتن پوششی ( بتن درجا ) را تامین می کنند. همچنین مقابله با نیروی برشی تیر T به وسیله میلگردهای عرضی انجام می گیرد. در بعضی از انواع تیرچه های پیش ساخته، در خرپا به جای میلگرد از ورق خم کاری شده به جای عضو کششی – میلگردهای عرضی – میلگردهای بالایی استفاده می شود.

    این میلگردها جهت منظورهای زیر در تیرچه مصرف می شوند : الف) تامین اینرسی لازم جهت مقاومت تیرچه در هنگام حمل و نقل ب) تامین مقاومت لازم جهت تحمل بار بلوک و بتن پوششی در بین تکیه گاههای موقت، پیش از به مقاومت رسیدن بتن ج) تامین پیوستگی لازم بین تیرچه و بتن پوششی د) تامین مقاومت برشی مورد نیاز تیرچه

    میلگرد بالایی :در مرحله اول باربری، فولاد تعبیه شده در قسمت بالای تیرچه، به عنوان میلگرد بالایی خرپا عمل می نماید و به کمک دیگر اعضای خرپا، وزن تیرچه را هنگام حمل و نقل و همچنین وزن مرده سقف را در فاصله دو تکیه گاه موقت ( هنگام قالب بندی و بتن ریزی پیش از به مقاومت رسیدن بتن پوششی ) تحمل می کند.

    در مرحله دوم باربری تیرچه اگر میلگرد بالایی در ضخامت بتن پوششی و بالاتر از سطح بلوکها قرار گیرد، در نقش فولاد افت حرارتی مقطع مرکب سقف عمل میکند( در مقطع تیر T )، و در صورتی که پایین تر از سطح بلوکها قرار گیرد، نقشی نخواهد داشت .

    بتن پاشنه تیرچه پیش ساخته : برای تامین تکیه گاه بلوکها و نیز برای پرهیز از قالب بندی قسمت زیرین جان تیر T در موقع اجرا، بتن پاشنه تیرچه در کارخانه ریخته می شود. حسن دیگر این عمل این است که بعلت فراهم بودن شرایط بهتر اجرا در کارخانه، پوشش آرماتورهای کششی به صورت مطمئنتری تامین می گردد. این پوشش در مقاومت سقف در برابر آتش سوزی اثر بسزایی دارد.

    حداقل عرض بتن پاشنه 10 سانتیمتر است و نباید از 3.5/1 برابر ضخامت سقف کمتر باشد. ارتفاع بتن پاشنه باید به میزانی باشد که قابل بتن ریزی بوده و پوشش بتنی روی میلگرد را جهت ایجاد مقاومت در برابر آتش سوزی تامین نماید و همچنین پس از قرار گرفتن بلوک روی تیرچه ها، سطح زیرین بلوک با سطح زیری تیرچه همسطح گردد. معمولا" ضخامت بتن پاشنه 4.5 تا 5.5 سانتیمتر و عرض آن 10 تا 16 سانتیمتر است. حداقل تاب فشاری بتن پاشنه، 250 کیلوگرم بر سانتیمتر مربع است.

    1-2 تیرچه پیش ساخته پیش تنیده : این نوع تیرچه که فقط در کارخانه های مجهز تولید می شود، از مقطع بتنی T و سیمهای فولادی با مقاومت بالا ( 17500 تا 19000 کیلوگرم بر سانتیمتر مربع ) تشکیل می شود . سیمها را پیش از بتن ریزی تیرچه توسط جکهایی تحت کشش قرار داده و پس از حصول مقاومت لازم بتن، آنها را آزاد می کنند. در نتیجه، بتن تیرچه تحت تنش فشاری قرار می گیرد.

    2- بلوک : برای پرکردن محلهای خالی بین تیرچه ها، از بلوکهای توخالی استفاده می شود که جنس آنها از سفال یا بتن و حتی پلاستیک و یونولیت است. بلوکها علاوه بر خاصیت پرکنندگی فضای خالی، در حکم قالب بتن پوششی نیز هستند. بلوکها در سقفهای اجرا شده با تیرچه و بلوک، تحمل نیرو نمی کنند و فقط خاصیت پرکنندگی دارند.

    از بلوک به عنوان قالب همیشگی یا قالبی که پس از اجرا باقی می ماند، برای قالب بندی بغل گونه جان تیرهای T و همچنین بتن پوششی درجا استفاده می شود. قسمت زیرین بلوک، جهت تامین سطحی مسطح برای انجام نازک کاری و قسمتهای تیغه داخلی بلوک به منظور تقویت مقطع تعبیه می گردند. بلوکها در محاسبات مقاومت سقف به حساب نمی آیند و اساسا" به منزله قالبهایی هستند که باید نیروهای اجرایی پیش از بتن ریزی سقف را تحمل نمایند. مثلا" در روی سقف، پیش از بتن ریزی، تحمل نیروی حاصل از رد شدن چرخ فرغون را داشته باشد و همچنین باید مقاومت کافی برای تحمل نیروهای حاصل از حمل و نقل و دپو نمودن را داشته باشد. شکل بلوک با توجه به موارد یاد شده طراحی می شود و بلوک توخالی معمولا" از مواد مختلف تولید می شود. مانند : 1- بتن با مصالح سنگی معمولی 2- بتن با مصالح سبک وزن 3- سفال 4- مصالح چوبی یا مقوایی 5- یونولیت و مشابه یا نی

    مواد تشکیل دهنده بلوک نباید روی بتن درجا اثر شیمیایی داشته باشند. ارتفاع و طول بلوک، تابع ضخامت کل سقف و فاصله تیرچه ها از همدیگر می باشد.عرض بلوک، معمولا" 20 تا 25 سانتیمتر است. وزن بلوک باید طوری باشد که به آسانی با دست در روی سقف جا به جا گردد. بلوکهای سفالی باید عاری از ترک و دانه های آهکی باشند، و رنگ آنها کاملا" یکنواخت بوده و به طور یکسان پخته شده باشند.سطوح بلوک سفالی باید صاف و عاری از انحنا و خمیدگی و دارای لبه های تیز و مستقیم بوده و بافت ریز و متراکم داشته باشند. سطح خارجی بلوک، به جهت ایجاد چسبندگی لازم به بتن بالایی و همچنین به نازک کاری زیر سقف شیاردار می باشد.

    3- میلگردهای افت حرارتی : جهت مقابله با تنشهای متفرقه در بتن پوششی و به منظور جذب تنشهای ناشی از افت و تغییر حرارت، میلگردهایی در دو جهت عمود برهم و در قسمت بالایی تیر نواری T و روی بلوکها نصب می گردند، که میلگرد افت و حرارتی نامیده می شوند.

    در صورتی که ارتفاع تیرچه خرپایی به حدی باشد که میلگرد نصب ( بالایی ) در محل تعبیه میلگرد افت قرار گیرد، می توان از میلگرد مزبور به عنوان میلگرد افت و حرارتی در جهت طولی تیرچه استفاده کرد.

    قطر میلگرد افت حرارتی بر ای میلگرد ساده، دست کم 5 میلیمتر، و برای میلگرد با مقاومت بالا 4 میلیمتر و حداکثر فاصله بین دو میلگرد افت حرارتی 25 سانتیمتر است.

    4- بتن پوششی ( بتن درجا ) : بتن پوششی، قسمتی از تیر مرکب است که در محل کارگاه پس از جاگذاری تیرچه ها و بلوکها بتن ریزی می گردد و پس از حصول مقاومت لازم به کمک عضو کششی بار وارد بر سقف را تحمل می کند.

    محدودیتها و ویژگیهای فنی سقف تیرچه و بلوک

    سقفهای اجرا شده با تیرچه بلوک، دارای محدودیتهای اجرایی به شرح زیر هستند :

    1- فاصله محور تا محور تیرچه ها نباید از 70 سانتیمتر بیشتر باشد.

    2- بتن پوششی قسمت بالایی تیر ( بتن روی بلوک ) نباید از 5 سانتیمتر، یا 12/1 فاصله محور به محور تیرچه ها کمتر باشد.

    3- عرض تیرچه نباید از 10 سانتیمتر کوچکتر باشد و همچنین نباید از 3.5/1 برابر ضخامت کل سقف کمتر باشد.

    4- حداقل فاصله دو بلوک دو طرف یک تیرچه، پس از نصب نباید کمتر از 6.5 سانتیمتر باشد.

    5- ضخامت سقف برای تیرهای با تکیه گاه ساده نباید از 20/1 دهانه کمتر باشد. در مورد تیرهای یکسره نسبت ضخامت به دهانه، به 26/1 کاهش می یابد. در سقفهایی که مسئله خیز مطرح نباشد، این مقدار تا 35/1 دهانه نیز کاهش می یابد.

    6- حداکثر دهانه مورد پوشش سقف ( در جهت طول تیرچه پیش ساخته خرپایی ) با تیرچه های منفرد، نباید از 8 متر بیشتر شود. توصیه می شود برای اطمینان بیشتر، دهانه مورد پوشش، بیشتر از 7 متر نباشد و در صورت وجود سربارهای زیاد، و یا دهانه بیش از هفت متر، از تیرچه های مضاعف استفاده شود.


    تکیه گاههای موقت اجرایی

    به طور کلی به محض اینکه تیرچه ها و بلوکهای انتهایی بین دو تکیه گاه اصلی قرار گرفتند، شمعبندی و قالب بندی به وسیله چهار تراشهای عمود بر جهت تیرچه که در مورد تیرچه های پیش ساخته خرپایی، فاصله آنها از همدیگر، 1 تا 1.20 متر است، انجام می شود. موقع شمعبندی، خیز مناسبی برابر 200/1 دهانه به طرف بالا در نظر گرفته می شود تا پس از بارگذاری خیز منفی اولیه حذف شده و سقف مسطح گردد. به طور کلی، چهار تراشها و شمعها باید طوری نصب شوند که بتوانند در مقابل نیروهای وارده مقاومت نمایند؛ آنها را باید طبق اصول و قواعد مربوط به آن، به یکدیگر متصل کرد.

    در اجرای تکیه گاههای موقت و جمع آوری آنها، نکته های زیر باید رعایت گردند :

    الف) در صورتی که شمعها روی زمین تکیه داشته باشند، باید مطمئن بود که زمین زیر شمع، به علت دستی بودن خاک یا جذب رطوبت بعدی، نشست نکند. به طور کلی، در صورت سست بودن زمین، باید با افزایش سطح تکیه گاه شمعها و جلوگیری از نمناک شدن زمین، از نشست جلوگیری کرد.

    ب) چنانچه تکیه گاه شمعها، سقف طبقه زیرین باشد، باید وزن شمعبندی و سقف مورد احداث به منزله سربار سقف زیرین در نظر گرفته شده و با توجه به عمر بتن سقف زیرین، تقویت لازم برای آن پیش بینی گردد. در غیر این صورت، سقف زیرین تحمل سربار وارده را ننموده و این باعث آسیب دیدن آن خواهد شد.

    ج) در جمع آوری تکیه گاههای موقت نیز باید از حصول مقاومت کافی سقف مورد نظر، جهت تحمل وزن خود و سربارهای وارده از جمله شمعهای مربوط به سقف بالاتر، اطمینان حاصل کرد.

  10. 2 کاربر از boomba بخاطر این مطلب مفید تشکر کرده اند


  11. #36
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    پی های نواری و برخی ابهامات در طراحی این پی ها

    امروزه متداولترین نوع پی در ساختمانها، پی نواری میباشد. اما با وجود استفاده عمومی از این پیها به نظر میرسد که هنوز در روش طراحی این پی ها ابهاماتی وجود دارد، که نیاز به بحث و بررسی آنها میباشد. در این مقاله ابتدا به روش معمول در طراحی این پی ها توسط همکاران اشاره کوتاهی میشود و در قسمت بعدی ابهامات موجود در این روش طراحی مطرح و مورد بررسی قرار میگیرد.

    -روش معمول در طراحی پی های نواری
    معمولآ مهندسان محاسب پی های نواری را با فرض صلبیت نسبی پی در مقایسه با خاک زیر پی و در نتیجه با فرض توزیع یکنواخت و یا خطی تنش در زیر پی و بدون استفاده از برنامه های کامپیوتری مبتنی بر تئوریهای اجزاء محدود (نظیر نرم افزار SAFE) طراحی میکنند. برای طراحی از 2 ترکیب بارگذاری زیر مطابق آیین نامه ACI استفاده میشود.

    1) 1.4D+1.7L
    2) 0.75(1.4D+1.7L+1.87E) (D بار مرده، L بار زنده و E بار زلزله میباشد )

    سپس با در نظر گرفتن کل مجموعه پی ها به عنوان یک عضو سازه ای گشتاور دوم اینرسی این مجموعه در هر دو جهت اصلی سازه و حول نقطه مرکز سختی پی محاسبه میشود. همچنین با محاسبه مجموع بارهای ثقلی و لنگرهای موجود در مرکز سختی پی، برای هر یک از دو حالت بارگذاری بالا و با استفاده از فرمول توزیع تنش در زیر پی محاسبه میشود.

    با به دست آمدن توزیع تنشها در زیر پی، هر یک از نوارهای پی به صورت یک تیر چند دهانه یکسره که بار تیر برابر حاضلضرب تنش زیر پی در عرض پی و به صورت گسترده و تکیه گاههای آن در واقع همان ستونها میباشند، توسط برنامه هایی نظیر SAP2000 مورد آنالیز قرار گرفته و با محاسبه مقادیر لنگرها در نقاط مختلف، مقدار آرماتورهای مورد نیاز در بالا و پایین نوارهای پی محاسبه میشود. (معمولآ در جهت اطمینان و راحتی محاسبات تنش وارد بر نوارهای پی به صورت یکنواخت و برابر تنش ماکزیمم زیر پی در نظر گرفته میشود).در مرحله آخر در دهانه های بادبندی شده مقدار آرماتورهای بالا در زیر ستونها و آرماتورهای پایین در وسط دهانه مقداری افزایش داده میشود.(حدود 50 درصد)

    -برخی ابهامات و اشکالات موجود در این روش

    اما همانطور که در ابتدا نیز اشاره شد، این روش دارای ابهامات و اشکالاتی میباشد؛ اشکالاتی که باعث تفاوت بعضـآ بسیار زیاد مابین نتایج روش فوق الذکر با روش طراحی کامپیوتری (بر اساس نرم افزار SAFE) میشود. به این ابهامات در زیر اشاره میشود:

    1- اولین ابهام در فرض صلب بودن پی میباشد. برای آنکه یک پی به صورت صلب فرض شود، باید یکی از دو شرط زیر ارضا شود:

    الف- در صورتی که مقدار بار و فاصله ستونهای مجاور تفاوتی بیش از 20 در صد نداشته باشند و میانگین طول دو دهانه مجاور کمتر از باشد.

    ب- در صورتی که پی نواری، نگهدارنده یک سازه صلب باشد که به خاطر سختی سازه، اجازه تغییر شکلهای نامتقارن به سازه داده نمیشود. برای تعیین سختی سازه باید به کمک یک آنالیز، سختی مجموعه پی، سازه و دیوارهای برشی ُرا با سختی زمین مقایسه نمود .(جزییات و فرمولهای این قسمت درکتب مختلف موجود میباشد).

    معمولآ مهندسان محاسب از شرط اول استفاده نموده و صلب بودن پی را نتیجه میگیرند. اما اشکال اساسی آنجاست که اکثریت ساختمانهای متداول، پیش شرط این شرط را دارا نمیباشند و اساسآ این شرط برای این ساختمانها قابل استفاده نمیباشد. زیرا با توجه به آنکه اکثریت ساختمانها دارای سیستم سازه ای بادبندی میباشند، در ترکیب بار زلزله در دو ستون مجاور یک دهانه بادبندی، به علت آنکه در یک ستون نیروی فشاری قابل توجه و در ستون دیگر نیروی کششی قابل توجه به وجود می آید، بار این دو ستون (با در نظر گرفتن علامن بارها) اختلافی بسیار بیشتر از 20 درصد دارند و به این جهت شرط الف به طور کلی غیر قابل استفاده میباشد. و اگر پی دارای شرایط صلبیت باشد، بر اساس شرط دوم میباشد و نه شرط اول.

    2-دومین خطایی که در این روش وجود دارد، محدود کردن ترکیب بارها به تنها دو ترکیب بار میباشد و حداقل یک ترکیب بار مهم دیگر نادیده گرفته شده میشود.

    3) 0.75*(1.2D+1.87E)

    این ترکیب بار از آنجا دارای اهمیت میباشد که با توجه به حذف بار زنده و کاهش ضریب بارهای مرده، مقدار نیروی کششی (اصطلاحآ uplift) در ستونهای دهانه های بادبندی به مقدار قابل توجهی افزایش می یابد، که این مساله سبب بالا رفتن مقدار آرماتور بالا در زیر ستونها در روش محاسبه با نرم افزار SAFE و در نتیجه اختلاف بیشتر مابین نتایج دو روش با همدیگر میشود.

    3-اما عمده ترین ابهام و ایراد وقتی به وجود می آید که پس از محاسبه مقادیر تنشها، نوارهای پی به صورت تیرهای یکسره در نظر گرفته شده و تنشهای زیر پی به صورت بار خارجی به تیر واردمیشود و تیر مورد آنالیز قرار میگیرد. این روش تا وقتی که در هر نوار فقط دو ستون وجود داشته باشد (سازه معین باشد)، هیچ ایرادی ندارد. اما ایرادها وقتی ایجاد میشود که در هر نوار تعداد ستونها 3 و یا بیشتر باشد. در این حالت نوارها به صورت تیر نامعین در می آیند. مقادیر واکنشها و تلاشهای داخلی در تیرهای نامعین بستگی کامل به شرایط مرزی تیر و معادلات سازگاری حاصل از شرایط مرزی دارد و در صورت تفاوت شرایط مرزی، صرف آنکه شرایط ظاهری آنها شبیه هم باشد، نمیتواند دلیل قانع کننده ای جهت برابر دانستن نتایج آنالیز برای دو حالت باشد. برای یک تیر چند دهانه یکسره شرایط مرزی به شرح زیر است:

    الف- صفر بودن تغیییر مکانها در محل تکیه گاهها

    ب- مساوی بودن مقدار دوران ها در حد مرزی چپ و راست هر یک از تکیه گاهها (شرط به هم پیوستگی تیر)

    اما در نوارهای پی شرط مرزی الف در بالا به شکل دیگری میباشد.با توجه به آنکه پی به صورت تیر بر بستر ارتجاعی در نظر گرفته میشود، مقدار تنش در هر نقطه ضریبی از مدول عکس العمل زمین میباشد((q=Ks.d و به این ترتیب تغییر مکان در محل تکیه گاهها (و هر نقطه دیگر از پی) بر خلاف شرط الف صفر نمیباشد و برابر حاصل تقسیم تنش موجود بر مدول عکس العمل زمین میباشد(d=q/Ks). ضمن آنکه در این حالت اساسآ مقادیر واکنشهای تکیه گاهی (که همان نیروهای موجود در ستونها میباشند) موجود است و مقادیر تلاشهای داخلی تیر باید به گونه ای محاسبه گردند که با این واکنشها همخوانی داشته و در تعادل باشند. این در حالی است در تحلیل نتایج حاصل از این روش مقادیر واکنشهای تکیه گاهی با نیروهای موجود در ستونها تفاوت بسیاری دارد که خود نشاندهنده غلط بودن این روش میباشد. به طور مثال در ستونهای پای بادبند که ممکن است که یک نیروی کششی قابل توجه وجود داشته باشد بر اساس نتایج این روش معمولآ یک واکنش به صورت یک نیروی فشاری به وجود می آید (بیش از 100 در صد اختلاف!!).

    اما ابهام آخری که وجود دارد اینست که طرفداران این روش اگر به درست بودن روش خود اطمینان دارند چرا مقادیر میلگردهای به دست آمده برای دهانه های بادبندی را افزایش می دهند؟ و این افزایش طبق چه معیاری میباشد؟ آیا این مساله خود نشان دهنده عدم اطمینان طرفداران این روش به نتایج حاصله نمیباشد؟

    منبع: همکلاسی

  12. 2 کاربر از boomba بخاطر این مطلب مفید تشکر کرده اند


  13. #37
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    ساختار كار پلها



    این مقاله به بحث و بررسی پیرامون انواع پل ها و ساختارشان پرداخته است. شما در این مقاله با انواع پل های تیری، پل های قوسی، پلهای زیرقوسی و پل های معلق آشنا خواهید شد. به علاوه این که نیروهایی را که بر پلها تاثیر می گذارند را خواهید شناخت.
    این مقاله با زبانی ساده و قابل فهم به بررسی پلها می پردازد. امید است مورد رضایت شما قرار گیرد. بدون شک تا به حال پلی را دیده اید و یا به احتمال زیاد از روی یکی از آنها عبور کرده اید. حتی اگر شما تخته یا کنده درخت را برای جلوگیری از خیس شدن خود بر روی آب قرار دهید در واقع شما یک پل ساخته اید. حقیقتاً پل ها در همه جا وجود دارند و در واقع یک بخش طبیعی و بدیهی از زندگی روزمره ی ما را تشکیل می دهند. یک پل مسیری را بر روی مانع ایجاد می کند که این موانع می تواند رودخانه، دره، جاده، خطوط راه آهن و ... باشد.در این مقاله ما سه نوع اصلی از پل ها را مورد مطالعه و بررسی قرار خواهیم داد که شما می توانید بفهمید که هرکدام چگونه کار می کنند. نوع پل بکار رفته در یک مکان به نوع مانع موجود در آنجا بستگی دارد. معیار اصلی در تعیین نوع پل وسعت و گستردگی آن مانع می باشد. چه مسافتی میان طرفین مانع وجود دارد؟ این مسئله، فاکتور اصلی در تعیین نوع پلی است که قرار است در آن محل احداث شود. با سپری شدن زمان و مطالعه ای مقاله علت آن را متوجه خواهید شد.

    *** سه نوع اصلی از پلها موجودند: پل تیری پل قوسی پل معلق

    تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه، فاصله ای است بین پایه های ابتدایی و انتهایی پل، اعم از اینکه آن ستون، دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از 200 پا (60متر) تجاوز نمی کند. در حالی که یک پل قوسی مدرن به 800 تا 1000 پا (240 تا 300 متر) همو می رسد. پل معلق نیز تا 7000 پا طول دارد.چه عاملی سبب می شود که یک پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یک معلق بتواند تقریباً تا 7 برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید که بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و کششی تاثیر می پذیرند.

    نیروی فشاری : نیرویی است که موجب فشرده شدن و یا کوتاه شدن چیزی که بر روی آن عمل می کند می شود.

    نیروی کششی : نیرویی است که سبب افزایش طول و گسترش چیزی که بر روی آن عمل می کند، می گردد.

    در این زمینه می توان از فنر به عنوان یک مثال ساده نام برد. زمانی که آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیک می کنیم، در واقع ما آن را را متراکم می سازیم. این نیروی تراکم یا فشاری موجب کوتاه شدن طول فنر می شود. و نیز اگر دو سر فنر را از یکدیگر دور سازیم، نیروی کششی در فنر ایجادشده، طول فنر را افزایش می دهد. نیروی فشاری و کششی در همه پل ها وجود دارند و وظیفه طراح پل این است که اجازه ندهد این نیروها موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد که نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه کند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی، پخش و یا انتقال آنهاست. پخش کردن نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانکه هیچ تک نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمرکز نباشد. انتقال نیرو به معنی حرکت نیرو از یک منطقه غیر مستحکم به منطقه مستحکم است، ناحیه ای که برای مقابله با نیرو طراحی شده و منظور گردیده است. یک پل قوسی مثال خوبی برای پراکندگی است حال آنکه پل معلق نمونه ای بارز از انتقال نیروست.

    پلهای تیری : یک پل تیری، اساساً یک سازه افقی مستحکم است که بر روی دو پایه نصب شده است و این پایه ها، هر یک در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر که بر روی پل اعمال می شود، مستقیماً توسط پایه ها تحمل می شوند.

    فشار : نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود که بخش بالایی عرشه کوتاه- تر گردد.

    کشش : برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی کششی در بخش پایینی عرشه پل منجر می شود. این کشش موجب افزایش طول در بخش پایینی پل می شود.

    پراکندگی : بسیاری از پلهای تیری که شما می توانید آنها را در بزرگراهها بیابید، برای تحمل بار از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی که تیر دارد محاسبه می شود.با افزایش ارتفاع تیر، به مقدار مصالح بیشتری برای پراکنده کردن کشش مورد نیاز است. طراحان پل برای ایجاد تیر های بلند از شبکه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحکام داده و توانایی آن را در پخش کردن نیروی فشاری یا کششی افزایش می دهد. زمانی که تیر شروع به متراکم شدن می کند، این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا، پل تیری در میزان طول خود محدود است. با افزایش طول آناندازه خرپا نیز می بایست افزایش یابد تا زمانی که خرپا به نقطه می رسد که دیگر نمی تواند وزن خود را تحمل کند.

    انواع پل های تیری : پل های تیری به سبک های بسیار زیادی ساخته می شود. نوع طراحی، مکان و چگونگی ساخت یک خرپا، تعیین کننده نوع یک خرپاست. در بدو انقلاب صنعتی، احداث پلهای تیری در ایالات متحده با سرعت توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند. پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یکی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو» بود که در سال 1884 توسط «ویلیام هاو» طراحی و ابداع شد. شهرت ابداع جدید وی در طرح خرپایش نبود، چرا که مشابه طرح king post بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب طرح او بود که مورد توجه قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می کنند.

    مقاومت خرپا : یک تیر به تنهایی هرگونه فشردگی یا کشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین کشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و کشش کمتری وجود دارد.اگر تیر طوری طراحی شود که بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح کمتری مصرف شود، بهتر خواهد توانست نیروهای کششی یا فشاری را تحمل کند. ( در توضیح می توانیم بگوییم که تیر های I شکل مستحکم تر از تیر های مستطیلی ساده است).مرکز تیر از عضو های مورب خرپا تشکیل شده طوری که بالا و پایین خرپا نشان دهنده بالا و پایین تیر است. با نگرش به خرپا به این شیوه ما قادریم ببینیم که بالا و پایین تیر مصالح بیشتری نسبت به مرکز آن مصرف می کند(به این دلیل که مقوای چین دار خیلی مستحکم است).در اضافه به مطالب فوق در مورد تاثیرات خرپا، علت دیگری نیز وجود دارد دالّ براینکه چرا خرپا مستحکم تر از تیر است: یک خرپ توانایی پخش کردن نیرو را دارد. خرپا طوری طراحی شده است که به دلیل داشتن تعداد زیادی از مثلث ها _که به طور معمول در آن مورد استفاده قرار می گیرد_ هم می تواند یک سازه بسیار مستحکم ایجاد کند و هم کار انتقال نیرو را از یک نقطه به منطقه وسیعی انجام دهد.

    پل قوسی : یک پل قوسی سازه ای است به شکل نیم دایره که در هر طرف آن نیم پایه (پایه های جناحی) قرار دارد. طراحی قوس طوری است که به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می کند.

    فشار : پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود.

    کشش : کشش در یک قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون، به طور قابل ملاحظه ای تاثیرات کشش را در قسمت زیرین قمس کاهش می دهد. هرچند با زیاد شدن زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی کششی نیز در آن افزایش می یابد.همانطور که اشاره شد، شکل قوس به تنهایی موجب می شود که وزن مرکز عرشه پل به پایه های جناحی منتقل شود. مشابه پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت.



    انواع پلهای قوسی

    پراکندگی : انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان» ، «باروک» و «رنسانس» وجود دارند که همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یکسانند. میزان مقاومت این پلها به شکل هندسی آنه بستگی دارد. یک پل قوسی احتیاج به هیچگونه تکیه گاه یا کابل ندارد. و قوسهایی که از سنگ ساخته شده است حتی نیازی به ساروج یا ملات نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی (پل آب بر) ساخته اند که هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید.

    پل معلق : پل معلق پلی است که توسط کابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی که مانع وجود داشته باشد) کشیده شده اند و عرشه توسط این کابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل دارند که کابل ها آن را می کشند. بنابراین برج ها بیشترین وزن جاده را تحمل می کنند.

    نیروی فشاری : نیروی فشاری عرشه پل معلق را به سمت پایین متراکم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا که این یک پل معلق است، کابلها این نیروی فشاری را از برجها گرفته و آن را در بین خود پراکنده می کنند. و آن را به زمین منتقل می کنند، جایی که آنها محکم بسته شدند.

    کشش : کابلهایی که میان دو لنگرگاه خود یعنی تکیه گاهها قرار گرفته اند، دریافت کننده نیروی کششی هستند. وزن پل و حمل و نقل روی آن سبب می شود که این کابل ها به شدت کشیده شوند. تکیه گاهها نیز تحت کشش هستند ولی از آنجا که همانند برجها، محکم به زمین بسته شده اند، کشش موجود در آنها پراکنده می شود. تقریباً همه پلهای معلق به غیر از کابل ها از یک سامانه خرپا نیز بر خوردارند که در زیر عرشه پل قرار گرفته است (Deck truss). این سامانه موجب استحکام بیشتر عرشه و کاهش تمایل سطح جاده به نوسان و مواج شدن می شود.

    انواع پلهای معلق : پلهای معلق به دو شکل طراحی می شوند: پل معلقی که به شکل M است و نوع کم کاربردتری که به صورت «کابل ایستاده» طراحی شده که بیشتر شبیه A است. پلهای کابل ایستاده دیگر مانند پلهای معلق معمولی نیازی به دو برج و چهار تکیه گاه ندارند. در عوض کابلها از سمت جاده به بالای برج محکم بسته شده اند. در هر دو نوع پل، کابلها تحت کشش هستند.

    نیروهای دیگر در پل : ما در مورد دو نیروی بزرگ و مهم فشاری و کششی در طراحی پل بسیار صحبت کردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند که در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی بستگی داشته و یا به نوع پل مرتبط است.

    نیروی گشتاوری : نیروی گشتاوری نیروی چرخشی یا پیچشی و یکی از نیروهایی است که به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شکل طبیعی قوس و خرپاهای موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد. پلهای معلق به دلیل معلق بودن همواره (توسط کابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است. همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند که همانند پلهای تیری تاثیرات نیروی گشتاوری را کاهش می دهد ولی در پلهایی با طول زیاد، خرپای موجود در عرشه به تنهایی کافی نیست. آزمون « تونل باد» برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیک در سازه هاو کابلهای آویزان مورب از روش هایی هستند که برای تقلیل تاثیرات نیروهای گشتاوری به خدمت گرفته می شود.

    تشدید : تشدید ( ارتعاش در چیزی که توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز، هماهنگ و هم موج است) نوعی نیرویی است، افسار گسیخته که می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید کننده از میان پل به صورت امواج عبور خواهد کرد. یک نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاکوما ناروز»8 است که در سال 1940 توسط بادی با سرعت 40 مایل در ساعت (64 کیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد که خرپای عرشه ناکارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا که این امواج توانستند پل را فرو ریزند. زمانی که یک ارتش بر روی پل رژه می رود، اغلب به سربازان گفته می شود " قدمرو" . با این کار، ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه کافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در نهایت می تواند پل را فرو پاشد.به منظور مقابله با تاثیرات تشدید در یک پل، خیلی مهم است که در پل کاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد کرده و از شدت آن بکاهد. ایجاد تداخل یک روش موثر در برابر امواج مخرب می باشد. تکنیک های کاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی، به عنوان مثال یک جاده با سطح پیوسته و یک تکه داشته باشد، یک موج قوی می تواند در امتداد پل حرکت کرده و منتقل شود. اگر جاده از تکه های مختلفی تشکیل شده باشد و صفحات آن همدیگر را همپوشانی کرده باشند آنگاه جنبش از یک بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا که آن صفحات بر روی یکدیگر قرار گرفته اند، اصطکاک نیز ایجاد می شود. این ترفند، اصطکاک کافی را برای تغییر فرکانس امواج مرتعش را تولید می کند. با تغییر فرکانس می توانیم از ورود امواج مخرب به سازه جلوگیری کنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد که موجب خنثی شدن یکدیگر می شوند.

    آب و هوا : نیروی طبیعت به ویژه آب و هوا به گونه ایست که مبارزه با آن مشکل و حتی در برخی موارد امکان پذیر نیست. باران، یخبندان، طوفان و نمک هر کدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یک مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب کنند. طراحان پل با مطالعه و بررسی شکست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض کردند و سپس فولاد را جایگزین آهن کردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر کدام از مواد و مصالح جدید و یا تکنیک های طراحی، ثمره درسهایی است که در گذشته آموخته اند. با دانستن نیروی گشتاوری، تشدید و آیرودینامیک ( بعد از چند شکست بزرگ ) طراحی های بهتر نیز شکل گرفت.تا آنجاکه توانستند بر مسئله آب و هوا غلبه کنند. تعداد شکست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از تعداد شکست ها در زمینه طراحی بوده است. این شکست ها به ما آموخته است که همواره به دنبال راه حل بهتری باشیم.

  14. 2 کاربر از boomba بخاطر این مطلب مفید تشکر کرده اند


  15. #38
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    تشریح کامل مراحل پي سازي




    پي سازي چند مرحله دارد :

    1. آزمايش زمين از لحاظ مقاومت

    2. پي كني

    3. پي سازي

    پي وسيله اي است كه بار و فشار وارد از نقاط مختلف ساختمان و همچنين بارهاي اضافي را به زمين منتقل مي كند .

    آزمايش زمين :

    طبقه بندي زمين چند نوع است :

    زمين هايي كه با خاك ريزي دستي پر شده است :

    اين نوع زمين ها كه عمق بيشتري دارند و با خاكهاي دستي محل گودال ها را پر كرده اند اگر سالهاي متمادي هم بگذرد باز نمي توان جاي زمين طبيعي را بگيرد و اين نوع زمين براي ساختمان مناسب نيست و بايد پي كني در آنها به طريقي انجام گيرد كه پي ها به زمين طبيعي يا زمين سفت برسد .

    زمينهاي ماسه اي :

    زمينهاي ماسه اي بيشتر در كنار دريا وجود دارد . اگر زمين از ماسه خشك تشكيل شده باشد ، تا يك طبقه ساختمان را تحمل مي كند و 1.5 كيلوگرم بر سانتيمتر مربع مي توان فشار وارد آورد . ولي در صورتي كه ماسه آبدار باشد قابل ساختمان نيست ، چون ماسه آبدار حالت لغزندگي دارد و قادر نيست كه بار وارد را تحمل كند بنابراين ماسه از زير پي مي لغزد و جاي خالي خود را به پي مي دهد و پايه را خراب مي كند .

    زمينهاي دجي :

    زمين دجي زميني است كه از شنهاي درشت و ريز و خاك به هم فشرده تشكيل شده است و به رنگهاي مختلف ديده مي شود :دج زرد ، دج سياه ، دج سرخ ، اين نوع زمين ها براي ساختمان مرغوب و مناسب است .

    زمينهاي رسي :

    اگر رس خشك و بي آب و فشرده باشد ، براي ساختمان زمين خوبي محسوب مي شود ، و تحمل فشار لازم را دارد . ولي اگر رس آبدار و مرطوب باشد قابل استفاده نيست و تحمل فشار ندارد ، خصوصاً اگر ساختمان در زمين شيب دار روي رس آبدار ساخته شود فوري نشست مي كند و جاهاي مختلف آن ترك بر مي دارد و خراب مي شود . و اگر ساختمان در زمين آبدار با سطح افقي ساخته شود به علت وجود آب فشار را به همه نقاط اطراف خود منتقل مي كند و ديوارهاي كم ضخامت آن ترك بر مي دارد .

    زمينهاي سنگي :

    زمينهاي سنگي بيشتر در دامنه كوهها وجود دارد و از تخته سنگها ي بزرگ تشكيل شده و براي ساختمان بسيار مناسب است .

    زمينهاي مخلوط :

    اين نوع زمينها از سنگ درشت و شن و خاك رس تشكيل شده اگر اين مواد كاملا به هم فشرده باشند براي ساختمان بسيار مناسب است و اگر به هم فشرده نباشد و بايد از ايجاد ساختمان به روي اين نوع زمينها احتراز كرد .

    زمينهاي بي فايده :

    زمينهاي بي فايده مانند باتلاق ها و زمينهاي جنگل كه از خاك و برگ درختان تشكيل شده است . در اين نوع زمين ها بايد زمين آنقدر كنده شود تا به زمين سفت و طبيعي برسد .

    آزمايش زمين :

    گاهي پس از پي كني به طبقه اي از زمين محكم و سفت مي رسند و پي سازي را شروع مي كنند ولي پس از چندي ساختمان ترك بر مي دارد . علت آن اين است كه زمين سفتي كه به آن رسيده اند از طبقهُ نازكي بوده است و متوجه آن نشده اند ولي براي اطمينان در جاهاي مختلف زمين مي زنند تا از طبقات مختلف زمين آگاهي پيدا كنند و بعد شفته ريزي را شروع مي كنند اين عمل را در ساختمان گمانه زني (سنداژ) مي گويند .

    امتحان مقاومت زمين :

    يك صفحه بتني 20*20*20 یا 20*50*50 از بتن آرمه گرفته و روي آن به وسيلهُ گذاشتن تيرآهنها فشار وارد مي آورند . وزن آهنها مشخص و سطح صفحه بتن هم مشخص است فقط يك خط كش به صفحه بتني وصل مي كنند و به وسيله ميليمترهاي روي آن ميزان فرورفتگي زمين را از سطح آزاد مشخص و اندازه گيري مي كنند ولي اگر بخواهند ساختمانهاي بسيار بزرگ بسازند بايد زمين را بهتر آزمايش كنند . براي اي منظور با دستگاه فشار سنج زمين را اندازه گيري مي كنند و آزمايش فوق براي ساختمانهاي معمولي در كارگاه است .

    پس از عمليات فوق پي كني را آغاز ميكنند و پس از پي كني شفته ريزي شروع مي شود .

    توجه شود اين عمل همان آزمايش بارگذاري صفحه است كه در درس مهندسي پي جزء آزمايش هاي محلي و مهم محسوب ميشود البته از آنجا كه انجام عمليات مكانيك خاك براي ساختمانهاي معمولي صرفه اقتصادي ندارد ، انجام اين آزمايش در سازمانهاي و اداره هاي دولتي و يا ساختمانهاي بلند انجام مي شود .

    افقي كردن پي ها (تراز كردن) :

    براي تراز كردن كف پي ساختمانها از تراز هاي آبي استفاده مي كنند در ديوارهاي طويل چون كار شمشه و تراز كردن وقت بيشتري لازم دارد ، براي صرفه جويي در وقت از سه T مي توان استفاده كرد بدين معني كه T اول را با T دوم تراز مي كنند و T سوم را در مسافت مسير به طوري كه سه T در يك رديف قرار بگيرد قرار مي دهند از روي T اول و دوم كه با هم برابر هستند T سوم را ميزان و برابر مي كنند و پس از آنكه T سوم برابر شد T اول را بر مي دارند و به فاصله بيشتري بعد از T سوم قرار مي دهند ، دوباره T دوم و سوم را با T چهارم كه همان T اول مي باشد برابر مي كنند و دنباله اين ترازها را تا خاتمه محل كار ادامه مي دهند .

    البته اين طريق تراز كردن بيشتر در جاده سازي و زمين هاي پهناور به كار مي رود .

    شفته ريزي :

    كف پي ها بايد كاملا افقي و زاويهُ كف پي نسبت به ديوار پي بايد 90 درجه باشد . اول كف پي را بايد آب پاشيد ، تا مرطوب شود و واسطهاي بين زمين و شفته وجود نداشته باشد ، و سپس شفته را داخل آن ريخت .

    شفته عبارت است از خاك و شن و آهك كه به نسبت 200 تا 250 كيلوگرم گرد آهك را در متر مكعب خاك مخلوط مي كنند و گاهي هم در محلهايي كه احتياج باشد پاره سنگ به آن مي افزايند . شفته را در پي مي ريزند و پس از اينكه ارتفاع شفته به 30 سانتيمتر رسيد آن را در يك سطح افقي هموار مي كنند و يك روز آن را به حالت خود مي گذارند تا دو شود يعني آب آن يا در زمين فرو رود و يا تبخير گردد .

    پس از اينكه شفته دو نم شد آن را با وزنهُ سنگيني مي كوبند كه به آن تخماق ميگويند و پس از اينكه خوب كوبيده شد دوباره شفته را به ارتفاع 30 سانتيمتر شروع مي كنند و عمل اول را انجام مي دهند . تكرار اين عمل تا پر شدن پي ادامه دارد .

    در ساختمان ها كه معمولاً در گود يا پي كني عمل تراز كردن انجام ميگيرد محل كار در پي كه پيچ و خم زيادي دارد و تراز كردن با شمشه و تراز مشكل مي باشد از تراز شلنگي استفاده مي كنند . بدين ترتيب يك شلنگ چندين متري را پر از آب مي كنند به طوري كه هيچ گونه حباب هوايي در آن نباشد و آن را در پي محل هايي كه بايد تراز گردد به گردش در مي آورند و نقاط معين شده را با هم تراز مي كنند . آب چون در لوله هايي كه به هم ارتباط دارند در يك سطح مي ماند بنابراين چون شلنگ پر از آب مي باشد در هر كجا كه شلنگ را به حركت در آورند آب دو لوله استوانه اي در يك سطح مي باشد بنابراين دو نقطه مزبور با هم تراز مي باشند بشرط آنكه مواظبت كنيم كه شلنگ در وسط بهم گره خوردگي يا پيچش پيدا نكرده باشد تا باعث قطع ارتباط سيال شود كه ديگر نمي توان در تراز بودن آنها مطمئن بود .

    تراز كردن گاهي بوسيله دوربين نقشه بر داري (نيو) انجام مي گيرد يعني محلي را در ساختمان تعيين نموده دوربين را در محل تعيين شده نصب مي كنند و با مير ( تخته هاي اندازه گيري ارتفاع در نقشه برداري ) يا ژالون ( چوب هاي نيزه اي يا آهني كه هر 50 سانتيمتر آنرا به رنگهاي سفيد و قرمز رنگ كرده اند كه از پشت دوربين بخوبي ديده بشود ) اندازه گرفته و تراز يابي مي كنند . تراز كردن با دوربين بهترين نوع تراز يابي مي باشد .

    در زمين هايي مانند زمين هاي شهر كرمان از آنجايي كه از زمانهاي قبل قنواتي وجود داشته و بتدريج آب آنها خشك شده در زير زمين وجود داشته و بعد از مدتي بدون رعايت مسائل زير سازي درون آنها خاك ريخته اند و براي شهر سازي و خيابان كشي كه سطح خيابان ها را بالا مي آورده اند و به ظاهر در سطح زمين و حتي در عمق هاي 3 تا 4 متري اثري از آنها نيست اگر سازه اي روي اين زمين بنا شود پس از مدتي و بسته به عمق قنات و شرايط جوي مثلاً بعد از آمدن يك باران سازه نشست مي كند و در بسياري از مواقع حتي تا 100 درصد خسارت مي بيند و ديگر قابل استفاده نيست اگر در چنين ساختمان هايي از شفته آهك استفاده شود باعث تثبيت خاك مي شود و بروز نشست در ساختمان جلوگيري مي كند .

    پي سازي :

    بعد از اينكه عمل پي کني به پايان رسيد را بايد با مصالح مناسب بسازند تا به سطح زمين رسيده و قابل قبول براي هر گونه بنا باشد مصالحي كه در پي بكار ميرود بايد قابليت تحمل فشار مصالح بعدي را داشته باشد و ضمناً چسبندگي مصالح نسبت به يكديگر به اندازه اي باشد كه بتوانند در مقابل بارهاي بعدي تحمل كند و فشار را يكنواخت به تمام پي ها انتقال دهد چون هرچه ساختمان بزرگتر باشد فشارهاي وارده زيادتر بوده و مصالحي كه در پي بكار مي رود بايد متناسب با مصالح بعدي باشد .

    پي سازي را با چند نوع مصالح انجام مي دهند مصالحي كه در پي بكار مي رود عبارتند از شفته آهكي ، پي سازي با سنگ ، پي سازي با بتن ، پي سازي با بتن مسلح .

    پي سازي با سنگ :

    پس از اينكه عمل پي كني به پايان رسيد پي سازي با سنگ بايد از ديوارهايي كه روي آن بنا ميگردد وسيع تر بوده و از هر طرف ديوار حداقل 15 سانتيمتر گسترش داشته باشد يعني از دو طرف ديوار 30 سانتيمتر پهن تر مي باشد كه ديواري را رد وسط آن بنا مي كنند ، پي سازي با سنگ با دو نوع ملات انجام مي شود چنانچه بار و فشار بعدي زياد نباشد ملات سنگها را از ملات گل و آهك چنانچه فشار و بار زياد باشد ملات سنگ را از ملات ماسه و سيمان استفاده مي كنند اول كف پي را ملات ريزي نموده و سنگها را پهلوي يكديگر قرار ميدهند و لابِلاي سنگ را با ملات ماسه و سيمان پر ميكنند (غوطه اي) به طوري كه هيچ منفذ و سوراخي در داخل پي وجود نداشته باشد و عمل پهن كردن ملات و سنگ چيني تا خاتمه ديوار سازي ادامه پيدا مي كند .

    پي سازي با بتن :

    پس از اينكه كار پي كني به پايان رسيد كف پي را به اندازه تقريبي 10 سانتيمتر بتن كم سيمان بنام بتن مِگر مي ريزند كه سطح خاك و بتن اصلي را از هم جدا كند روي بتن مگر قالب بندي داخل پي را با تخته انجام ميدهند همانطور كه در بالا گفته شد عمل قالب بندي وسيع تر از سطح زير ديوار نقشه انجام ميگيرد تمام قالب ها كه آماده شد بتن ساخته شده را داخل قالب نموده و خوب مي كوبند و يا با ويبراتور به آن لرزش وارد آورده تا خلل و فرج آن پر شود و چنانچه بتن مسلح باشد ، داخل قالب را با ميله هاي گرد آرماتور بندي و بعد از آهن بندي داخل قالب را با بتن پر ميكنند .

    بتن ريزي در پي و آرماتور داخل آن به نسبت وسعت پي براي ساختمان هاي بزرگ قابليت تحمل فشار هر گونه را ميتواند داشته باشد و بصورت كلافي بهم پيوسته فشار ساختمان را به تمام نقاط زمين منتقل مي كند و از شكست و ترك هاي احتمالي جلو گيري بعمل مي آورد .

    پي سازي و پي كني با هم :

    در بعضي مواقع ممكن است زمين سست بوده و پي كني بطور يكدفعه نتواند انجام پذيرد و اگر بخواهيم داخل تمام پي ها را قالب بندي كنيم مقرون به صرفه نباشد در اين موقع قسمتي از پي را كنده و با تخته و چوب قالب بندي نموده شفته ريزي مي كنيم پس از اينكه شفته كمي خود را گرفت يعني آب آن تبخير و يا در زمين فرو رفت و دونم شد پي كني قسمت بعدي را شروع نموده و با همان تخته ها ، قالب بندي مي كنيم بطوريكه شفته اول خشك نشده باشد و بتواند با شفته اول خشك نشده باشد و بتواند با شفته بعد خودگيري خود را انجام داده و بچسبد اين نوع پي سازي معمولاً در زمين هاي نرم و باتلاقي ، خاك دستي و ماسه آبدار عمل ميگردد .

    پي كني در زمين هاي سست :

    در زمين هاي سست و خاك دستي اگر بخواهيم ساختماني بنا كنيم بايد اول محل پي ها را به زمين سفت رسانيده و پس از اطمينان كامل ساختمان را بنا نماييم زيرا ساختمان كه روي اين زمين ها مطابق معمول و يا در زمين سست بنا گردد . پس از چندي يا در همان موقع ساخته شدن باعث ترك ها و خرابي ساختمان ميگردد . بنابراين شفته ريزي از روي زمين سفت بايد انجام گيرد و براي اينكار بشرح زير عمل مي نمائيم :

    پي كني در زمين هاي خاك دستي و سست :

    پس از پياده كردن اصل نقشه روي زمين محل پي هاي اصلي و يا در تقاطع پي ها كه فشار پايه ها روي آن مي باشد چاه هائي حفر ميشود ، عمق اين چاهها به قدري مي باشد تا به زمين سفت و سخت برسد بعداً محل چاه ها را با شفته آهكي پر كرده و پس از پر كردن چاه ها و خودگيري شفته ، پي ها را به طريقه معمول روي شفته چاه ها شفته ريزي ميكنند ، شفته ها به صورت كلافي مي باشند كه زير آنها را تعدادي از ستون هاي شفته اي نگهداري ميكند و از فرو ريختن آن جلوگيري مي نمايند البته بايد سعي كرد كه فاصله ستون هاي شفته اي نبايد بيش از سه متر طول باشد .

    خاصيت چاه ها بدين طريق مي باشد كه شفته پس از خودگيري مانند ستونهايي است كه زير زمين بنا شده است و شفته روي آن مانند كلافي پايه را به يكديگر متصل مي كنند براي مقاومت بيشتر در ساختمان پس از اينكه آجر كاري پايه ها را شروع نموديم ما بين پايه ها را مطابق شكل با قوسهايي به يكديگر متصل ميكنند تا پايه ها عمل فشار به اطراف خود را خنثي نموده و فشار خود را در محل اصلي خود يعني در محلي كه شفته ريزي آن به زمين بِكر رسيده متصل ميكند .

    گاهي اتفاق مي افتد كه در ساختمان در محل بناي يكي از پايه ها چاه هاي قديمي وجود دارد و بقيه زمين سخت بوده و مقاومت به حد كافي براي ساختن ساختمان روي آنرا دارد براي اينكه براحتي بتوان پايه را در محل خود ساخت و محل آن را تغيير نداد چاه را پس از لاي روبي (پاك كردن ) با شفته آهك پر مينماييم موقعيكه شفته خودگيري خود را انجام داد روي آنرا يك قوس آجري ساخته و در محل انتهاي كمان پايه را بنا ميكنيم كه فشار ديوار با اطراف چاه منتقل گردد .

    در بعضي مواقع چاه كني در اين گونه زمين ها خطرناك مي باشد . زيرا زمين ريزش دارد و به كارگر صدمه وارد مياورد و در موقع كار ممكن است او را خفه كند براي جلوگيري از ريزش زمين بايد از پلاكهاي بتني يا سفالي كه در اصطلاح به آنها گَوَل (در شهرستانها گوم و غيره ) مينامند استفاده شود گَوَل هاي بتني يك تكه و دو تكه اي و گول هاي سفالي يك تكه ميباشد . گول هاي بتني را بوسيله قالب مي سازند و گول هاي سفالي بوسيله دست و گل رس ساخته شده و در كوره هاي آجري آن را مي پزند تا بشكل سفالي در آيد از اين گول ها در قنات ها نيز استفاده ميشود .

    طريقه عمل :

    مقداري از زمين كه بصورت چاه كنده شده گول را بشكل استوانه اي ساخته ميباشد داخل محل كنده شده نصب و عمل كندن را ادامه ميدهند در اين موقع دو حالت وجود دارد يا اينكه گول اولي كه زير آن در اثر كندن خالي شده براحتي پايين رفته گول دوم را نصب ميكنيم يا اينكه گول اول در محل خود با فشار خاك كه به اطراف آن آمده تنگ مي افتد و نمي تواند محل خود را تغيير و يا پايين تر برود در اين موقع از گول هاي دو تكه اي استفاده مينماييم نيمي را در محل خود نصب و جاي آنرا محكم نموده و نصفه دوم را پس از كندن محل آن نصب مي نماييم و عمل پي كني را بدين طريق ادامه ميدهيم .

    پي كني در زمين هاي سست مانند خندق هائي كه خاك دستي در آنها ريخته شده است و مرور زمان هم اثري براي محكم شدن آن ندارد و يا زمين هاي باتلاقي و غيره ضروري مي باشد .

    زمين هائي كه قسمت خاك ريزي شده در آنها به ارتفاع كم مي باشد و يا باتلاقي بودن آن به عمق زيادي نرسد ميتوان در اين قبيل زمين ها پي كني عمقي انجام داد و براي جلوگيري از ريزش خاك آنرا با تخته و چوب قالب بندي نموده تا به زمين سخت برسد .

    البته قالب بندي در اينگونه زمين ها خالي از اشكال نمي باشد بايد با منتهاي دقت انجام گيرد پس از انجام كار قالب بندي شفته ريزي شروع ميشود و چون تخته هاي قالب در طول قرار دارد ميتوان پس از شفته ريزي تخته دوم را شروع كرد به همين منوال تمام پي ها را ميتوان شفته ريزي كرد بدون اينكه تكه اي و يا تخته اي از قالب زير شفته بماند .

  16. این کاربر از boomba بخاطر این مطلب مفید تشکر کرده است


  17. #39
    در آغاز فعالیت
    تاريخ عضويت
    Oct 2009
    پست ها
    1

    پيش فرض

    حل المسائل ايگور پوپوف رامخاهم

  18. #40
    Banned
    تاريخ عضويت
    Nov 2008
    محل سكونت
    تــــهــرانـــــ /
    پست ها
    3,329

    پيش فرض

    حل المسائل ايگور پوپوف رامخاهم
    دوست من اینجا فقط مطالب گذاشته میشه.......درخواست تو تاپیک اصلی..
    ===========================
    این تاپیک خیلی وقته خوابیده اما میخوام شروع کنم به گذاشتن یه سری مطلب مختصر که هم حوصله مون بگیره بخونیم هم جالب و جذاب باشه......

    ============ سازه های ماکارونی ===================

    سازه های ماكارونی به سازه هایی اطلاق می شود ، كه مصالح استفاده شده در آنها تنها ماكارونی و چسب می باشد . این سازه ها در مقیاس كوچكتر نسبت به سازه های واقعی طراحی و توسط ماكارونی و چسب ساخته می شوند و پس از ساخت مورد بارگذاری قرار می گیرند .
    در واقع این سازه ها به عنوان ماكت ساخته نمی شوند و سازه ای كه بار بیشتری را تحمل می كند ، موفق تر خواهد بود. پل ( تحت بارگذاری یكنواخت ، متمركز و متحرك ) ، Towercrain ، انواع قاب های ساختمانی و ستون های فشاری از جمله رایج ترین سازه های ماكارونی می باشند .
    هر ساله در این راستا مسابقات بزرگی در دانشگاه های معتبر دنیا بین دانشجویان رشته مهندسی عمران برگزار می گردد . این دانشگاه ها از سالها پیش در این زمینه سرمایه گذاری كرده تا ذهن خلاق دانشجویان را فعال سازند و از طرحها و پژوهش های آنها در عمل استفاده كنند . طراحی و ساخت پل و ستون های فشاری رایج ترین رشته های این مسابقات می باشند . بطور مثال طراحی و ساخت پل خرپایی تنها با استفاده از 750 گرم ماكارونی ( معادل یك بسته ماكارونی ) كه می تواند وزن زیادی را تحمل نماید . طول دهانه پل یك متر و حداكثر ارتفاع پل نیم متر می باشد . پل روی دو تكیه گاه كه از یكدیگر یك متر فاصله دارند قرار می گیرد و تكیه گاهها فقط قادر به وارد كردن عكس العمل عمودی می باشند و هیچ عكس العمل افقی در تكیه گاهها بر پل وارد نمی شود . ركورد كسب شده در این رشته ( پل خرپایی ) معادل 176 كیلو گرم می باشد ، كه این ركورد تقریبا 230 برابر وزن خود سازه می باشد . همچنین طراحی و ساخت سازه های فشاری كه قادر به تحمل بار هایی بیش از نیم تن می باشند ، از دیگر نمونه های این سازه ها هستند . اینجا یك سئوال ممكن است مطرح می گردد ، آیا جنس ماكارونی در دست یافتن به ركورد های بالا موثر است ؟
    در این زمینه تحقیقاتی روی محصول های مختلف شركت های ماكارونی دنیا انجام گرفته و ماكارونی شركت Rose ایتالیا به عنوان بهترین ماكارونی برای این هدف شناخته شده است.
    البته لازم به ذكر است كه قدرت و مهارت طراح در ارائه یك طرح موفق ، بسیار مهم تر از جنس ماكارونی در رسیدن به ركورد های بالا می باشد.
    هدف از استفاده از ماكارونی به عنوان عنصر سازه ای :
    1- در واقع ماكارونی بر خلاف فولاد و بتن عنصر سازه ای ناشناخته ای می باشد. این بدان معنی است كه خصوصیات ماكارونی شامل حداكثر تنش كششی ، حداكثر تنش فشاری ، مدول الاستیسیته ، نحوه كمانش ماكارونی و دیگر خصوصیات ماكارونی كه مورد نیاز برای طراحی و تحلیل سازه می باشند ، ناشناخته می باشد و تنها راه بدست آوردن این ویژگیها ایجاد وابداع آزمایش های ساده و دقیق می باشد .
    2- ماكارونی بر خلاف بتن و فولاد دارای ضعف های زیادی می باشد و این ضعف ها كار را برای طراح مشكل تر می كند و اینجاست كه ابداعات و خلاقیت هنر نمایی می كنند و برای رسیدن به ركورد های بالا بهینه سازی سازه ها مطرح می گردد .
    3- ارزان بودن ماكارونی نسبت به مصالحی چون فولاد وبتن .
    سازه های فشاری :
    نوعی پل با دهانه كوتاه ، كه اكثر اعضای آن در فشار می باشند . از مزیت های این رشته از مسابقات طراحی اعضای فشاری و بررسی پدیده كمانش در آنها می باشد .
    Tower Crain :
    دراین نوع از سازه های ماكارونی ، هدف طراحی جرثقیلهایی است كه بر روی برجهای بلند به كار گرفته می شوند. این سازه ها باید قادر باشند با داشتن ارتفاع معین شعاع خاصی را تحت پوشش قرار دهند.
    پل با بار گسترده :
    پل به شكل ظاهری خرپا می باشد ، كه بارگذاری به صورت گسترده و یكنواخت در تمام طول دهانه صورت می گیرد . در عمل می توان چنین فرض كرد كه تمام وسایل نقلیه به دلیل ترافیك به صورت ثابت بر روی پل قرار گرفته اند .
    پل با بار متحرك :
    این نوع از سازه ماكارونی در واقع پیشرفته ترین و كامل ترین حالت از سازه ها می باشد ، كه در آن طراحان اقدام به طراحی یك پل واقعی می كنند .
    بار قرار گرفته بر روی پل به صورت متحرك می باشد ، كه این امر با عبور دادن یك وسیله نقلیه كوچك با سرعت معین ، كه بر روی آن وزنه قرار داده می شود ، صورت می گیرد .

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •