تبلیغات :
خرید لپ تاپ استوک
ماهان سرور
آکوستیک ، فوم شانه تخم مرغی ، پنل صداگیر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 5 اولاول 12345 آخرآخر
نمايش نتايج 11 به 20 از 41

نام تاپيک: مقالات به زبان اصلی

  1. #11
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Rosa virginiana


    Rosa virginiana, commonly known as the Virginia Rose , Common Wild Rose or Prairie Rose, is a woody perennial in the rose family native to eastern North America. In the Canadian maritimes, it grows with at an almost invasive rhythm. It is seen in meadows, vacant lots, ditches, even in dumps.

  2. #12
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض Flower



    A flower, also known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Magnoliophyta, also called angiosperms). The biological function of a flower is to mediate the union of male sperm with female ovum in order to produce seeds. The process begins with pollination, is followed by fertilization, leading to the formation and dispersal of the seeds. For the higher plants, seeds are the next generation, and serve as the primary means by which individuals of a species are dispersed across the landscape. The grouping of flowers on a plant are called the inflorescence.

    In addition to serving as the reproductive organs of flowering plants, flowers have long been admired and used by humans, mainly to beautify their environment but also as a source of food.

    Flower specialization and pollination

    Each flower has a specific design which best encourages the transfer of its pollen. Cleistogamous flowers are self pollinated, after which, they may or may not open. Many Viola and some Salvia species are known to have these types of flowers.

    Entomophilous flowers attract and use insects, bats, birds or other animals to transfer pollen from one flower to the next. Flowers commonly have glands called nectaries on their various parts that attract these animals. Some flowers have patterns, called nectar guides, that show pollinators where to look for nectar. Flowers also attract pollinators by scent and color. Still other flowers use mimicry to attract pollinators. Some species of orchids, for example, produce flowers resembling female bees in color, shape, and scent. Flowers are also specialized in shape and have an arrangement of the stamens that ensures that pollen grains are transferred to the bodies of the pollinator when it lands in search of its attractant (such as nectar, pollen, or a mate). In pursuing this attractant from many flowers of the same species, the pollinator transfers pollen to the stigmas—arranged with equally pointed precision—of all of the flowers it visits.

    Anemophilous flowers use the wind to move pollen from one flower to the next, examples include the grasses, Birch trees, Ragweed and Maples. They have no need to attract pollinators and therefore tend not to be "showy" flowers. Male and female reproductive organs are generally found in separate flowers, the male flowers having a number of long filaments terminating in exposed stamens, and the female flowers having long, feather-like stigmas. Whereas the pollen of entomophilous flowers tends to be large-grained, sticky, and rich in protein (another "reward" for pollinators), anemophilous flower pollen is usually small-grained, very light, and of little nutritional value to insects.

    Morphology

    Flowering plants are heterosporangiate, producing two types of reproductive spores. The pollen (male spores) and ovules (female spores) are produced in different organs, but the typical flower is a bisporangiate strobilus in that it contains both organs.

    A flower is regarded as a modified stem with shortened internodes and bearing, at its nodes, structures that may be highly modified leaves.[1] In essence, a flower structure forms on a modified shoot or axis with an apical meristem that does not grow continuously (growth is determinate). Flowers may be attached to the plant in a few ways. If the flower has no stem but forms in the axil of a leaf, it is called sessile. When one flower is produced, the stem holding the flower is called a peduncle. If the peduncle ends with groups of flowers, each stem that holds a flower is called a pedicel. The flowering stem forms a terminal end which is called the torus or receptacle. The parts of a flower are arranged in whorls on the torus. The four main parts or whorls (starting from the base of the flower or lowest node and working upwards) are as follows:

    * Calyx: the outer whorl of sepals; typically these are green, but are petal-like in some species.
    * Corolla: the whorl of petals, which are usually thin, soft and colored to attract insects that help the process of pollination.
    * Androecium (from Greek andros oikia: man's house): one or two whorls of stamens, each a filament topped by an anther where pollen is produced. Pollen contains the male gametes.
    * Gynoecium (from Greek gynaikos oikia: woman's house): one or more pistils. The female reproductive organ is the carpel: this contains an ovary with ovules (which contain female gametes). A pistil may consist of a number of carpels merged together, in which case there is only one pistil to each flower, or of a single individual carpel (the flower is then called apocarpous). The sticky tip of the pistil, the stigma, is the receptor of pollen. The supportive stalk, the style becomes the pathway for pollen tubes to grow from pollen grains adhering to the stigma, to the ovules, carrying the reproductive material.

    Although the floral structure described above is considered the "typical" structural plan, plant species show a wide variety of modifications from this plan. These modifications have significance in the evolution of flowering plants and are used extensively by botanists to establish relationships among plant species. For example, the two subclasses of flowering plants may be distinguished by the number of floral organs in each whorl: dicotyledons typically having 4 or 5 organs (or a multiple of 4 or 5) in each whorl and monocotyledons having three or some multiple of three. The number of carpels in a compound pistil may be only two, or otherwise not related to the above generalization for monocots and dicots.

    In the majority of species individual flowers have both pistils and stamens as described above. These flowers are described by botanists as being perfect, bisexual, or hermaphrodite. However, in some species of plants the flowers are imperfect or unisexual: having only either male (stamens) or female (pistil) parts. In the latter case, if an individual plant is either female or male the species is regarded as dioecious. However, where unisexual male and female flowers appear on the same plant, the species is considered monoecious.

    Additional discussions on floral modifications from the basic plan are presented in the articles on each of the basic parts of the flower. In those species that have more than one flower on an axis—so-called composite flowers—the collection of flowers is termed an inflorescence; this term can also refer to the specific arrangements of flowers on a stem. In this regard, care must be exercised in considering what a ‘‘flower’’ is. In botanical terminology, a single daisy or sunflower for example, is not a flower but a flower head—an inflorescence composed of numerous tiny flowers (sometimes called florets). Each of these flowers may be anatomically as described above. Many flowers have a symmetry, if the perianth is bisected through the central axis from any point, symmetrical halves are produced—the flower is called regular or actinomorphic, e.g. rose or trillium. When flowers are bisected and produce only one line that produces symmetrical halves the flower is said to be irregular or zygomorphic. e.g. snapdragon or most orchids.

    Floral formula

    A floral formula is a way to represent the structure of a flower using specific letters, numbers, and symbols. Typically, a general formula will be used to represent the flower structure of a plant family rather than a particular species. The following representations are used:

    Ca = calyx (sepal whorl; e.g. Ca5 = 5 sepals)
    Co = corolla (petal whorl; e.g., Co3(x) = petals some multiple of three )
    Z = add if zygomorphic (e.g., CoZ6 = zygomorphic with 6 petals)
    A = androecium (whorl of stamens; e.g., A∞ = many stamens)
    G = gynoecium (carpel or carpels; e.g., G1 = monocarpous)

    x: to represent a "variable number"
    ∞: to represent "many"

    A floral formula would appear something like this:

    Ca5Co5A10 - ∞G1

  3. #13
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Flower2
    --------------------------------------------------------------------------------------------------------------------
    Pollination

    The primary purpose of a flower is reproduction. Flowers are the reproductive organs and mediate the joining of the sperm contained within pollen to the ovules, normally from one plant to another but many plants also can pollinate their own flowers. The fertilized ovules produce seeds that are the next generation. Sexual reproduction produces genetically unique offspring, allowing for adaptation. Flowers have specific designs which encourages the transfer of pollen from one plant to another of the same species. Many plants are dependent upon external factors to move pollen between flowers, including the wind and animals, especially insects. Even large animals such as birds, bats, and pygmy possums can be employed. The period of time during which this process can take place (the flower is fully expanded and functional) is called anthesis.

    Attraction methods

    Plants can not move from one location to another, thus many flowers have evolved to attract animals to transfer pollen between individuals in dispersed populations. Flowers that are insect-pollinated are called entomophilous; literally "insect-loving" in Latin. They can be highly modified along with the pollinating insects by co-evolution. Flowers commonly have glands called nectaries on various parts that attract animals looking for nutritious nectar. Birds and bees having color vision, enabling them to seek out "colorful" flowers. Some flowers have patterns, called nectar guides, that show pollinators where to look for nectar; they may be visible only under ultraviolet light, which is visible to bees and some other insects. Flowers also attract pollinators by scent and some of those scents are pleasant to our sense of smell. Not all flower scents are appealing to humans, a number of flowers are pollinated by insects that are attracted to rotten flesh and have flowers that smell like dead animals, often called Carrion flowers including Rafflesia, the titan arum, and the North American pawpaw (Asimina triloba). Flowers pollinated by night visitors, including bats and moths, are likely to concentrate on scent to attract pollinators and most such flowers are white.

    Still other flowers use mimicry to attract pollinators. Some species of orchids, for example, produce flowers resembling female bees in color, shape, and scent. Male bees move from one such flower to another in search of a mate.

    Pollination mechanism

    The pollination mechanism employed by a plant depends on what method of pollination is utilized.

    Most flowers can be divided between two broad groups of pollination methods:

    Entomophilous: flowers attract and use insects, bats, birds or other animals to transfer pollen from one flower to the next. Often they are specialized in shape and have an arrangement of the stamens that ensures that pollen grains are transferred to the bodies of the pollinator when it lands in search of its attractant (such as nectar, pollen, or a mate). In pursuing this attractant from many flowers of the same species, the pollinator transfers pollen to the stigmas—arranged with equally pointed precision—of all of the flowers it visits. Many flower rely on simple proximity between flower parts to ensure pollination. Others, such as the Sarracenia or lady-slipper orchids, have elaborate designs to ensure pollination while preventing self-pollination.

    Anemophilous: flowers use the wind to move pollen from one flower to the next, examples include the grasses, Birch trees, Ragweed and Maples. They have no need to attract pollinators and therefore tend not to be "showy" flowers. Whereas the pollen of entomophilous flowers tends to be large-grained, sticky, and rich in protein (another "reward" for pollinators), anemophilous flower pollen is usually small-grained, very light, and of little nutritional value to insects, though it may still be gathered in times of dearth. Honeybees and bumblebees actively gather anemophilous corn (maize) pollen, though it is of little value to them.

    Some flowers are self pollinated and use flowers that never open or are self pollinated before the flowers open, these flowers are called cleistogamous. Many Viola species and some Salvia have these types of flowers.

    Flower-pollinator relationships

    Many flowers have close relationships with one or a few specific pollinating organisms. Many flowers, for example, attract only one specific species of insect, and therefore rely on that insect for successful reproduction. This close relationship is often given as an example of coevolution, as the flower and pollinator are thought to have developed together over a long period of time to match each other's needs.

    This close relationship compounds the negative effects of extinction. The extinction of either member in such a relationship would mean almost certain extinction of the other member as well. Some endangered plant species are so because of shrinking pollinator populations.
    Last edited by amin2000; 03-06-2008 at 09:25.

  4. #14
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Flower3
    ----------------------------------------------------------------------------------------------------------------------

    Fertilization and dispersal

    Some flowers with both stamens and a pistil are capable of self-fertilization, which does increase the chance of producing seeds but limits genetic variation. The extreme case of self-fertilization occurs in flowers that always self-fertilize, such as many dandelions. Conversely, many species of plants have ways of preventing self-fertilization. Unisexual male and female flowers on the same plant may not appear or mature at the same time, or pollen from the same plant may be incapable of fertilizing its ovules. The latter flower types, which have chemical barriers to their own pollen, are referred to as self-sterile or self-incompatible (see also: Plant sexuality).

    Evolution
    Flowers in Kamakura, Kanagawa, Japan
    Flowers in Kamakura, Kanagawa, Japan

    While land plants have existed for about 425 million years, the first ones reproduced by a simple adaptation of their aquatic counterparts: spores. In the sea, plants -- and some animals -- can simply scatter out genetic clones of themselves to float away and grow elsewhere. This is how early plants, such as the modern fern, are thought to have reproduced. But plants soon evolved methods of protecting these copies to deal with drying out and other abuse which is even more likely on land than in the sea. The protection became the seed, though it had not yet evolved the flower. Early seed-bearing plants include the ginkgo and conifers. The earliest fossil of a flowering plant, Archaefructus liaoningensis, is dated about 125 million years old.[2] Several groups of extinct gymnosperms, particularly seed ferns, have been proposed as the ancestors of flowering plants but there is no continuous fossil evidence showing exactly how flowers evolved. The apparently sudden appearance of relatively modern flowers in the fossil record posed such a problem for the theory of evolution that it was called an "abominable mystery" by Charles Darwin. Recently discovered angiosperm fossils such as Archaefructus, along with further discoveries of fossil gymnosperms, suggest how angiosperm characteristics may have been acquired in a series of steps.

    Recent DNA analysis (molecular systematics)[3][4] show that Amborella trichopoda, found on the Pacific island of New Caledonia, is the sister group to the rest of the flowering plants, and morphological studies[5] suggest that it has features which may have been characteristic of the earliest flowering plants.
    Various flower colors and shapes
    Various flower colors and shapes
    A Syrphid fly on a Grape hyacinth
    A Syrphid fly on a Grape hyacinth

    The general assumption is that the function of flowers, from the start, was to involve other animals in the reproduction process. Pollen can be scattered without bright colors and obvious shapes, which would therefore be a liability, using the plant's resources, unless they provide some other benefit. One proposed reason for the sudden, fully developed appearance of flowers is that they evolved in an isolated setting like an island, or chain of islands, where the plants bearing them were able to develop a highly specialized relationship with some specific animal (a wasp, for example), the way many island species develop today. This symbiotic relationship, with a hypothetical wasp bearing pollen from one plant to another much the way fig wasps do today, could have eventually resulted in both the plant(s) and their partners developing a high degree of specialization. Island genetics is believed to be a common source of speciation, especially when it comes to radical adaptations which seem to have required inferior transitional forms. Note that the wasp example is not incidental; bees, apparently evolved specifically for symbiotic plant relationships, are descended from wasps.

    Likewise, most fruit used in plant reproduction comes from the enlargement of parts of the flower. This fruit is frequently a tool which depends upon animals wishing to eat it, and thus scattering the seeds it contains.

    While many such symbiotic relationships remain too fragile to survive competition with mainland animals and spread, flowers proved to be an unusually effective means of production, spreading (whatever their actual origin) to become the dominant form of land plant life.

    While there is only hard proof of such flowers existing about 130 million years ago, there is some circumstantial evidence that they did exist up to 250 million years ago. A chemical used by plants to defend their flowers, oleanane, has been detected in fossil plants that old, including gigantopterids[6], which evolved at that time and bear many of the traits of modern, flowering plants, though they are not known to be flowering plants themselves, because only their stems and prickles have been found preserved in detail; one of the earliest examples of petrification.

    The similarity in leaf and stem structure can be very important, because flowers are genetically just an adaptation of normal leaf and stem components on plants, a combination of genes normally responsible for forming new shoots.[7] The most primitive flowers are thought to have had a variable number of flower parts, often separate from (but in contact with) each other. The flowers would have tended to grow in a spiral pattern, to be bisexual (in plants, this means both male and female parts on the same flower), and to be dominated by the ovary (female part). As flowers grew more advanced, some variations developed parts fused together, with a much more specific number and design, and with either specific sexes per flower or plant, or at least "ovary inferior".

    Flower evolution continues to the present day; modern flowers have been so profoundly influenced by humans that many of them cannot be pollinated in nature. Many modern, domesticated flowers used to be simple weeds, which only sprouted when the ground was disturbed. Some of them tended to grow with human crops, and the prettiest did not get plucked because of their beauty, developing a dependence upon and special adaptation to human affection.

    Development

    The molecular control of floral organ identity determination is fairly well understood. In a simple model, three gene activities interact in a combinatorial manner to determine the developmental identities of the organ primordia within the floral meristem. These gene functions are called A, B and C-gene functions. In the first floral whorl only A-genes are expressed, leading to the formation of sepals. In the second whorl both A- and B-genes are expressed, leading to the formation of petals. In the third whorl, B and C genes interact to form stamens and in the center of the flower C-genes alone give rise to carpels. The model is based upon studies of homeotic mutants in Arabidopsis thaliana and snapdragon, Antirrhinum majus. For example, when there is a loss of B-gene function, mutant flowers are produced with sepals in the first whorl as usual, but also in the second whorl instead of the normal petal formation. In the third whorl the lack of B function but presence of C-function mimics the fourth whorl, leading to the formation of carpels also in the third whorl. See also The ABC Model of Flower Development.

    Most genes central in this model belong to the MADS-box genes and are transcription factors that regulate the expression of the genes specific for each floral organ.

    Flowering transition

    The transition to flowering is one of the major phase changes that a plant makes during its life cycle. The transition must take place at a time that will ensure maximal reproductive success. To meet these needs a plant is able to interpret important endogenous and environmental cues such as changes in plant hormones levels and seasonable temperature and photoperiodchanges. Many perennial and most biennial plants require vernalization to flower. The molecular interpretation of these signals through genes such as CONSTANS and FLC ensures that flowering occurs at a time that is favorable for fertilization and the formation of seeds.[9] Flower formation is initiated at the ends of stems, and involves a number of different physiological and morphological changes. The first step is the transformation of the vegetative stem primordia into floral primordia. This occurs as biochemical changes take place to change cellular differentiation of leaf, bud and stem tissues into tissue that will grow into the reproductive organs. Growth of the central part of the stem tip stops or flattens out and the sides develop protuberances in a whorled or spiral fashion around the outside of the stem end. These protuberances develop into the sepals, petals, stamens, and carpels. Once this process begins, in most plants, it cannot be reversed and the stems develop flowers, even if the initial start of the flower formation event was dependent of some environmental cue. Once the process begins, even if that cue is removed the stem will continue to develop a flower.

    Symbolism

    Many flowers have important symbolic meanings in Western culture. The practice of assigning meanings to flowers is known as floriography. Some of the more common examples include:

    * Red roses are given as a symbol of love, beauty, and passion.
    * Poppies are a symbol of consolation in time of death. In the UK, New Zealand, Australia and Canada, red poppies are worn to commemorate soldiers who have died in times of war.
    * Irises/Lily are used in burials as a symbol referring to "resurrection/life". It is also associated with stars (sun) and its petals blooming/shining.
    * Daisies are a symbol of innocence.

    Flowers within art are also representative of the female genitalia, as seen in the works of artists such as Georgia O'Keefe, Imogen Cunningham, Veronica Ruiz de Velasco, and Judy Chicago, and in fact in Asian and western classical art. Many cultures around the world have a marked tendency to associate flowers with femininity.

    The great variety of delicate and beautiful flowers has inspired the works of numerous poets, especially from the 18th-19th century Romantic era. Famous examples include William Wordsworth's I Wandered Lonely as a Cloud and William Blake's Ah! Sun-Flower.

    Because of their varied and colorful appearance, flowers have long been a favorite subject of visual artists as well. Some of the most celebrated paintings from well-known painters are of flowers, such as Van Gogh's sunflowers series or Monet's water lilies. Flowers are also dried, freeze dried and pressed in order to create permanent, three-dimensional pieces of flower art.

    The Roman goddess of flowers, gardens, and the season of Spring is Flora. The Greek goddess of spring, flowers and nature is Chloris.

    In Hindu mythology, flowers have a significant status. Vishnu, one of the three major gods in the Hindu system, is often depicted standing straight on a lotus flower.[10] Apart from the association with Vishnu, the Hindu tradition also considers the lotus to have spiritual significance.[11] For example, it figures in the Hindu stories of creation.

    Usage

    In modern times, people have sought ways to cultivate, buy, wear, or otherwise be around flowers and blooming plants, partly because of their agreeable appearance and smell. Around the world, people use flowers for a wide range of events and functions that, cumulatively, encompass one's lifetime:

    * For new births or Christenings
    * As a corsage or boutonniere to be worn at social functions or for holidays
    * As tokens of love or esteem
    * For wedding flowers for the bridal party, and decorations for the hall
    * As brightening decorations within the home
    * As a gift of remembrance for bon voyage parties, welcome home parties, and "thinking of you" gifts
    * For funeral flowers and expressions of sympathy for the grieving

    People therefore grow flowers around their homes, dedicate entire parts of their living space to flower gardens, pick wildflowers, or buy flowers from florists who depend on an entire network of commercial growers and shippers to support their trade.

    Flowers provide less food than other major plants parts (seeds, fruits, roots, stems and leaves) but they provide several important foods and spices. Flower vegetables include broccoli, cauliflower and artichoke. The most expensive spice, saffron, consists of dried stigmas of a crocus. Other flower spices are cloves and capers. Hops flowers are used to flavor beer. Marigold flowers are fed to chickens to give their egg yolks a golden yellow color, which consumers find more desirable. Dandelion flowers are often made into wine. Bee Pollen, pollen collected from bees, is aa health food by some people. Honey consists of bee-processed flower nectar and is often named for the type of flower, e.g. orange blossom honey, clover honey and tupelo honey.

    Hundreds of fresh flowers are edible but few are widely marketed as food. They are often used to add color and flavor to salads. Squash flowers are dipped in breadcrumbs and fried. Edible flowers include nasturtium, chrysanthemum, carnation, cattail, honeysuckle, chicory, cornflower, Canna, and sunflower. Some edible flowers are sometimes candied such as daisy and rose (you may also come across a candied pansy).

    Flowers can also be made into herbal teas. Dried flowers such as chrysanthemum, rose, jasmine, camomile are infused into tea both for their fragrance and medical properties. Sometimes, they are also mixed with tea leaves for the added fragrance.

  5. #15
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Blue Flower

    The Blue Flower (German: Blaue Blume) is a central symbol of Romanticism. It stands for desire, love, and the metaphysical striving for the infinite and unreachable.

    Local blue-blooming flowers such as the Chicory or Cornflower are often seen as parallels to the "Blue Flower.

    Origins

    German author Novalis first used the symbol in his unfinished novel of formation, entitled Heinrich von Ofterdingen. After contemplating a meeting with a stranger, the young Heinrich von Ofterdingen dreams about blue flowers which call to him and absorb his attention. (The Japanese translation of the novel was entitled aoi hana (青い花), literally "blue flower," emphasizing the motif.)

    Use of the symbol

    Joseph Freiherr von Eichendorff wrote a poem called "Die blaue Blume" (The blue flower). Adelbert von Chamisso saw the core of Romanticism in the motif, and Goethe searched for the "Urpflanze" or "original plant" in Italy, which in some interpretations could refer to the blue flower.

    English writer Penelope Fitzgerald's historical novel 'The Blue Flower' is based on Novalis's early life.

    In John Le Carré’s 1968 novel A Small Town in Germany, the character Bradfield says, “I used to think I was a Romantic, always looking for the blue flower.” (Pan edition, p. 286 – chap. 17)

    Manga artist and author Takako Shimura's manga series "Aoi Hana" (English title "Sweet Blue Flowers") is about idealistic, Romantic-style affection between female high school students.

    In the anime Blood+ the otherworldly blue flower is the symbol of evil Diva.

    "Blue Flower" is the name of a song by the British avant-garde pop band of the early 1970s, Slapp Happy, later covered by the 1990's band Mazzy Star. "Blue Flowers" is a song by the alternative MC, Kool Keith (AKA Dr. Octagon), on his 1996 album, Dr. Octagonecologyst.

    Substance D, a fictitious drug in Philip K. Dick's 1977 novel A Scanner Darkly, is derived from a plant with blue flowers.

    Wandervogel movement

    In 1960 Werner Helwig published the book "The Blue Flower of the Wandervogel" (Die blaue Blume des Wandervogels) a history of the youth movement. Within the movement, a number of folk songs used the motif.

    The German student movement of the sixties

    In Berlin in 1968, one slogan of the German student movement stated "Schlagt die Germanistik tot, färbt die blaue Blume rot!" ("Strike Germanistics dead, color the blue flower red!") The discipline of Germanistics was targeted as a sclerotic field, not suited to the needs of the people of the present.

    Television, Film, and Theatre:

    In the movie follow-up to David Lynch's television series Twin Peaks, entitled Twin Peaks: Fire Walk with Me, two FBI agents are informed about their upcoming task through a woman named Lil. On her lapel is a tiny, artificial blue rose, clearly symbolic of something; but when Sam asks, Chet simply replies, "But I can't tell you about that."

    In the 2005 feature film, Batman Begins, Bruce Wayne, in his quest to explore the criminal mind, travels the world prior to developing his crime-fighting personae and finds himself fighting for his meals in a Bhutan prison. Upon witnessing Bruce's tenacious fighting spirit, Ra's al Ghul, in the guise of Henri Ducard, secures his release. He tells Bruce that were he to collect a rare blue flower which grows on the eastern slopes of a mountain and bring it to the top, then he may there find what he is seeking. Upon reaching the summit with the flower, Bruce, under the tutelage of Ducard, begins his training to become a member of the League of Shadows. As part of his training to banish his inner fears Bruce is required to fight while under the debilitating influence of a fear intensifying hallucinogen. From a brazier, Bruce inhales smoke from one of the burning blue flowers. The drug effects his performance and, coupled with an unexpected release of bats into the room, Wayne is beaten by his own fear of them. The blue flower then becomes a key plot element when Ducard, with the assistance of Dr. Jonathan Crane (Scarecrow (comics)), in an effort to bring the balance of justice to Gotham City and destroy it, weaponize the toxic flower's organic compounds into a concentrated powder form and release it into the city's water supply. In the script, authored by David S. Goyer, the flower is described as a blue, double-bloomed poppy, but there is no mention of its specific variety in the film.


    James and Ruth Bauer, husband and wife collaborative team, wrote an unconventional music theatre piece entitled The Blue Flower at the turn of the 21st century. Speaking through liberally fictionalized versions of artists Max Beckmann, Franz Marc, and Hannah Hoch as well as pivotal female scientific figure Marie Curie, the piece works elegantly and forcefully with the romantic significance of the blue flower as it meditates on the brutal political and cultural turmoil of World War I, the short lived Weimar Republic, and Adolf Hitler's rise to power in the Nazi Party. The narratives and characters are as significant allegorically as they are individually, and the music, lyrics, and accompanying artwork and videography are rich and complex as this play/concert/collage grapples with elements of the Dada movement, as well the hope, excitement, melancholy, and tragedy experienced by those who wanted to see the world smashed to pieces so that it could be reborn - one is obligated to recall Ezra Pound's (and accordingly Modernism's) call to action: "Make it new."

    Produced at New York Music Theater Festival in 2004 and most recently by the Prospect Theater Company in February 2008, the piece has drawn flattering words from Broadway and Off-Broadway figures including Stephen Schwartz (Godspell (1971), Pippin (1972) and Wicked (2003)), Mark Hollmann and Greg Kotis (both of Urinetown), as well as mixed reviews (some raving, some unimpressed) in the press. Matthew Murray of
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    provides a concise summation of such discussions in writing that "{The Blue Flower} exists on its own terms, whether you love it or hate it, and demands you do the same, making it a tight-fitting tribute to exactly the search for artistic perfection that the bloom of the title symbolizes."
    Last edited by amin2000; 03-06-2008 at 09:41.

  6. #16
    حـــــرفـه ای Vmusic's Avatar
    تاريخ عضويت
    Jun 2006
    محل سكونت
    vmusic.ir
    پست ها
    5,376

    پيش فرض

    سلام امین جان بهتره مقالاتی رو که می زاری یه کوچولو فارسی هم بنویسی کلی در مورد چی هست

    ممنون

  7. #17
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    چشم جعفر جان ولی گفتم اینجا مباحث به زبان اصلیه
    تا جایی که در توانمه باشه

  8. #18
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    نوعی علف هرز


    Annual Bluegrass

    Annual bluegrass (Poa annua) is a cool-season annual that forms dense clumps that are lighter green than cultivated turf grasses. Unlike perennial bluegrass, the tips of annual bluegrass leaves show a slight curve, like the bow of a boat. Seedlings that sprout in fall or early spring produce seeds in early summer, and then often die in summer's heat. A corn gluten herbicide applied in early fall and again in early spring will reduce seed germination. Reduce reseeding by mowing often or collecting grass clippings when the plants begin producing seeds in May and June.


    Weed Control Techniques

    Corn gluten herbicides. Powdered herbicides made from corn gluten keep crabgrass and other weed seeds from germinating and growing. They are typically spread on established lawns, but they also can be used in gardens where no seeds will be planted, such as in perennial beds. As the corn gluten degrades, it provides a small amount of nitrogen to the soil. Crabgrass begins to germinate at about the time that azaleas, dogwoods, and forsythias bloom, so spread corn gluten at that time for best results. Application procedures vary with the particular product; be sure to read and follow the directions on the label. Do not use corn gluten in newly seeded lawns, or in garden beds where you plan to sow seeds.
    Reducing reseeding. Most weeds reproduce primarily from seeds, and the seeds of some weeds can remain viable when buried in the soil for decades. So it's essential to keep weeds from shedding seeds in the garden. Garden weeds that are neglected until they reach seed-bearing age can be lopped off near the soil line with pruning shears, a stout knife, or a string trimmer with a blade attachment. Cutting back perennial weeds again and again not only reduces reseeding, it also forces the plants to use up food reserves stored in their roots. In a garden that has gone hopelessly weedy, mowing it down promptly, raking out the seed-bearing debris, and starting over next year is a big step in the right direction. Mowing regularly helps keep weeds under control in lawns. When mowing lawns where seed-bearing weeds are present, collect the clippings in a bagger and dispose of them in a shady place

  9. #19
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Bermudagrass


    Bermudagrass (Cynodon dactylon) is a terrible nuisance in gardens in the southern half of the United States. Improved turfgrass strains often behave themselves, but primitive forms are very difficult to control. It spreads by creeping stems, underground stolons, and seeds. Maintain a broad buffer area between your garden and stands of wild bermudagrass. Dig out sprigs several times each year, and mulch to make digging easier. Brush with an organic herbicide containing acetic acid monthly if this grass grows so close to other plants that digging is impossible.

    Weed Control Techniques

    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

    Digging. Weeds that regrow from persistent roots must be dug. Use a spade or digging fork to dig spreading perennials, such as bindweed, Canada thistle, and quackgrass. Start digging a foot away from the plant's center to loosen the soil. Then lift the weed from beneath, which reduces how many root pieces are likely to break off and regrow. Dandelion, dock, and other weeds that grow from persistent taproots can be dug the same way, or you can use a special fork-like tool called a dandelion weeder to pry them up. Dig very large taproots that are difficult to pry loose. In lawns and other places where digging dandelions is not practical, use a sharp knife to slice off the leaves and the top inch or two of taproot at a diagonal angle. Some weeds that are easily pulled when the soil is moist must be dug from dry soil.
    Mulching. Mulch that's more than 2 inches thick can deprive most weed seeds of the light they need to germinate and grow. In vegetable and flower gardens, you can mulch with wheat straw (which has fewer weed seeds than hay), chopped leaves, grass clippings, or many other organic materials. Where weeds are numerous, try covering the soil with four to six sheets of newspaper. Then cover the newspapers with 2 to 3 inches of organic mulch. Pieces of scrap carpeting make a good weed-suppressing mulch to use in pathways between rows. When mulching beneath shrubs and trees, place a sheet of landscape fabric over the soil, then cover it with 3 inches of organic mulch. An edging (a 4- to 6-inch-wide strip of rot-proof material driven into the ground vertically) of brick, stone, or metal will help the mulch stay put, halt invasion by creeping weeds, and make the bed look neat and well groomed.
    Organic herbicides. There are several herbicides made from natural ingredients. Those that contain clove oil (eugenol) give the best control of young broadleaf weeds. Products containing acetic acid, often in combination with citric acid, do a good job on young grasses. Some products contain both clove oil and acetic acid, so they are useful for a broad variety of weeds. Soap-based herbicides dehydrate leaves by cutting through their protective layer of cutin. All of these types of organic herbicides work best on young weeds and pose only a temporary setback to well-rooted perennial weeds. To minimize damage to neighboring plants, spray only in dry, still weather. To maximize effectiveness, spray young weeds when temperatures are above 70 degrees F and the sun is shining brightly. Be aware that repeated applications of a product containing acetic acid (which is very strong vinegar) can lower the soil's pH, making it more acidic.

  10. #20
    کـاربـر بـاسـابـقـه amin2000's Avatar
    تاريخ عضويت
    May 2007
    محل سكونت
    Maelstorm
    پست ها
    1,865

    پيش فرض

    Crabgrass

    [/center]


    Crabgrass (Digitaria species) seedlings appear from mid-spring through summer in many types of soils. This fast-growing annual needs only warm rain to coax seeds to life. Where crabgrass infestation is severe, apply an organic corn gluten herbicide product in spring, keeping in mind that it will inhibit the growth of all types of newly germinated seeds. From late spring onward, pull young seedlings from moist soil, or cultivate when the soil is dry. Mulch to reduce seed germination, and space plants close together to crowd out seedlings that emerge late. Mow weedy areas near your garden to reduce reseeding. Flaming is sometimes used to control crabgrass in large gardens and fields.

    Weed Control Techniques

    [center]

    Corn gluten herbicides. Powdered herbicides made from corn gluten keep crabgrass and other weed seeds from germinating and growing. They are typically spread on established lawns, but they also can be used in gardens where no seeds will be planted, such as in perennial beds. As the corn gluten degrades, it provides a small amount of nitrogen to the soil. Crabgrass begins to germinate at about the time that azaleas, dogwoods, and forsythias bloom, so spread corn gluten at that time for best results. Application procedures vary with the particular product; be sure to read and follow the directions on the label. Do not use corn gluten in newly seeded lawns, or in garden beds where you plan to sow seeds.
    Pulling. Most young weeds can be pulled from the soil. They will slide out most easily if you pull them when the soil is wet. Getting the root up is crucial, so think of the main stem as the root's handle, and grasp it as close to the soil line as you can. If you find that the weeds are breaking off at the crown as you pull, slip a kitchen fork, dandelion weeder, or similar tool under the weed, and pry and twist as you pull it up. Weeds that have taproots, such as dandelion and plantain, usually must be pried out. A flexible pair of waterproof gloves will keep your hands comfortable as you weed, and it's good to have a nice sitting pad, too. Let pulled weeds bake in the sun for a day or so before composting them. If pulled weeds are holding mature seeds, compost them separately in a hot, moist pile before using this compost in the garden.
    Cultivating. Slicing and dicing weeds with a hoe works best when the soil is relatively dry, and the same goes for cultivating with a tiller. With their tops mangled and roots cut, most young weeds will quickly shrivel up and die. Be careful to cultivate only the top inch or two of soil or you may injure nearby garden plant roots and drag new weed seeds to the surface. A sharp hoe works much better than a dull one, so refresh the edge on your hoe with a steel file between weeding sessions. After using either a hoe or tiller to cultivate weeds, go back the next day to nip out any survivors. When battling perennial weeds, you can weaken the plants by chopping them down with a sharp hoe, but it's best to combine hoeing with digging to achieve good control. Never use a tiller in soil that is infested with bindweed, quackgrass, or other weeds that regrow from small pieces of root; they are easily spread by rototilling.
    Mulching. Mulch that's more than 2 inches thick can deprive most weed seeds of the light they need to germinate and grow. In vegetable and flower gardens, you can Mulch with wheat straw (which has fewer weed seeds than hay), chopped leaves, grass clippings, or many other organic materials. Where weeds are numerous, try covering the soil with four to six sheets of newspaper. Then cover the newspapers with 2 to 3 inches of organic Mulch. Pieces of scrap carpeting make a good weed-suppressing Mulch to use in pathways between rows. When Mulching beneath shrubs and trees, place a sheet of landscape fabric over the soil, then cover it with 3 inches of organic Mulch. An edging (a 4- to 6-inch-wide strip of rot-proof material driven into the ground vertically) of brick, stone, or metal will help the Mulch stay put, halt invasion by creeping weeds, and make the bed look neat and well groomed.
    Crowding plants. When plants grow so close together that the ground between them is shaded, sun-seeking weeds, such as pigweed and purslane, don't have a chance. Use double rows rather than single ones whenever possible in your vegetable garden. In flower beds, place flowers in closely spaced groups. As plants need more room to grow, thin them gradually so weeds get only a fleeting chance at good light. Plants with broad leaves, such as squash and cabbage, do a good job of crowding out weeds. Vigorous lawn grasses that form a tight turf naturally crowd out weeds. To keep turf tight, apply a slow-release organic fertilizer during your lawn's most active season of new growth. The recommended cutting height varies with different species of grass, but with any type of grass it's a good weed-preventive strategy to mow high and often. Long blades of grass often do a good job of shading out germinating weed seeds.
    Reducing reseeding. Most weeds reproduce primarily from seeds, and the seeds of some weeds can remain viable when buried in the soil for decades. So it's essential to keep weeds from shedding seeds in the garden. Garden weeds that are neglected until they reach seed-bearing age can be lopped off near the soil line with pruning shears, a stout knife, or a string trimmer with a blade attachment. Cutting back perennial weeds again and again not only reduces reseeding, it also forces the plants to use up food reserves stored in their roots. In a garden that has gone hopelessly weedy, mowing it down promptly, raking out the seed-bearing debris, and starting over next year is a big step in the right direction. Mowing regularly helps keep weeds under control in lawns. When mowing lawns where seed-bearing weeds are present, collect the clippings in a bagger and dispose of them in a shady place.
    Flaming. Flamers are portable gas torches that produce heat intense enough to boil the water in plant cells. Killing a weed requires heat for only 1/10 of a second. Flamers are usually used to kill young weeds in prepared rows, just before seeds or seedlings are planted, as an alternative to pre-emergent herbicides. Flamers become trickier to use later, when the plants are actively growing, and they cannot be used where Mulches are present. flamers also are quite costly compared to a hoe, but may be a worthwhile investment if you have a number of straight rows to weed. They also are useful for killing weeds in between walkway pavers. The smallest models consist of a backpack that holds propane fuel, a hose, and a hooded nozzle at the end of a handle that resembles a carpet sweeper.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •