تبلیغات :
ماهان سرور
آکوستیک ، فوم شانه تخم مرغی ، پنل صداگیر ، یونولیت
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 16 از 18 اولاول ... 612131415161718 آخرآخر
نمايش نتايج 151 به 160 از 172

نام تاپيک: مقالات علمي رياضي

  1. #151
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    کمک به کودک در آموختن ریاضیات



    بسیاری از اولیا برای کمک به کودک خود در آموختن ریاضیات ، سعی میکنند به روشهای گوناگون متوصل شوند تا مفاهیم پیچیده ی ریاضی را به او بیاموزند. برای اینکه کودک بهترین کمک را دریافت کند ، باید هدف را ایجاد اشتیاق هرچه بیشتر در نظر گرفت و سعی کرد تا آنجا که ممکن است فشار ر کاهش داد . انگیزه ی یادگیری را با نشان دادن کاربرد گسترده ریاضی در زندگی روزمره و اینکه خود اولیا احساس منفی خود را از ریاضی به کودک القا نکنند ، می توان قوی تر ساخت .
    سعی کنید احساس شخصی شما نسبت به ریاضی ، شناخت کودک را از دنیای اعداد و محاسبات تحت تاثیر قرار ندهد. زمان روش های آزار دهنده ای برای آموزش مفاهیم ریاضی سپری شده و نگاه جدید سعی در هر چه بیشتر کاربردی تر ساختن این آموزش دارد تا آموخته های کودکان با جهان واقعیت سازگارتر باشد .
    با کاربرد روزمره ریاضی در زندگی ، کودک به اهمیت این مهارت پی خواهد برد. مثلا به هنگام پرداخت صورت حساب خرید یا اندازه گیری متراژ منزل یا محاسبه وزن مواد غذایی در آشپزی ، می توان کودک را به کمک طلبید . با توضیح شغل های مختلف مثل مهندسان ، دارو سازان و ستاره شناسان ،دید گاه او به کاربرد ریاضی گسترده تر خواهد شد .با صدای بلند حساب کردن در منزل یا فروشگاه ، که روند محاسبه را به کودک نشان می دهد نیز روش موثری است . مثلا ، وقتی کودک از شما تقاضای شیرینی می کند با گفتن اینکه ” خوب ، اگر از این پنج شیرینی یکی ر تو بخوری و یکی هم خواهرت بخورد برای من و پدرت چند تا باقی می ماند؟ ” از او بخواهید که او هم با صدای بلند حسابش را به شما بگوید.مهمتر از جواب درست یا نادرست او ، روالی است که او برای رسیدن به جواب استفاده می کند .
    بسته به علاقه کودک و البته نظر معلم او ، گاهی و نه همیشه ، ماشین حساب و نرم افزار های رایانه ای برای ایجاد هیجان نسبت به مفاهیم ریاضی و محاسبات مفید خواهد بود .
    یکساعت عقربه ای برای کودک تهیه کنید.گاهی از او سیوالاتی در مورد زمان بپرسید.مثلا : ” اگر برادرت ساعت ۴ بیاید ، چند دقیقه ی دیگر باید منتظر باشیم ؟”
    کودک بخواهید وزن اشیا ، لوازم منزل ، کتاب و … را حدس بزند.خود شما هم حدس بزنید و بعد با ترازو تعیین کنید که کدام یک نزدیکتر حدس زده است.یک روش دیگر جمع زدن اندازه ی قد یا وزن اعضای خانواده است تا معلوم شود در مجموع قد یا وزن خانواده شما چقدر است .این روش برای تمرین جمع اعداد سه یا دو رقمی مناسب است .
    بازی های خرید و فروش با مقدارهای مختلف پول کودک را با مفهوم پول و محاسبه آن آشنا می کند . بازی هایی مثل مونو پولی ،هنوز برای بسیاری از اولیا و کودکان جالب است.یک بازی دیگر هم پیشنهاد می شود: با کمک یک تاس اعداد ، اعضای خانواده عددی را بین یک وشش بدست می آورند و برابر آن سکه معینی -مثلا یک تومانی - دریافت می کنند ، وقتی مجموع سکه ها به رقمی قابل تعویض رسید ، آنرا با اسکناس ی سکه ی پر ارزش تر ، معاوضه می کنند .وقتی بودجه فرضی تمام شد ، کسی که بیشترین میزان پول را بدست آورده است ، برنده می شود . در مثالی دیگر، می توان کودک را با بودجه ای معین برای خرید لوازم یک وعده غذا به حساب دعوت کرد و دید که چطور بودجه بندی را می آموزد و آیا حدس های او قابل انجام است؟ و اگر چنین بود بر همان اساس خرید انجام بشود .
    یک روش برای آشنایی وی با مفهوم حجم ، وزن و نسبت این است که با کمک ظروف اندازه گیری از او بخواهید مقادیر برنج ، حبوبات یا مایعات را برای تهیه ی غذا پیمانه کند .
    گاهی اولیا نگران توان یادگیری فرزندشان هستند . در این شرایط،معلمان بهترین داوری را عرضه می کنند زیرا امکان مقایسه کودک را در کنار همکلاسان دیگر و شرایط مختلف مدرسه دارند .علایمی مانند مشکل در یاد آوری ارقام ، اشتباه نوشتن اعداد مثلا ۷ با ۸ یا ۳ با ۲ ، کلافه شدن و بیقراری هنگام کار با ارقام ، ناتوانی در دنبال کردن دستور العمل های ساده ریاضی ، ناتوانی در درک مفاهیم ذهنی مثل بزرگتر و کوچکتر یا قبل و بعد یا کم سن تر و مسن تر و اضطراب بالا در مورد تکالیف ریاضی که اگر همه یا اغلب شان در یک کودک دیده شود باید با معلم کودک صحبت نمود . چون قبل از آنکه تشخیص اختلال یادگیری مطرح شود باید این احتمال که شاید کودک تحت فشار زیاد تر از حد توان است یا نیازمند تمرین هایی مانند آنچه در بالا ذکر شد است ، رد شود .سرانجام ممکن است اولیا و معلم ، به این نتیجه برسند که کمک روانپزشکی برای کودک لازم است .

  2. #152
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    دنباله های سریع رشد



    در این مطلب٬ می خوام براتون تعریفی از دنباله های سریع رشد (اسمی که خودم روشون گذاشتم) ارایه بدم که میشه کاربردهای زیادی براشون پیدا کرد و نتایج جالبی رو ازشون نتیجه گرفت.
    تعریف: فرض کنیم Q یک عدد طبیعی ثابت باشد. تعریف می کنیم:
    C۰=۱+Q
    Cn=Cn-۱۲+QCn-۱-Q

    در اینصورت دنباله {Cn} را یک دنباله سریع رشد از مرتبه یک و مبنای Q می نامند.
    دنباله هایی با این ساختار مجموعه ای نامتناهی را تشکیل می دهند. یعنی شما می توانید هر بار دنباله های جدیدتری بسازید. حتی با تغییر فرمولبندی غالب می توانید مجموعه نامتناهی دیگری از این نوع بسازید. از دنباله های معروف سریع رشد می توان به دنباله منسوب به فرما اشاره کرد.

  3. #153
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    هندسه نااقلیدسی و انحنای فضا



    مقدمه
    علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
    در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات “اصل توازی” مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید.
    ۱-۵ اصطلاحات بنیادی ریاضیات
    طی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون کمیت هایی در نظر می گرفتند که در نفس خویش وجود دارند. این موجودات همواره همه ی کوششهای را که برای تعریف و توصیف شایسته ی آنان انجام می شد را با شکست مواجه می ساختند. بتدریج این نکته بر ریاضیدانان قرن نوزدهم آشکار گردید که تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند.
    بنابراین، اینکه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. یک وقت براتراند راسل گفته بود که ریاضیات موضوعی است که در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه که می گوییم درست است.
    دلیل آن این است که برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممکن است به جای آنها اصطلاحات دیگری بگذاریم بی آنکه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنکه بگوییم دو نقطه فقط یک خط را مشخص می کند، می توانیم بگوییم دو آلفا یک بتا را مشخص می کند. با وجود تغییری که در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا که دلیل های درست به شکل نمودار بسته نیستند، بلکه فقط به اصول موضوع که وضع شده اند و قواعد منطق بستگی دارند.
    بنابراین، ریاضیات تمرینی است کاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ریاضیات احکامی می سازند به صورت هرگاه چنین باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتی از معنی فرضها یا راست بودن آنها نیست. این دیدگاه (صوریگرایی) با عقیده ی کهن تری که ریاضیات را حقیقت محض می پنداشت و کشف هندسه های نااقلیدسی بنای آن را درهم ریخت، جدایی اساسی دارد. این کشف اثر آزادی بخشی بر ریاضیدانان داشت.
    ۲-۵ اشکالات وارد بر هندسه اقلیدسی
    هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت:
    اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید.
    اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد.
    اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد.
    اصل چهارم - همه ی زوایای قایمه با هم مساوی اند.
    اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.
    اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت، به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سیوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد.
    در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویویی و … تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید.
    یانوش بویویی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود .
    و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازیها را رها کنی.
    ولی یانوش جوان از اخطار پدیر نهرسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال ۱۸۲۳ پدرش را محرمانه در جریان کشف خود قرار داد و در سال ۱۸۳۱ اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گایوس فرستاد. بعد معلوم شد که گایوس خود مستقلاً آن را کشف کرده است.
    بعدها مشخص شد که لباچفسکی در سال ۱۸۲۹ کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بویی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویویی و لباچفسکی ثبت گردید.
    ۳-۵ هندسه های نا اقلیدسی
    اساساً هندسه نااقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می نامند. از این گونه هندسه ها تا به حال زیاد شناخته شده است. اختلاف بین هندسه های نا اقلیدسی و اقلیدسی تنها در اصل توازی است. در هندسه اقلیدسی به ازای هر خط و هر نقطه نا واقع بر آن یک خط می توان موازی با آن رسم کرد.
    نقیض این اصل را به دو صورت می توان در نظر گرفت. تعداد خطوط موازی که از یک نقطه نا واقع بر آن، می توان رسم کرد، بیش از یکی است. و یا اصلاً خطوط موازی وجود ندارند. با توجه به این دو نقیض، هندسه های نا اقلیدسی را می توان به دو گروه تقسیم کرد.
    یک - هندسه های هذلولوی
    هندسه های هذلولوی توسط بویویی و لباچفسکی بطور مستقل و همزمان کشف گردید.
    اصل توازی هندسه هذلولوی - از یک خط و یک نقطه ی نا واقع بر آن دست کم دو خط موازی با خط مفروض می توان رسم کرد.
    دو - هندسه های بیضوی
    در سال ۱۸۵۴ فریدریش برنهارد ریمان نشان داد که اگر نامتناهی بودن خط مستقیم کنار گذاشته شود و صرفاً بی کرانگی آن مورد پذیرش واقع شود، آنگاه با چند جرح و تعدیل جزیی اصول موضوعه دیگر، هندسه سازگار نااقلیدسی دیگری را می توان به دست آورد. پس از این تغییرات اصل توازی هندسه بیضوی بصورت زیر ارایه گردید.
    اصل توازی هندسه بیضوی - از یک نقطه ناواقع بر یک خط نمی توان خطی به موازات خط مفروض رسم کرد.
    یعنی در هندسه بیضوی، خطوط موازی وجود ندارد. با تجسم سطح یک کره می توان سطحی شبیه سطح بیضوی در نظر گرفت. این سطح کروی را مشابه یک صفحه در نظر می گیرند. در اینجا خطوط با دایره های عظمیه کره نمایش داده می شوند. بنابراین خط ژیودزیک یا مساحتی در هندسه بیضوی بخشی از یک دایره عظیمه است.
    در هندسه بیضوی مجموع زوایای یک مثلث بیشتر از ۱۸۰ درجه است. در هندسه بیضوی با حرکت از یک نقطه و پیمودن یک خط مستقیم در آن صفحه، می توان به نقطه ی اول باز گشت. همچنین می توان دید که در هندسه بیضوی نسبت محیط یک دایره به قطر آن همواره کمتر از عدد پی است.
    ۴-۵ انحنای سطح یا انحنای گایوسی
    اگر خط را راست فرض کنیم نه خمیده، چنانچه ناگزیر باشیم یک انحنای عددی k به خطی نسبت دهیم برای خط راست خواهیم داشت k=o انحنای یک دایره به شعاع r برابر است با k=۱/r.
    تعریف می کنند. همچنین منحنی هموار، منحنی ای است که مماس بر هر نقطه اش به بطور پیوسته تغییر کند. به عبارت دیگر منحنی هموار یعنی در تمام نقاطش مشتق پذیر باشد.
    برای به دست آوردن انحنای یک منحنی در یک نقطه، دایره بوسان آنرا در آن نقطه رسم کرده، انحنای منحنی در آن نقطه برابر با انحنای دایره ی بوسان در آن نقطه است. دایره بوسان در یک نقطه از منحنی، دایره ای است که در آن نقطه با منحنی بیشترین تماس را دارد. توجه شود که برای خط راست شعاع دایره بوسان آن در هر نقطه واقع بر آن بینهایت است.
    برای تعیین انحنای یک سطح در یک نقطه، دو خط متقاطع مساحتی در دو جهت اصلی در آن نقطه انتخاب کرده و انحنای این دو خط را در آن نقاط تعیین می کنیم. فرض کنیم انحنای این دو خط
    k۱=۱/R۱ and k۲=۱/R۲
    باشند. آنگاه انحنای سطح در آن نقطه برابر است با حاصلضرب این دو انحنا، یعنی :
    k=۱/R۱R۲
    انحنای صفحه ی اقلیدسی صفر است. همچنین انحنای استوانه صفر است:
    k=o
    برای سطح هذلولوی همواره انحنای سطح منفی است :
    k<>
    برای سطح بیضوی همواره انحنا مثبت است :
    k>o
    در جدول زیر هر سه هندسه ها با یکدیگر مقایسه شده اند:
    نوع هندسه
    تعداد خطوط موازی
    مجموع زوایای مثللث
    نسبت محیط به قطر دایره
    اندازه انحنا
    اقلیدسی
    یک
    ۱۸۰
    عدد پی
    صفر
    هذلولوی
    بینهایت
    < 180
    > عدد پی
    منفی
    بیضوی
    صفر
    > ۱۸۰
    < عدد پی
    مثبت


    ۴-۶ مفهوم و درک شهودی انحنای فضا
    سیوال اساسی این است که کدام یک از این هندسه های اقلیدسی یا نا اقلیدسی درست است؟
    پاسخ صریح و روشن این است که باید انحنای یک سطح را تعیین کنیم تا مشخص شود کدام یک درست است. بهترین دانشی کا می تواند در شناخت نوع هندسه ی یک سطح مورد استفاده و استناد قرار گیرد، فیزیک است. یک صفحه ی کاغذ بردارید و در روی آن دو خط متقاطع رسم کنید. سپس انحنای این خطوط را در آن نقطه تعیین کرده و با توجه به تعریف انحنای سطح حاصلضرب آن را به دست می آوریم. اگر مقدار انحنا برابر صفر شد، صفحه اقلیدسی است، اگر منفی شد می گوییم صفحه هذلولوی است و در صورتی که مثبت شود، ادعا می کنیم که صفحه بیضوی است .
    در کارهای معمولی مهندسی نظیر ایجاد ساختمان یا ساختن یک سد بر روی رودخانه، انحنای سطح مورد نظر برابر صفر است، به همین دلیل در طول تلریخ مهندسین همواره از هندسه اقلیدسی استفاده کرده اند و با هیچگونه مشکلی هم مواجه نشدند. یا برای نقشه برداری از سطح یک کشور اصول هندسه ی اقلیدسی را بکار می برند و فراز و نشیب نقاط مختلف آن را مشخص می کنند. در این محاسبات ما می توانیم از خطکش هایی که در آزمایشگاه یا کارخانه ها ساخته می شود، استفاده کنیم. حال سیوال این است که اگر خطکش مورد استفاده ی ما تحت تاثیر شرایط محیطی قرار بگیرد چه باید کرد؟ اما می دانیم از هر ماده ای که برای ساختن خطکش استفاده کنیم، شرایط فیزیکی محیط بر روی آن اثر می گذارد. البته با توجه با تاثیر محیط بر روی خطکش ما تلاش می کنیم از بهترین ماده ی ممکن استفاده کنیم. بهمین دلیل چوب از لاستیک بهتر است و آهن بهتر از چوب است.
    اما برای مصافتهای دور نظیر فواصل نجومی از چه خطکشی (متری) می توانیم استفاده کنیم؟ طبیعی است که در اینجا هیچ خطکشی وجود ندارد که بتوانیم با استفاده از آن فاصله ی بین زمین و ماه یا ستارگان را اندازه بگیریم. بنابراین باید به سایر امکاناتی توجه کنیم که در عمل قابل استفاده است. اما در اینجا چه امکاناتی داریم؟ بهترین ابزار شناخته شده امواج الکترومغناطیسی است. اگر مسیر نور در فضا خط مستقیم باشد، در اینصورت با جرت می توانیم ادعا کنیم که فضا اقلیدسی است. برای پی بردن به نوع انحنای فضا باید مسیر پرتو نوری را مورد بررسی قرار دهیم .
    اما تجربه نشان می دهد که مسیر نور هنگام عبور از کنار ماده یعنی زمانی که از یک میدان گرانشی عبور می کند، خط مستقیم نیست، بلکه منحنی است. بنابراین فضای اطراف اجسام اقلیدسی نیست. به عبارت دیگر ساختار هندسی فضا نااقلیدسی است.

  4. #154
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    پروفسور حسابی






    سید محمود حسابی در سال ۱۲۸۱ (ه.ش), از پدر و مادری تفرشی در تهران زاده شدند. پس از سپری نمودن چهار سال از دوران کودکی در تهران, به همراه خانواده (پدر, مادر, برادر) عازم شامات گردیدند. در هفت سالگی تحصیلات ابتدایی خود را در بیروت, با تنگدستی و مرارت های دور از وطن در مدرسه کشیش های فرانسوی آغاز کردند و همزمان, توسط مادر فداکار, متدین و فاضله خود (خانم گوهرشاد حسابی) , تحت آموزش تعلیمات مذهبی و ادبیات فارسی قرار گرفتند.
    استاد, قرآن کریم را حفظ و به آن اعتقادی ژرف داشتند. دیوان حافظ را نیز از برداشته و به بوستان و گلستان سعدی, شاهنامه فردوسی, مثنوی مولوی, منشات قایم مقام اشراف کامل داشتند.
    شروع تحصیلات متوسطه ایشان مصادف با آغاز جنگ جهانی اول, و تعطیلی مدارس فرانسوی زبان بیروت بود. از این رو, پس از دو سال تحصیل در منزل برای ادامه به کالج آمریکایی بیروت رفتند و در سن هفده سالگی لیسانس ادبیات, در سن نوزده سالگی, لیسانس بیولوژی و پس از آن مدرک مهندسی راه و ساختمان را اخذ نمودند. در آن زمان با نقشه کشی و راهسازی, به امرار معاش خانواده کمک می کردند. استاد همچنین در رشته های پزشکی, ریاضیات و ستاره شناسی به تحصیلات آکادمیک پرداختند. شرکت راهسازی فرانسوی که استاد در آن مشغول به کار بودند, به پاس قدردانی از زحماتشان, ایشان را برای ادامه تحصیل به کشور فرانسه اعزام کرد و بدین ترتیب در سال۱۹۲۴ (م) به مدرسه عالی برق پاریس وارد و در سال ۱۹۲۵ (م) فارغ التحصیل شدند.
    همزمان با تحصیل در رشته معدن, در راه آهن برقی فرانسه مشغول به کار گردیدند و پس از پایان تحصیل در این رشته کار خود را در معادن آهن شمال فرانسه و معادن زغال سنگ ایالت “سار” آغاز کردند. سپس به دلیل وجود روحیه علمی, به تحصیل و تحقیق, در دانشگاه سوربن, در رشته فیزیک پرداختند و در سال ۱۹۲۷ (م) در سن بیست و پنج سالگی دانشنامه دکترای فیزیک خود را , با ارایه رساله ای تحت عنوان “حساسیت سلول های فتوالکتریک”, با درجه عالی دریافت کردند. استاد با شعر و موسیقی سنتی ایران و موسیقی کلاسیک غرب به خوبی آشنایی داشتند وایشان در چند رشته ورزشی موفقیت هایی کسب نمودند که از آن میان می توان به دیپلم نجات غریق در رشته شنا اشاره نمود.
    پروفسور حسابی به دلیل عشق به میهن و با وجود امکان ادامه تحقیقات در خارج از کشور به ایران بازگشت و با ایمان و تعهد, به خدمتی خستگی ناپذیر پرداخت تا جوانان ایرانی را با علوم نوین آشنا سازد.
    پایه گذاری علوم نوین و تاسیس دارالمعلمین و دانشسرای عالی, دانشکده های فنی و علوم دانشگاه تهران, نگارش ده ها کتاب و جزوه و راه اندازی و پایه گذاری فیزیک و مهندسی نوین, ایشان را به نام پدر علم فیزیک و مهندسی نوین ایران در کشور معروف کرد.
    حدود هفتاد سال خدمت علمی ایشان در گسترش علوم روز و واژه گزینی علمی در برابر هجوم لغات خارجی و نیز پایه گذاری مراکز آموزشی, پژوهشی, تخصصی, علمی و …, از جمله اقدامات ارزشمند استاد به شمار می رود که برای نمونه به مواردی اشاره می کنیم:

    _ اولین نقشه برداری فنی و تخصصی کشور (راه بندرلنگه به بوشهر)
    _ اولین راهسازی مدرن و علمی ایران (راه تهران به شمشک)
    _ پایه گذاری اولین مدارس عشایری کشور
    _ پایه گذاری دارالمعلمین عالی
    _ پایه گذاری دانشسرای عالی
    _ ساخت اولین رادیو در کشور
    _ راه اندازی اولین آنتن فرستنده در کشور
    _ راه اندازی اولین مرکز زلزله شناسی کشور
    _ راه اندازی اولین رآکتور اتمی سازمان انرژی اتمی کشور
    _ راه اندازی اولین دستگاه رادیولوژی در ایران
    _ تعیین ساعت ایران
    _ پایه گذاری اولین بیمارستان خصوصی در ایران, به نام بیمارستان “گوهرشاد”
    _ شرکت در پایه گذاری فرهنگستان ایران و ایجاد انجمن زبان فارسی
    _تدوین اساسنامه طرح تاسیس دانشگاه تهران
    _ پایه گذاری دانشکده فنی دانشگاه تهران
    _ پایه گذاری دانشکده علوم دانشگاه تهران
    _ پایه گذاری شورای عالی معارف
    _ پایه گذاری مرکز عدسی سازی اپتیک کاربردی در دانشکده علوم دانشگاه تهران
    _ پایه گذاری بخش آکوستیک در دانشگاه و اندازه گیری فواصل گام های موسیقی ایرانی به روش علمی
    _ پایه گذاری و برنامه ریزی آموزش نوین ابتدایی و دبیرستانی
    _ پایه گذاری موسسه ژیوفیزیک دانشگاه تهران
    _ پایه گذاری مرکز تحقیقات اتمی دانشگاه تهران
    _ پایه گذاری اولین رصدخانه نوین در ایران
    _ پایه گذاری مرکز مدرن تعقیب ماهواره ها در شیراز
    _ پایه گذاری مرکز مخابرات اسدآباد همدان
    _ پایه گذاری انجمن موسیقی ایران و مرکز پژوهش های موسیقی
    _ پایه گذاری کمیته پژوهشی فضای ایران
    _ ایجاد اولین ایستگاه هواشناسی کشور (در ساختمان دانشسرای عالی در نگارستان دانشگاه تهران)
    _ تدوین اساسنامه و تاسیس موسسه ملی ستاندارد
    _ تدوین آیین نامه کارخانجات نساجی کشور و رساله چگونگی حمایت دولت در رشد این صنعت
    _ پایه گذاری واحد تحقیقاتی صنعتی سغدایی (پژوهش و صنعت در الکترونیک, فیزیک, فیزیک اپتیک, هوش مصنوعی)
    _ راه اندازی اولین آسیاب آبی تولید برق (ژنراتور) در کشور
    _ ایجاد اولین کارگاه های تجربی در علوم کاربردی در ایران
    _ ایجاد اولین آزمایشگاه علوم پایه در کشور

  5. #155
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    دکارت



    می اندیشم پس هستم - مروری بر دکارت و فلسفه او
    رنه دکارت علاوه بر فیلسوف از ریاضیدانان و فیزیکدانان بزرگ عصر رنسانس نیز بوده است، طوریکه او را پدر هندسه تحلیلی نیز نامیده اند. او در ۳۱ مارس ۱۵۹۶ در فرانسه به دنیا آمد و پس از طی دوره تحصیلی هشت ساله در بیست سالگی به جهان گردی پرداخت و از آن پس به قول خودش کوشید در پی خرد برود. از این رو به ارتش هلند پیوست و به جنگ رفت و بدین ترتیب اوقاتی از عمر را در قسمتهای گوناگون اروپا گذراند در ۱۶۲۹ باز هم روانه هلند شد و نزدیک بیست سال در آنجا و در آرامش به تحقیقات خود پرداخت. تحقیقات دکارت بیشتر تجربه و تفکر شخصی بود، او کمتر از کتاب و نوشته استفاده می کرد و این ما را یاد سقراط می اندازد که در کوچه های آتن قدم می زد و با هر کس به بحث و فلسفه می پرداخت و هیچ گاه چیزی از خود ننوشت!
    دکارت در سپتامبر ۱۶۴۹ به دعوت ملکه سوید برای تعلیم فلسفه خویش به دربار وی در استکهلم رفت اما شرایط آب و هوا و همینطور نوع زندگی که دکارت به آن عادت نداشت او را به بیماری ذات الریه مبتلا ساخت و در ۱۱ فوریه ۱۶۵۰ در همان جا در گذشت.عصری که دکارت در آن می زیست به عصر شکاکیت نیز معروف می باشد و نمایان است که “شک” نه تنها اعتقادات دینی را متزلزل می کند بلکه آسایش و آرامش زندگی را نیز مختل می کند. دکارت نیز که به دیانت مسیحی معتقد و به گفته خودش وجود خداوند را همچون قضایای ریاضی بدیهی می دانست برای بر انداختن شکاکیت و رهانیدن اعتقادات و علوم از چنگال شک به تاسیس فلسفه جدیدی پرداخت، بمین خاطر او را پدر فلسفه نو نیز نامیده اند.
    او همانند ارشمیدس که معتقد بود: “برای اینکه بتواند کره خاکی را از جا بر کند و به مکان دیگر منتقل کند تنها نیازمند یک نقطه ثابت و ساکن بود”، به دنبال نقطه ای ثابت می گشت تا بر آن تکیه کند. از اینرو دکارت می گوید: “در ابتدا باید به همه چیز شک کرد” او نمی خواست قدم اول و پایه بنا را بر جای سست قرار دهد. و در ادامه این شک او از این هم فراتر می رود و می گوید: “حتی به حواسمان نیز نمی توانیم اعتماد کنیم، حواسمان ممکن است ما را بفریبند.” اما در این میان تنها چیزی که برای او مسلم بود همین شک کردن او بود. این شک تنها چیزی بود که او یقین داشت و وقتی شک می کند، حتما می اندیشد و چون می اندیشد حتما موجودی اندیشنده است! و یا به گفته خود او: “می اندیشم، پس هستم”. او می گوید: وقتی من حکم می کنم که شییی هست یا موجود است چرا که آنها را می بینم، قطعا با بداهت بیشتری لازم می آید که خود من که شی را میبینم، وجود داشته باشم چون ممکن است آنچه من می بینم در واقع آن شی نباشد، همچنان که ممکن است من حتی چشمی نداشته باشم که چیزی را ببیند ولی محال است وقتی می بینم یا فکر می کنم که می بینم (فرقی نمی کند) خود من که فکر می کنم معدوم باشم.”
    او این نقطه ثابت را بدست آورده بود و در ادامه از این نقطه پیش تر می رود و به اثبات و جود خداوند، تجرد نفس، بیان ماهیت خطا، بیان ماهیت ماده و به اثبات عالم خارج می پردازد، که اینها همه در رساله تاملات او جمع آوری شده است.
    تاملات نه تنها بهترین اثر دکارت بلکه بهترین و مهمترین اثر قرن هفدهم به شمار آورد.
    وجود خدا در نظر دکارت همانند ” هر که اندیشید پس هست” خود - بدیهی بود. او می گفت: تصور وجود کامل را همه ما داریم و لازمه چنین تصوری آن است که باید وجود کاملی وجود داشته باشد چون وجود کامل اگر وجود نمی داشت کامل نمی بود، در ضمن اگر وجود کاملی در میان نبود تصور آن نیز به ذهنمان راه نمی یافت! به گفته دکارت تصور خدا در ذات ماست. این تصور از وقتی که بدنیا می آییم و مثل علامتی که سازنده روی فرآورده خود می گذارد بر ما نقش شده است. چرا که تصور کمال از انسان بی کمال ممکن نیست

  6. #156
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    اعداد چند ضلعی و اعداد اول



    اعداد چند ضلعی
    اعداد چند ضلعی عددهایی هستند، که با شکلچند ضلعی‌های منتظم ارتباط ویژه‌ای دارند. ارتباط ویژه‌ای دارند. ابتدا به این جدول خوب دقت کنید:
    خواص ریاضی اعداد چند ضلعی، با مطالعه‌ی این اشکال کشف شده‌اند. بحث در مورد عددهایی که به صورت چند ضلعی هستند، شیرین اما مفصل است. ما در اینجا سعی می کنیم. باعددهای چند ضلعی آشنا شویم ، و در مورد برخی از آنها نیز فقط به یک خاصیت اشاره کنیم.
    الف ـ عددهای مثلثی: اگر چند دکمه یکسان داشته باشید، می توانید آنها را کنار هم طوری قرار‌دهید
    که تشکیل یک مثلث متساوی‌الاضلاع دهند. به طوری که در سطر اول جدول مشاهده می‌کنید، در هر کدام از این مثلثها فقط یک دکمه در راس قرار‌دارد در هر یک از سطرهای پایین نیز، هر سطر یک دکمه بیشتر از سطر بالای خود دارد. پس شمار دکمه‌های به کار رفته در آنها را، چپ به راست، می‌توان چنین به دست آورد:
    …،(۵+۴+۳+۲+۱)،(۴+۳+۲+۱)، (۳+۲+۱)، (۲+۱)،(۱)و حاصل هر یک از آنها نیز عدد مثلثی نام دارد. پس سری اعداد مثلثی چنین خواهد‌بود:
    …،۷۸،۶۶،۵۵،۴۵،۳۶،۲۸،۲۱،۱ ،۱۰،۶،۳،۱
    در اینجا اگر شمار دکمه‌های واقع در یک ضلع مثلث معلوم باشد، تعیین مجموع دکمه‌های آن ساده است. کافی خواهد‌بود، که آن را با تمام اعداد طبیعی متوالی کوچکتر از خود جمع کنیم. مثلا اگر تعداد دکمه‌ها در یک ضلع ۵ تا باشد، شمارکل دکمه‌ها۱+۲+۳+۴+۵ یعنی ۱۵تا خواهد‌بود.
    ب ـ عددهای مربعی: این بار دکمه‌ها را در سطرها و ستونهای مساوی کنار هم قرار می‌دهیم. تا یک مربع تشکیل شود .با توجه به شکلهای مربوطه معلوم می‌گردد. که تعداد دکمه‌ها در آنهاـ به ترتیب ـ مساوی باتوان دوم اعداد طبیعی ۱و ۲و ۳و ۴و … خواهد‌بود.
    در اینجا، با معلوم بودن شمار دکمه‌ها در یک ضلع. تعداد کل آنها در مربع معلوم خواهد بود. و اعداد مربعی عبارت از توان دوم اعداد طبیعی متوالی است، که عبارتند از:

    ،۱۴۴، ۱۲۱،۱۰۰،۱۱۷،۹۲،۷۰،۵۱،۳۵،۲ ۲،۱۲،۵،۱
    ج- عددهای به صورت پنج ضلعی : با یک نظر به سومین سطر از جدول متوجه می شوید که اعداد مخمسی نیز عبارتند از:
    ۱,۵,۱۲,۲۲,۳۵,۵۱,۷۰,۹۲,۱۱۷,۱۴۵, ۱۷۶,…
    ریاضیدانان محاسبه کرده‌اند، که در اینجا نیز با معلوم بودن شمار دکمه‌ها در یک ضلع، تعداد دکمه‌های به کار رفته درکل آن معلوم می‌گردد، کافی است، شمار دکمه‌هایی را که در یک ضلع واقعند، به توان دوم برسانید، و آن را با تمام اعداد طبیعی و متوالی پایین‌تر از خود جمع کنید. مثلا محاسبه‌ی دکمه‌های به کار رفته در آخرین پنج ضلعی جدول چنین است: ۱+۲+۳+۴+۵۲، که مساوی ۳۵می‌شود. و هر گاه بخواهیم یک عدد مخمسی پیدا کنیم، که یک ضلع شامل ۸ واحد شود، باید چنین کنیم:
    ۱+۲+۳+۴+۵+۶+۷+۸۲که حاصل ۹۲می‌شود.
    دـ اعداد شش ضلعی: اعداد شش ضلعی نیز با توجه به شکل عبارتند از:
    …، ۲۳۱، ۱۹۰، ۱۵۳، ۱۲۰، ۹۱، ۶۶، ۴۵، ۲۸، ۱۵، ۶، ۱
    در اینجا نیز هر عدد به صورت شش ضلعی، برابر است، با تعداد واحدهای آن در یک ضلع، به اضافه‌ی چهار برابر عدد مثلثی ردیف قبل از آن. به عنوان مثال، در آخرین شکل مربوط به شش ضلعی، در یک ضلع ۵ دکمه وجود‌دارد.و می‌‌دانیم که چهارمین عدد‌مثلثی ۱۰ است. پس می‌توان نوشت: ۱۰×۴+۵، که نتیجه ۴۵دکمه می‌‌شود. حالا شما می‌دانید که مثلاّ عدد شش ضلعی ۲۳۱ چگونه به دست آمده است.
    ه_ عددهای هفت ضلعی و هشت ضلعی: اکنون نوبت شماست، که با توجه به اعداد چند ضلعی قبلی، اولاّ طرز تشکیل اعداد مربوط به آنها را معین کنید. ثانیاّ با معلوم بودن تعداد واحدهای یک ضلع از هر کدام چند ضلعی مربوط به آن را هم بیابید.
    اعداد اول
    تعریف:عدد طبیعی p>۱,pرا اول می نامند به شرطی که تنها مقسوم علیه های مثبت آن ۱وp باشند. اگرعددی طبیعی وبزرگتر از ۱اول نباشد مرکب است.
    قضیه ۱: تعداد اعداد اول نامتناهی است.
    برهان: حکم را به روشی که منسوب به اقلیدس است اثبات می کنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد . حال عدد M را که برابر حاصلضرب این اعداد به علاوه ی ۱ را در نظر بگیرید. این عدد مقسوم علیهی غیر از آن n عدد دارد که با فرض در تناقض است.
    (البته شایان ذکر است که این قضیه اثبات های گوناگونی دارد که ما ساده ترین آنها را انتخاب کردیم اگر مایلید می توانید اثبات های دیگر آن را بیاورید.)
    قضیه ۲:قضیه ی اساسی حساب: هر عدد طبیعی بزرگتر از ۱ را به شکل حاصلضرب اعدادی اول نوشت.
    قضیه ۳: قضیه چپیشف:اگر n عددی طبیعی و بزرگتر از ۲ باشد, حتما” بین n و ۲n عدد اولی وجود دارد.

  7. #157
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    نگاه اجمالی به علم ریاضی



    دید کلی
    پرسشی که بارها از سوی دانش آموزان ، دانشجویان و حتی دبیران مطرح می‌شود این است که چرا ریاضیات می‌خوانیم؟ یا چرا ریاضیات تدریس می‌شود؟ چرا باید ریاضیات مورد توجه قرار گیرد؟ یا اصولا ریاضیات چه نقشی در زندگی می‌تواند داشته باشد و سوالاتی از این قبیل. آنچه مسلم است این است که نمی‌توان به این پرسشها در قالب یک یا چند جمله پاسخ قانع کننده‌ای داد. به طور کلی در جدال انسان برای رسیدن به اهداف خود ریاضیات نقش اساسی داشته و تا حد اعجاب آوری در پیشرفت و رشد تکنولوژی و مسایل پزشکی و ارتباطات نقش چشمگیر و قابل ملاحظه و انکار ناپذیر دارد.
    ویژگی های ریاضیات
    * اولین ویژگی ریاضیات دقت است، کم و زیاد شدن یک صفر ، مثبت یا منفی در نظر گرفتن یک رقم ، پس و پیش کردن یک نماد ، اضافه کردن یک کلمه و … هر کدام می‌تواند مساله‌ای را به جوابی دیگر رساند یا صورت مساله را عوض کند.
    * دومین ویژگی ریاضیات ، خلاصه گویی و استفاده از مطالب ، قضیه‌ها و مساله‌های اثبات شده به عنوان ابزارهایی برای حل مساله‌های جدید است و این که همواره به دنبال داده‌های صحیح و کوتاه باشیم.
    جنبه‌های مختلف ریاضیات
    ریاضیات به عنوان یک ابزار
    یعنی وسیله‌ای برای توصیف و تجزیه و تحلیل و انتقال آن ، به دلیل گنگ و نامفهوم بودن زبانهای معمولی.
    ریاضیات به عنوان یک موضوع
    ریاضیات علاقه می‌آفریند و لذت می‌بخشد و ارزش مطالعه محض و مستقل از کاربرد دارد که خود جنبه آزادی اندیشه را از قید زمان و مکان می‌طلبد چرا که در بسیاری از موارد مطالعات در خارج از فضای سه بعدی و در فضاهای آفریده شده توسط ریاضیدان صورت می‌گیرد. بطوری که بیشتر مفاهیم مهم ریاضی به واسطه همین ، امروز کاربرد زیادی پیدا کرده‌اند. همان طور که در ساختن بدن سالم نیاز به ورزش مکرر فیزیکی داریم.
    ریاضیات به عنوان یک علم
    یعنی از دیدگاه کاربردی که نقش و ارزش آن در جوامع کنونی بشری روز به روز مورد توجه قرار گرفته است و کاملا محسوس می‌باشد.
    ریاضیات به عنوان یک مساله تربیتی
    برای پرورش ونظم فکری و بالابردن قدرت اندیشه و استدلال منطقی همچنین رشد قوه خلاقیت ذهنی که شاید این جنبه از ریاضیات مهمترین هدف از تدریس آن می‌باشد.
    ریاضیات از دیدگاه دانشمندان
    * گالیله می‌گوید: اصول ریاضیات الفبای زبانی است که خداوند جهان را با آن نوشته است و بدون کمک آنها درک یک کلمه هم غیر ممکن است. و انسان بیهوده در راهروهای تاریک و پر پیچ و خم سرگردان است.
    * لیوناردو داوینچی معتقد است که: هیچ دانشی را نمی‌توان دانش واقعی دانست مگر این که به صورت ریاضیات متجلی شود.
    * واجر بیکن معتقد است که: ریاضیات دروازه علوم است غفلت از ریاضیات به همه دانشها لطمه می‌زند زیرا کسی که علوم دیگر را نمی‌تواند درک کند و اشیای دیگر جهان را نمی‌شناسد. و بدتر از آن کسانی که نادانند نمی‌توانند جهالت خود را درک کنند.
    * کانت می‌گوید: در هر بخش از علوم فیزیکی به معنای عام آن قدر از علم واقعی است که در آن ریاضیات وجود دارد یعنی علوم منهای ریاضیات یعنی هیچ.
    فرجام سخن
    بنابراین اگرفردی به هر دلیل در رسیدن به هدف از ریاضی کمک نگیرد، وظیفه خود را انجام نداده است و همچنین اگر شخصی توانایی را در این مورد بدست نیاورد نه تنها توفیقی به دست نمی‌آورد، بلکه در زندگی اجتماعی نیز از طریق راههای سالم پیروزی چشمگیر نخواهد داشت. می‌توان نتیجه گرفت که ریاضیات غذای مغز است. که باید بطور حساب شده به مغز برسد. همچنین ریاضیات مانند غلتکی است که جاده ناهموار و سنگلاخ علم را صاف و ناهموار می‌سازد تا دیگر علوم در گذر زمان سرعت بیشتری بگیرند.

  8. #158
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    ریاضیات در زندگی و عمل



    ریاضیات و زندگی
    علم لقمه برگرفتن از سفره طبیعت است . و ریاضی زاییده احتیاجو در آغازمبتنی بر تجربه. ریاضیات انعکاس دنیای واقعی در ذهن ماست. به عقیده بعضی‌ها :ریاضیات زیباترین زبان برای توصیف طبیعت و روابط بین پدیده‌های طبیعی است.
    سیلوستر می‌گوید:”ریاضیات ،مطالعه شباهتها در تفاوتها و مطالعه تفاوتها درشباهتهاست.”
    علت اساسی موفقیت ریاضیدانان در آفریدن علمی به این زیبایی که عمیق‌ترین معرفت بشری شمرده می‌شود:سخت‌گیری بدون بخشش کوچکترین خطاها در کنار روش و معیارهای منطقی آنها به همراه جدیت ، خلاقیت ، به غایت اندیشیدن و نیز بلند پروازی و جسارت شکستن هر چه موجود است. به هر قسمت از زندگی که کنجکاوانه و با دقت بنگریم ، اثر مستقیم یا غیر مستقیم ریاضیات در آن مشاهده می‌کنیم. نمونه آن کشف اخیر این مساله توسط دانشمندان است که :” یکی از انواع حشرات که بر روی شاخ و برگ درختان لانه سازی می‌کند، روش کارش بر اساس یک فرمول پیچیده ریاضی است.”
    در حالت کلی ریاضیات راه های متعددی برای باز شدن فکر در اختیار ما قرار دارد که از مهمترین آنها مطالعه ی ریاضیات از جمله شاخه ی تر کیبیات است.ریاضیات این کمک را به ما میکند تا مشکلات و موضوعات زندگی را بهتر و راحت تر تجزیه و تحلیل کنیم.
    آمارهای جهانی نشان می دهد طلاق در خانواده هایی که حداقل یکی از همسران ریاضی خوانده است در مقایسه با سایر خانواده ها بسیار کمتر است.
    ریاضیات و علوم
    اکثر ریاضیدانان بگونه طبیعت شناس هستند یا اینکه هم فیزیکدان و هم ریاضیدان هستند. یعنی فیزیکدانان برای حل مشکلی از طبیعت یا بررسی مسایل طبیعی به ریاضیات مراجعه نموده‌اند.
    بنابرین با ابزار ریاضی و ذهن خلاق فیزیکی میتوان پرده از خیلی مبهمات و مجهولات برداشت و ریاضی فیزیکی شد.
    و به کشفهای بزرگی دست یافت که الگوی دانشمندان هم این بوده‌ است.
    پس علوم مختلف بهم تنیده شده و مکملهای همدیگرند.
    رشد یکی به دیگری وابسته هست و لازم پیشرفت در یک شاخه از علم پیشرفت در شاخه ای دیگر هم هست. مثالهای زیر این مسیله را برای ما روشن تر میکند.
    کارل فردریک گوس (۱۷۷۷-۱۸۵۵) روی نقشه های جغرافیایی کار می گرد. با روش گوس توانستند بسیاری از نقشه های جغرافیایی را نقشه برداری اصلاح کنند. ولی این روش که برای تهیه و تصحیح نقشه های جغرافیایی در نظر گرفته شده بود، برای حل مساله ی حرکت آب در اطراف یک جسم و یا حرکت هوا در اطراف بال هواپیما هم به کار گرفته شد.
    می بینید، ریاضیات سالها از صنعت جلوتر است و انسان می تواند به یاری ریاضیات مساله های پیچیده ی صنعت را حل کند. به کمک یک نظریه ی ریاضی که پیش تر کشف شده بود توانستند مساله های عملی مهمی را حل کنند.
    جیمس کلارک ماکسول (۱۸۳۱-۱۸۷۹) فیزیکدان انگلیسی، قانون نوسان های الکترو مغناطیسی را به یاری معادله های ریاضی بیان کرد. او با روش خالص ریاضی نتیجه گرفت و ثابت کرد موجهای الکترو مغناطیسی با سرعتی نزدیک به سرعت نور منتشر می شوند. در ضمن ماکسول تاکید کرد در طبیعت به جز موج های کوتاه، موجهای الکترومغناطیسی بلند هم وجود دارند. پیش بینی ماکسول به حقیقت پیوست و ۲۵ سال بعد، موجهای رادیویی کشف شدند. در زمان ما دقت فیزیک امروزی متوجه ذره های بنیادی است که مهم ترین آنها الکترون، پروتون و نوترون هستند. ولی آیا شما می دانید همه ی این ذره های بنیادی پیش از مشاهده پیشگویی و بعد کشف شدند. نخستین ذره ی بنیادی یعنی الکترون را ژوزف جان تامسون، فیزیکدان انگلیسی (۱۸۵۶-۱۹۴۰) کشف کرد ولی پیش بینی آن را ج بستون، فیزیکدان ایرلندی در سال ۱۸۷۲ و سپس هلمهولتس (۱۸۲۱-۱۸۹۲) فیزیکدان و ریاضیدان آلمانی در سال ۱۸۸۱ کرده بودند.
    مساله ای به نام حرکت ذره های ریز- الکترون ها، پروتونها، نوترونها و . . . وجود دارد که بررسی آن، قانون تغییر ذره ها را در شرایط متفاوت مشخص و تنظیم می کند. در این بررسی بسیاری از پدیده های مربوط به فیزیک اتمی و فیزیک هسته ای روشن می شوند. این بررسی به صورت یکی از شاخه های فیزیک ر آمده است و به نام مکانیک “کوانتایی” معروف است.
    بسیاری از کشف های مربوط به مکانیک کوانتایی و بسیاری از قانون های آن براساس پیشگویی های نظری و بر اساس نظریه ها و روش های ریاضی به دست آمده اند. دانشمندان هم براساس همین پیشگویی های نظری، بررسی ها و پژوهش های آزمایشی خود را انجام دادند و در نتیجه مساله های زیادی روشن و قانون های بنیادی مهمی تنظیم شدند.
    آیا تنها در مکانیک کوانتایی است که در آغاز به یاری ریاضیات، حکم نظری تازه و تازه تری را کشف کردند و سپس از راه آزمایش آنها را تایید کردند؟
    در زمینه ی سینماتیک گازها هم پیش تر به صورت نظری، بستگی بین درجه ی حرارت، مالش (اصطکاک) دایمی گازها و ارزش نسبی و مجرد انتشار ثابت با هدایت حرارت، محاسبه می شد و سپس بر اساس این محاسبه کشف های مهم و با ارزشی صورت گرفت.
    موفقیت های تازه و کشف های جدیدی که در فیزیک، شیمی، اخترشناسی، زیست شناسی و سایر دانش های طبیعی و فنی به دست آمده اند. براساس تشکیل نظریه های تازه ی ریاضی و یا استفاده از نظریه های کهنه و فراموش شده ی ریاضی انجام گرفته است.

  9. #159
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    زیبایی شناسی در ریاضیات



    مقدمه
    کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن می‌پندارند و به همین مناسبت ، ریاضیدان و معلم ریاضی را فردی عبوس ، بی‌احساس و بی‌ذوق می‌پندارند و از اینکه کسی که سر و کار و رشته‌اش ریاضیات است، اهل ذوق و هنر و شعر و موسیقی باشد و از آن لذت ببرد، متحیر می‌شوند. آیا به واقع هنر و ریاضیات ، یا به عبارت دیگر ، زیبایی و ظرافت و ریاضی دو مقوله متضاد و دور از هم و ناسازگارند؟ آیا علاقه به ریاضیات و تخصص داشتن در آن ، به معنای بی‌ذوقی ، بی‌احساسی و دور بودن از زندگی است؟ انسان ترکیبی از احساس ، عاطفه و تاثیر پذیری از یک طرف و اندیشه و خرد و داوری منطقی از طرف دیگر است.
    در واقع انسان ، مجموعه‌ای یگانه از جان و خرد است. احساس و منطق را با هیچ نیرویی نمی‌توان از هم جدا کرد. به قول هوشنگ ابتهاج عشق بی‌فرزانگی ، دیوانگی است. هر انسانی از تماشای چشم انداز یک دامنه سر سبز آرامش می‌یابد و در عین حال به فکر فرو می‌رود.شاعر احساس درونی خود را با شعر و نقاش با قلم و بوم بیان می‌کند. گیاه شناس در پی گیاه مورد نظر خود و زبان شناس در پی یافتن ریشه نامگذاری گیاه و داروشناس در جستجوی ویژگیهای درمانی آن است و ریاضیدان نحوه قرار گرفتن برگ و گلبرگها یا اندازه‌ها و شکلها را مورد مطالعه قرار می‌دهد. ولی هم گیاه عضوی یگانه است و هم انسان پس علت این گوناگونی در رابطه بین گیاه و انسان ، وجود جنبه‌های گوناگون و گسترده انسان و تجلی آنها در شرایط مختلفی است.
    تاریخچه ارتباط ریاضیات و هنر
    در دوران رنسانس ، نقاشان بزرگ ، ریاضی‌دان هم بودند. آلبرتی (۱۴۷۲ - ۱۴۰۴) نخستین نیاز نقاش را هندسه می‌دانست. او بود که در سال ۱۴۳۵ میلادی ، اولین کتاب را درباره پرسپکتیو نوشت. نقاشان و هنرمندان برای جان دادن به تصویرها و القای فضای سه بعدی به آثار خود ، به ریاضیات روی آورند. بنابراین همه نقاشان دوره رنسانس نظیر آلبرتی ، دیودر ، لیوناردو داوینچی ، ریاضی‌دانانی هنرمند یا هنرمندانی ریاضی‌دان بودند. دزارک که خود ، معماری هنرمند بود به خاطر همین نیاز نقاشان و با اثبات قضیه‌ای که به نام خود او معروف است، هندسه تصویری را بنیان نهاد و بعد از آن رفته رفته اصول بیشتری از ریاضیات تایید شد.
    چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟
    طبیعت ، سرچشمه زاینده و بی‌پایانی است برای انگیزه دادن به هنرمند و ریاضی‌دان. آنها از درون خود و از ایده‌ها سود می‌جویند و حقیقت را نه تنها آن گونه که مشاهده می‌شود، بلکه آن که باید باشد و آرزوی آدمی است، می‌بینند. هنر و ریاضیات هر دو کمال و ایده‌آل را می‌جویند.
    ریاضیات کلید طلایی برای زیبایی شناسی
    طبیعت عنصر تقارن را عنوان نشانه زیبایی به هنرمند تلقین می‌کند و سپس ریاضی‌دان با کشف قانونمندیهای تقارن به مفاهیم شبه تقارن , تقارن لغزنده می‌رسد و کوبیسم را به هنرمند (نقاش ، شاعر یا موسیقی‌دان) تلقین می‌کند. نغمه‌ها و آواهای موجود در طبیعت الهام دهنده ترانه‌های هنرمندان بوده و ریاضیدانان با کشف قانونهای ریاضی حاکم بر این نغمه‌ها و تلاش در جهت تغییر و ترکیب آنها گونه‌های بسیار متفاوت و دل انگیزی در موسیقی آفریده‌اند. هر زمان که محاسبه درست ریاضی در نوشته‌های ادبی رعایت شده، آثار جالب و ماندگار و نزدیک به واقعیت و قابل قبول برای مخاطب خلق شده است. یکی از نمونه‌های این مساله رعایت توجه صحیح آندره یه ویچ در افسانه ثروتمند فقیر به محاسبات ریاضی در داستان خود می‌باشد (البته بدون وارد کردن محاسبات عددی) که آن را به اثری ماندگار و قابل پذیرش تبدیل کرده است. ترسیمهای هندسی و نسبت زرین کمک شایانی به هنرمندان معمار و برج ساز و … می‌کند.
    زیبایی ریاضیات در کجاست؟
    در واقع تمامی عرصه ریاضیات سرشار از زیبایی و هنر است. زیبایی ریاضیات را می توان در شیوه بیان موضوع ، در طرز نوشتن و ارایه آن در استدلالهای منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد. یکی از راههای شناخت زیباییهای ریاضیات (بخصوص هندسه) آگاهی بر نحوه پیشرفت و تکامل است. جنبه دیگری از زیبایی ریاضیات این است که با همه انتزاعی بودن خود ، بر همه دانشها حکومت می‌کند و جز قانونهای آن ، همچون ابزاری نیرومند دانشهای طبیعی و اجتماعی را صیقل می‌دهد، به پیش می‌برد، تفسیر می‌کند و در خدمت انسان قرار می‌دهد.
    زیبایی مسایل ریاضی
    برای بسیاری از مسایل ریاضی راه حلهای عادی وجود دارد که وقتی اینگونه مسایل را (با این روشها) حل می‌کنید، هیچ احساس خاصی به شما دست نمی‌دهد و حتی ممکن است تکرار آن شما را کسل کند. ولی وقتی به مساله‌ای برمی‌خورید که همچون دری مستحکم در برابر شما پایداری می‌کند و از هر سمتی به آن حمله می‌کنید ناکام می‌شوید… زمانی که ناگهان جرقه‌ای ذهن شما را روشن می‌کند… عجب!… پس اینطور!… چه زیبا!… و مساله حل می‌شود. در ریاضیات اغلب از اصطلاح زیباترین راه حل یا زیبایی راه حل استفاده می‌کنیم. ولی چرا یک راه حل مساله ما را تنها قانع و راضی می‌کند در حالی که دیگری شوق ما را برمی‌انگیزد و شجاعت فکر و ظرافت روش را آن موجب شگفتی ما می‌شود؟ راه حل زیبا باید تا حدی ما را به شگفتی وا دارد ولی تنها وجود یک جنبه نامتعارف و غیر عادی زیبایی استدلال ریاضی را روشن نمی‌کند، بلکه باید عینیت نیز داشته باشد.
    هم ریختی نمونه با پدیده مورد نظر و سادگی درک نمونه و سادگی کار کردن با آن ، مفهوم عینی بودن را تشکیل می‌دهد. با بکار گرفتن عینیت ، زبان دشوار پدیده را به زبان ساده‌تر مدل عینی ترجمه می‌کنیم و نتایج لازم را بدست می‌آوریم.وقتی که دانش آموزی می‌خواهد به تنهایی مساله دشواری را حل کند نمونه عینی پدیده‌ای را باید در مساله شرح دهد، برای خودش بسازد، دشواری مساله‌های نامتعارف در این هست که برای حل آنها باید بطور مستقل نمونه همریخت (مساله هم ارز) را انتخاب کرد به نحوی که از پدیده نخستین ساده‌تر باشد. نامتعارف بودن این نمونه و نامنتظر بودن آن به معنای زیبایی و ظرافت راه حل است. زیبایی حل یک مساله را وقتی احساس می‌کنیم که به کمک یک نمونه عینی بدست آید و در ضمن نامنتظر باشد که بطور مستقیم به ذهن هر کسی نمی‌رسد و به زحمت در دسترس قرار می‌گیرد.
    رابطه زیباشناسی ریاضی
    نامنتظر بودن + عینی بودن = زیبایی
    این رابطه به فرهنگ ریاضی مربوط می‌شود و کسی که چنین فرهنگی دارد، دید گسترده‌تری دارد، با کمترین نشانه‌ها ، شباهت بین زمینه‌های مختلف ریاضی را پیدا می‌کند و به کشف رابطه بین آنها و فرمول‌بندی و استفاده از روابط گوناگون بین آنها می‌پردازد. و بدین ترتیب مساله را نامتعارف‌تر و زیباتر از بقیه حل می‌کند و با ساده‌ترین و کوتاه‌ترین و در عین حال جالب‌ترین روش به جواب مساله می‌رسد و موجب شگفتی و لذت خود و بقیه می‌گردد.

  10. #160
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    مدل بازاریابان حرفه‌ای



    نکته مورد توجه در این مدل این است که در حالت عادی کم‌تر پیش می‌آید که فردی به طور هم‌زمان بتواند هر دو مشتری خود را پیدا کند، بلکه پس از مدتی جستجو، مشتری اول را پیدا می‌کند و پس از آن باید به دنبال مشتری دوم بگردد. این نکته در ابتدا ممکن است چندان جدی به نظر نرسد ولی خواهید دید که تأثیر بسیار قابل توجهی در آمارها خواهد گذاشت.
    مانند مدل بازاریابان فوق‌حرفه‌ای در این مدل نیز سرعت رشد درخت گلدکویست مورد توجه ما نیست و به دنبال محاسبه زمان اشباع جامعه نیستیم. تنها فرض می‌کنیم که در هر مقطع زمانی، زمان پیدا کردن یک مشتری، برای همه افراد، مقداری ثابت است که البته ممکن است این مقدار ثابت در مقاطع مختلف زمانی تغییر کند؛ در ابتدا که تنها تعداد اندکی آلوده شده‌اند یافتن یک مشتری بسیار ساده‌تر از مقطعی است که جمعیت انبوهی وارد درخت گلدکویست شده‌اند.
    شکل مقابل مراحل اولیه رشد درخت گلدکویست را نشان می‌دهد. در مرحله اول رأس درخت اولین مشتری را پیدا می‌کند. در ادامه، نه تنها رأس بالایی به دنبال مشتری دوم خود می‌گردد، بلکه مشتری قبلی نیز در جستجوی اولین طعمه خود است. لذا در مرحله دوم، دو نفر جدید، همان طور که در شکل می‌بینید، به درخت اضافه می‌شوند. اکنون اولین فرد دو بازوی خود را تکمیل کرده است و دیگر از طریق وی کسی به درخت اضافه نمی‌شود و لذا در این درخت ۴ رأسه، سه نفر به دنبال مشتری هستند و در نتیجه در مرحله بعد درخت ما ۷ رأس خواهد داشت.
    اگر تا چند مرحله دیگر رشد درخت را بررسی کنید می‌بینید که تعداد افراد آلوده در مراحل مختلف به این صورت است.
    ۱، ۲، ۴، ۷، ۱۲، ۲۰، ۳۳، ۵۴، …
    برای بررسی دقیق‌تر درخت مورد بحث تعداد رأس‌ها در مرحله را می‌نامیم. در این صورت برابر ۱، و برابر ۲ است. با اندکی توجه می‌توان رابطه‌ای بازگشتی برای این دنباله به دست آورد؛ دو مشتری‌ای که توسط نفر اول وارد بازی شده‌اند یکی یک مرحله و دیگری دو مرحله از رأس اولی عقب‌ترند، و لذا درختی که در مرحله n ام زیر آن دو تشکیل می‌شود دقیقاً مشابه درخت اصلی در یک مرحله پیش و درخت اصلی در دو مرحله پیش است. نتیجه این که در مرحله n ام در بازوی راست رأس بالایی نفر و در بازوی چپ نفر قرار دارد. اگر رأس بالایی را هم در نظر بگیریم رابطه بازگشتی زیر به دست می‌آید.

    به کمک این رابطه می‌توانیم تعداد اعضای درخت گلدکویست را به دست آوریم. اگر دو طرف تساوی اخیر را با یک جمع کنیم و به علاوه (۱ + ) را بنامیم، به رابطه زیر می‌رسیم:

    اگر با دنباله معروف فیبوناتچی آشنا باشید می‌دانید که در آن‌جا نیز هر جمله دنباله برابر جمع دو جمله قبلی است. تفاوت دنباله Pn و دنباله فیبوناتچی ناشی از تفاوت در دو جمله اول است؛ ۰P برابر ۲، و ۱P برابر ۳ است، در حالی که ۰F و ۱F هر دو برابر ۱ اند. پس آیا ارتباطی بین جمله‌های دنباله Pn و جمله‌های دنباله فیبوناتچی وجود ندارد؟ اجازه دهید نگاهی به چند جمله اول هر دو دنباله بیندازیم.
    ۸ ۷ ۶ ۵ ۴ ۳ ۲ ۱ ۰ n
    ۸۹ ۵۵ ۳۴ ۲۱ ۱۳ ۸ ۵ ۳ ۲ Pn
    ۳۴ ۲۱ ۱۳ ۸ ۵ ۳ ۲ ۱ ۱ Fn
    اکنون به سادگی می‌توان دید که Pn در واقع همان دنباله فیبوناتچی است که دو جمله اول آن حذف شده است، یعنی
    Pn = Fn+۲
    و در نتیجه
    Sn = Fn+۲ - ۱
    تا این‌جا توانستیم تعداد افراد آلوده در مرحله n را به دست آوریم. اکنون سؤال این است که در هر مرحله وضعیت تعادل افراد (یعنی مینیمم تعداد زیردست‌های راست و تعداد زیردست‌های چپ) چگونه است؟
    جواب این سؤال در مورد شروع‌کننده درخت تلویحاً داده شده است. دو بازوی این فرد شامل ۱Sn- نفر و ۲Sn- نفر است و در نتیجه تعادلش ۲Sn- است که طبق محاسبات انجام شده برابر است با ۱ - Fn.
    با توجه به این که هر عضو دیگر درخت نیز وضعیتی شبیه نفر اول در چند مرحله قبل دارد، تعادل وی نیز به شکل ۱ – Fk است که در آن k برابر تعداد مراحلی است که پس از اتصال وی به درخت طی شده است. حال می‌خواهیم بفهمیم در مرحله n ام چند نفر چنین تعادلی دارند؟
    در لحظه ورودِ آن عضو نوعی، n – k مرحله درخت رشد کرده است و در نتیجه، در آن مقطع، تعداد افراد آلوده از Sn-k-۱ به Sn-k رسیده است و لذا Sn-k-۱ - Sn-k نفر به درخت اضافه شده‌اند. با در نظر گرفتن مطالب بالا این مقدار برابر است با
    (Fn-k+۲ - ۱) - (Fn-k+۱ - ۱)
    و به عبارت دیگر Fn-k.
    پس تا اینجا نشان دادیم که در مدل ارایه شده در مرحله n ام Fn-k نفر تعادلشان برابر ۱ – Fk است. البته عبارت اخیر در یک مورد درست نیست؛ به این نکته توجه کنید که تعادل هر فرد در ابتدای ورود به بازی و هم‌چنین پس از گذشت یک مرحله صفر است (F۰ - ۱ = F۱ - ۱ = ۰) و لذا تعداد کسانی که تعادلشان صفر است برابر است با Fn + Fn-۱ که همان Fn+۱ است. در مراحل بعدی، پس از گذشت هر مرحله، تعادل افزایش پیدا خواهد کرد. در نتیجه عبارت مورد بحث برای k های بزرگ‌تر از یک، صادق است.
    به بیان دیگر در مرحله n ام نسبت کسانی که تعادلشان صفر است برابر است با
    (Fn+۲ - ۱)/ Fn+۱
    و نسبت کسانی که تعادلشان ۱ – Fk است (۱ < k)، برابر است با
    (Fn+۲ - ۱)/ Fn-k
    این نسبت‌ها هنوز توصیف روشنی از وضعیت بازی ارایه نمی‌کنند. گزاره زیر به ما کمک خواهد کرد که به مدل مورد بحث را بهتر تحلیل کنیم.
    گزاره: وقتی n به بی‌نهایت میل کند، Fn/ Fn+۱ به φمیل می‌کند که φ، “عدد طلایی”، یعنی ریشه مثبت معادله درجه دو زیر است.
    φ۲ – φ – ۱ = ۰
    ۶۲ ۱/ ۵)/۲ ۱+) = φ
    اثبات این گزاره چندان مشکل نیست. اگر هم ایده‌ای برای اثباتش ندارید بد نیست نسبت جمله‌های متوالی دنباله فیبوناتچی را محاسبه کنید و “ببینید” که آیا به φ میل می‌کند یا خیر!
    گزاره مذکور نتیجه‌ای دارد که به کار می‌آید.
    نتیجه: برای هر k، وقتی n به بی‌نهایت میل کند، Fn/ Fn+k به φKمیل می‌کند.
    برای اثبات این موضوع کافی است توجه کنید که کسر مذکور با عبارت زیر برابر است.
    Fn/ Fn+۱ … F n+k-۲ / Fn+k-۱ Fn+k-۱/ Fn+k
    اکنون می‌توانیم توصیف بهتری از وضعیت مشتریان گلدکویست ارایه دهیم. برای n های به اندازه کافی بزرگ، φ-۱ نسبت افرادی است که تعادلشان صفر است و نسبت کسانی که تعادلشان ۱ – Fk است (۱ < k)، برابر است با φ-K-۲. جدول زیر که در آن از مقدار تقریبی φ استفاده شده است گویاتر است.
    تعادل نسبت افرادی که تعادلشان برابر این مقدار است نسبت افرادی که تعادلشان کم‌تر یا مساوی این مقدار است
    ۰ ۶۸.۱درصد ۶۸.۱درصد
    ۱ ۱۴.۶درصد ۷۶.۴درصد
    ۲ ۹.۰درصد ۸۵.۴درصد
    ۴ ۵.۶درصد ۹۱.۰درصد
    ۷ ۳.۴درصد ۹۴.۴درصد
    ۱۲ ۲.۱درصد ۹۶.۶درصد
    ۲۰ ۱.۳درصد ۹۷.۹درصد
    ۳۳ ۰.۸درصد ۹۸.۷درصد
    ۵۴ ۰.۵درصد ۹۹.۲درصد
    ۸۸ ۰.۳درصد ۹۹.۵درصد
    ۱۴۳ ۰.۲درصد ۹۹.۷درصد
    ۲۳۲ ۰.۱درصد ۹۹.۸درصد
    اولین پورسانت هنگامی داده می‌شود که تعادل فرد به ۳ برسد. پس طبق محاسبات انجام شده همیشه در حدود ۵/۴۸ درصد از کسانی که وارد این بازی شده‌اند هیچ پورسانتی دریافت نکرده‌اند!
    در این حالت که درخت اعضاء کم و بیش منظم رشد کند. با توجه به پیچیدگی محاسبات تحلیلی، باید به سراغ شبیه‌سازی کامپیوتری رفت.نتایج حاصل از یک شبیه‌سازی نسبتاً خوب، در زیر آمده است:
    کسانی که ۵۶۰ دلار ضرر کرده‌اند تقریباً ۶/۶۶ درصد
    کسانی که ۵۱۰ دلار ضرر کرده‌اند تقریباً ۴/۱۷ درصد
    کسانی که ۲۶۰ دلار ضرر کرده‌اند تقریباً ۷/۷ درصد
    کسانی که ۱۰ دلار ضرر کرده‌اند تقریباً ۶/۲
    کسانی که سود کرده‌اند تقریباً ۷/۵
    در این حالت هر مال‌باخته، به طور متوسط، بیش از ۹/۴۸۱ دلار از دست داده است و در مجموع بیش از ۲۴۰ میلیون دلار وارد جیب کلاه‌برداران شده است!
    البته توجه کنید که این اعداد و ارقام در حالتی به دست آمد که درخت افراد آلوده کاملاً منظم رشد کرد. در حالت واقعی، که رشد درخت منظم نیست، وضع بسیار وخیم‌تر از این خواهد شد.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •