تبلیغات :
آکوستیک ، فوم شانه تخم مرغی ، پنل صداگیر ، یونولیت
دانلود فیلم جدید
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام
خرید لپ تاپ استوک
ماهان سرور
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک

[ + افزودن آگهی متنی جدید ]




صفحه 6 از 7 اولاول ... 234567 آخرآخر
نمايش نتايج 51 به 60 از 64

نام تاپيک: کليه مقالات فيزيک

  1. #51
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    نظریه ریسمان



    نظریهٔ ریسمان شاخه‌ای از فیزیک نظری و بیشتر مربوط به حوزه فیزیک انرژی‌های بالاست .این نظریه در ابتدا برای توجیه کامل نیروی قوی به وجود آمد ولی پس از مدتی با گسترش کرومودینامیک کوانتومی کنار گذاشته شد و در حدود سالهای ۱۹۸۰ دو باره برای اتحاد نیروی گرانشی و برطرف کردن ناهنجاری‌های تیوری ابر گرانش وارد صحنه شد. بنا بر آن ماده در بنیادین‌ترین صورت خود نه ذره بلکه ریسمان مانند است. یعنی تمام ذرات بنیادین (مثل الکترون، پوزیترون و فوتون) اگر با بزرگنمایی خیلی خیلی زیاد نگریسته‌شوند ریسمان‌دیس هستند. ریسمان می‌تواند بسته (مثل حلقه) یا باز (مثل بند کفش) باشد.

    همانطور که حالت‌های مختلف نوسانی در سیمهای سازهای زهی مثل گیتار صداها(نتها)ی گوناگونی ایجاد می‌کند، حالتهای مختلف نوسانی این ریسمانهای بنیادین نیز به صورت ذرات بنیادین گوناگون جلوه‌گر می‌شود.
    خاصیت مهم ابرریسمان که فیزیکدانان را به سمت خود کشاند این بود که این نظریه به طرزی بسیار طبیعی گرانش (نسبیت عام) و مدل استاندارد (نظریهٔ میدان کوانتوم) که سه نیروی دیگر موجود در طبیعت (یعنی الکترومغناطیس، نیروی ضعیف و نیروی هسته‌ای قوی) را توصیف می‌کند به هم مرتبط می‌سازد.
    ابعاد بالاتر
    به طور سنتی فضایی که ریسمان‌ها در آن می‌زیند بیست و شش بعدی است (البته همیشه اینطور نیست چنان که در زیر توضیح داده خواهد شد). عدد بیست و شش از روی ضوابط ریاضی و نظریهٔ گروهها (برای حفظ تقارن لورنس) به‌ دست می‌آید. این امر ممکن است در ابتدا کمی ثقیل و مشکل‌زا به نظر برسد چرا که به هرحال ما در اطراف خود چهار بعد (سه بعد مکانی و یک بعد زمانی) بیشتر احساس نمی‌کنیم پس این بعدهای اضافه کجایند؟ جوابی که معمولاً به این سوال داده می‌شود اینست که این بعدها برخلاف چهار بعد دیگر) کوچک و نیز فشرده (معادل انگلیسی compact) هستند. فشرده یعنی آنکه اگر در جهت آنها به اندازهٔ کافی پیش‌روی کنید به جای اول خود باز می‌گردید. کوچک بودن هم معنایش اینست که برای آنکه به جای نخست بازگردید باید مسافت خیلی کمی را طی کنید.
    برای نمونه یک لولهٔ بینهایت دراز را در نظر بگیرید. سطح این لوله مسلما دوبعدی است. یعنی مورچه‌ای که روی سطح این لوله قرار دارد می‌تواند در دو راستای مستقل از هم حرکت کند. فرض کنید که سر مورچه در راستای طول لوله‌است. مورچه می‌تواند یا عقب-جلو برود یا چپ-و-راست. اما اگر به‌فرض این مورچه به اندازهٔ کافی (یعنی به اندازهٔ محیط لوله) در جهت چپ حرکت کند به جای اول خود باز می‌گردد اما قضیه در مورد عقب جلو رفتن صدق نمی‌کند. پس یکی از بعدهای این فضای دوبعدی (یعنی یکی از بعدهای سطح لوله) فشرده و یکی نافشرده است.
    اینک فرض کنید که این مورچه روی یک توپ قرار دارد. باز هم می‌تواند در دو راستای مستقل از هم حرکت کند منتهی این‌بار در هر جهتی روی سطح کره مستقیم حرکت کند، پس از طی مسافتی (برابر با محیط دایرهٔ عظیمهٔ کره) به جای نخست بازمی‌گردد. پس این بار هر دو بعد این فضای دوبعدی (یعنی سطح توپ) فشرده است.
    بازگردیم به فضای دوبعدی سطح لوله. این بار فرض کنید که محیط این لوله خیلی کم باشد یا مثلاً به جای لوله یک کابل برق داشته‌باشیم. برای مورچه (اگر به اندازهٔ کافی کوچک باشد)این کابل هنوز یک سطح دو بعدی است یعنی وقتی که روی سطح کابل قرار دارد می‌تواند در دو راستای مستقل از هم حرکت کند. اما برای ما انسان‌ها کابل برق یک شی یک بعدی محسوب می‌شود چون فقط درازای آن قابل درک است.
    حالتی بسیار شبیه به این در مورد این بعدهای اضافه در نظریه ریسمان رخ می‌دهد. به این معنی که ما به خاطر اندازهٔ بزرگ خود از درک این ابعاد اضافی عاجز هستیم اما این ابعاد برای ‌بعضی از ذره‌ها با انرژی زیاد قابل دسترسی است.
    انواع نظریه ریسمان
    باید گفت که چندین نظریه ریسمان وجود دارد. تنها تعداد کمی از آنها می‌توانند نامزدی برای توصیف طبیعت باشند. برای مثال نظریهٔ ریسمانی که در طیف ذراتش (یعنی در حالت‌های مختلف نوسانی‌اش) ذره‌ای دارد که سریع‌تر از نور حرکت می‌کند نمی‌تواند مدل خوبی از طبیعت باشد. چون هیچ چیز نمی‌تواند سریع‌تر از سرعت نور حرکت کند. اما حتی نظریه‌های ریسمانی که مدل خوبی از طبیعت نیستند می‌توانند به فهم فیزیکدانان از این نظریه و نظریه‌هایی که می‌توانند به فهم طبیعت کمک کنند، مدد برسانند.
    به طور کلی دو گونه نظریه‌ ریسمان وجود دارد:
    ۱. ریسمان بوزونی
    ۲. اَبَرریسمان
    ریسمان بوزونی
    نخستین نوع و ساده‌ترین نوع نظریه‌ٔ ریسمان است. به طور سنتی احتیاج به ۲۶ بعد برای همخوانی با ضوابط و پیش‌فرضهای فیزیکی (مانند تقارن لورنس) دارد. متاسفانه در طیف ذرات آن تاکیون (ذره‌ای که سریعتر از نور حرکت می‌کند) وجود دارد بنابراین نمی‌تواند مدلی از طبیعت باشد. همچنین از آمار بوز (در مقابل فِرْمی در مکانیک آماری) پیروی می‌کند بنابراین به طور طبیعی نمی‌تواند توصیف‌گر ذراتی مثل الکترون باشد.البته این نظریه در توصیف ذرات میدانی مانند گراویتون‌ها و فوتون‌ها موفق است.
    ابرریسمان
    با استفاده از فرض ابرتقارن (یعنی در مقابل هر ذره بوزی ذره‌ای فرمیی داریم) نوعی نظریه ‌است که قابلیت آن را دارد که توصیف‌گر طبیعت باشد. تعداد ابعاد مورد نیاز در ابرریسمان غالبا ده است. در حال حاضر پنج نظریهٔ ابرریسمان وجود دارند که می‌توانند توصیف‌گر طبیعت باشند.
    د-وسته (D-Brane) و نظریه-م (M-Theory)
    در سال ۱۹۹۵ میلادی ادوارد ویتن فیزیکدان مشهور با معرفی د-وسته (خوانده می‌شود دالوسته بر وزن آموخته) انقلابی در نظریه‌ٔ ریسمان پدید آورد. د-وسته‌ها اشیایی هستند که دو سر ریسمانهای باز روی آنها می‌لغزند. این اشیا می‌توانند صفر-بعدی تا تعداد ابعاد-فضایی(غیر زمانی)-بعدی باشند. به د-وستهٔ دو بعدی یعنی شکلی مثل یک صفحه‌کاغذ با ضخامت صفر «پوسته» یا د۲-وسته (تلفظ می‌شود دال-دووسته) می‌گویند. (نام د-وسته هم به قرینهٔ پوسته انتخاب شده‌است). د۱-وسته (خوانده می‌شود دال-یکوسته) خود به شکل ریسمان است. به همین منوال می‌توانیم د۰-وسته(دال-صفروسته) د۳-وسته(دال-سووسته) د۴-وسته و … داشته‌باشیم. حرف «د» که در ابتدای این کلمه‌ها می‌آید حرف نخستین نام دریشله(ریاضیدان‌است) ‌است. بنابراین د-وستهٔ هرچند بعدی که داشته‌باشیم آن را به صورت «د تعداد ابعاد-وسته» می‌نویسیم. علاوه‌براین برای گنجاندن این اشیای جدید در نظریهٔ ابرریسمان تعداد ابعاد به ۱۱ ارتقا پیدا کرد.
    ویتن همچنین ثابت کرد که پنج نظریهٔ ابرریسمان موجود بی‌ارتباط به هم نیستند و با نوعی روابط همزادی (duality) به هم مربوط می‌شوند. امروزه به نظر می‌آید این پنج نظریه درواقع پنج «نمود» (=جلوه) گوناگون از یک‌ نظریهٔ مادر و بزرگ‌تر هستند. یعنی این نظریهٔ مادر که آن را نظریه-م(تلفظ می‌شود نظریهٔ میم) می‌خوانند در شرایط خاص به هر یک از این پنج نظریه تقلیل می‌یابد (بسته به شرایط به نظریه‌های مختلف).
    فیزیکدانان هنوز شناخت کاملی از نظریه-م ندارند حتی بر سراینکه «م» در نام نظریه دقیقا مبین چیست اختلاف نظر وجود دارد. بعضی می‌گویند «م» به معنی مادر است. برخی می‌گویند «م» مخفف «ماتریس» است. برخی دیگر (البته به شوخی) می‌گویند «م» (M) از واژگون‌کردن حرف نخست نام ویتن (W) می‌آید.
    هرچه‌ هست همکنون بسیاری از فیزیکدانان به دنبال کشف و درک نظریه-م هستند. احتمالاً یافتن نظریه-م از بزرگ‌ترین دستاوردهای بشر خواهد بود زیرا این نظریه قادر خواهد بود تمام دنیا را در بنیادین‌ترین حالت توصیف کند.
    باید توجه داشت که نظریهٔ ریسمان (و به تبع آن نظریه-م)، نظریه‌‌ای فاقد پارامتر آزاد است. یعنی جایی برای تنظیم پارامترها به کمک آزمایش باقی نمی‌گذارد. به بیان روشن‌تر خواص تمام ذرات باید از روی معادلات ریاضی درآورده شود. بنابراین مثلاً این نظریه‌ باید بگوید چرا الکترون وجود دارد و چرا جرم آن فلان اندازه و چرا اسپین آن یک‌دوم و چرا بار الکتریکی آن بهمان مقدار است.
    د-وسته‌ها و جهانهای موازی
    آیا حقیقتاً نظریهٔ ریسمان علمی‌است؟
    بعضی از فیزیکدانان معتقدند که نظریهٔ ریسمان اصولا نظریه‌ای علمی نیست چرا که هیچ پیش‌بینی ابطال‌پذیری نمی‌کند و در بهترین شرایط تنها به توضیح واقعیات موجود می‌پردازد.
    نظریه-م و مسایل فلسفی مربوط به آن و سرنوشت ناپیدایش
    در اینجا طنز کوچکی مطرح می‌شود: ما انسان‌ها یا قابلیت آن را داریم که به کشف نظریه-م نایل شویم یا نه. یعنی نظریه-م اصولا یا قابل کشف/فهم هست یا نیست. در نهایت به نظر می‌آید که این نظریه-م است که در مورد قابل کشف/فهم بودن یا نبودن خود تصمیم گرفته است! چون بالاخره ما انسان‌ها محصول جهانی هستیم که بر اساس قوانین نظریه-م کار می‌کند.
    به علاوه این سوال بنیادی‌تر هم مطرح است که آیا اصلاً نظریه-م وجود دارد؟ چرا طبیعت باید موجودی قانونمند و در درجهٔ بعد قابل فهم باشد. اینشتین معتقد بود که غیرقابل‌فهم‌ترین چیز در مورد طبیعت این‌است که طبیعت قابل فهم است. متاسفانه یا خوشبختانه از هیچ‌کجا آیه نیامده‌است که نظریه-م به عنوان نظریهٔ همه چیز یا نظریهٔ وحدت‌بخش وجود دارد تا حالا ما به دنبال آن باشیم. هرچند که به نظر می‌آید تمام فیزیکدانان ریسمان‌کار به طور ضمنی معتقد/ خستو/ اند که نظریه-م وجود دارد و همچنین قابل درک برای ما انسان‌ها است وگرنه بعید بود عمر خود صرف آن کنند. اما این فرض تماما برخاسته از خوشبینی مفرط است که خوشبختانه تاکنون خلاف آن ثابت نشده‌است.
    همچنین این احتمال (هرچند بسیار اندک) وجود دارد که روزی ثابت شود نظریهٔ ریسمان اساسا نادرست است. اتفاقی شبیه این امر در مورد نظریهٔ متغیر پنهان چندین سال قبل رخ‌ داد. ریسمان‌کارها معتقدند که شانس از بیخ و بن نادرست بودن نظریهٔ ریسمان بسیار بسیار اندک و حتی نزدیک صفر است. چرا که تاکنون شواهد بسیار زیادی مبنی بر صحت آن یافت شده‌است. ممکن است آزمایش‌های آینده جهت تحقیقات را تغییر دهد ولی احتمال تکذیب این نظریه چنانکه که گفته شد تقریباً صفر است.

  2. #52
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    فیزیک ماده چگال



    بیشتر شما با کلمه چگالی آشنا هستید. نسبت جرم به حجم مواد! اما ماده با چگالی بیشتر یا ماده چگال تر ماده‌ای است که در حجم مشخصی از آن جرم بیشتری داشته باشیم.
    اما این به معنی این نیست که فیزیک ماده چگال صرفاً به بررسی چیزهایی مثل سرب می‌‌پردازد!
    راستش فیزیکدانها در اوایل قرن ۲۰ تنها می‌‌توانستند مسأله‌های مربوط به گازها را حل کنند. در واقع حل کردن مسایلی که در آنها تعداد زیادی ذره دخیل هستند خیلی سختتر از مسایلی است که در آنها با یک یا دو ذره سر و کار داریم. برای یک ذره با استفاده از قوانین نیوتن به راحتی می‌‌شود مسأله را حل کرد. اما تصور کنید بخواهیم سه حرکت حدود یک مول گاز که ۱۰به توان ۲۳ مولکول دارد را با استفاده از معادلات نیوتن حل کنیم! مطمینا از پس این کار بر نمی‌آییم.
    اما کاری که فیزیکدانها همیشه کرده‌اند و می‌کنند تقریب زدن است. در اوایل قرن ۲۰ با چشم پوشی از چیزهایی مثل بر هم کنش بین مولکولها و کامل فرض کردن گازها راه حلهایی برای بررسی مسأله گازهای رقیق ارایه شده است اما خوب با باقی مسایل چه باید می‌‌کردیم…
    کم کم تلاش برای پاسخ دادن به این سوال منجر به ایجاد شاخه جدید در فیزیک شد. فیزیک ماده چگال یعنی فیزیک بررسی موادی که دیگر آنقدر رقیق نیستند که بشود از برهم کنش بین ذرات آن‌ها صرف نظر کرد. البته مهم‌ترین مثال برای این جور مسایل، مسایل مربوط به جامدات و به ویژه فلزات هستند.
    چیزهایی مثل انبساط و انقباض، رسانایی، ظرفیت گرمایی، هدایت الکتریکی و … شناخته شده بودند اما راه حل و مدل قابل قبولی برای آنها ارایه نشد…امروز فیزیک ماده چگال دیگر جواب این سوالها را داده است اما جواب دادن به یک سوال باعث ایجاد چند سوال جدید می‌‌شود و به همین دلیل دامنه فیزیک ماده چگال بسیار گسترده شده است. ماده چگال کاران تجربی این روزها بیشتر در حال بررسی خواص مغناطیسی مواد و بحث ابر رسانایی هستند. چطور می‌‌شود ابر رساناها در دماهای بالاتر پیدا کرد و …
    ماده چگال کاران تیوری نیز بعضاً دنبال پیدا کردن مدلی برای پدیده‌های مشاهده شده در زمینه‌های ابررسانایی، انتقال امواج و غیره اند… البته شاخه نسبتاً جدیدتری از فیزیک ماده چگال که به فیزیک ماده چگال نرم مشهور شده است به بررسی مسایلی مربوط به سیستم‌هایی با برهم کنش غیر قابل صرف نظر بین اجزاء آن می‌‌پردازد که دیگر ساختار منظم و بلوری ندارند. شاید مهم‌ترین مثالها مایعات باشند اما این تعریف آنقدر گسترده است که می‌‌شود گفت فیزیکدانان ماده چگال نرم امروزه تقریباً همه کار می‌‌کنند! از بررسی روابط اجتماعی تا بررسی شبکه‌های عصبی … از بررسی ساختار پروتیین‌ها و DNA تا پیش بینی رفتار قیمت سهام شرکت ها… همه اینها سیستم‌هایی هستند که ا بین ذرات بسیار زیادشان بر هم کنش بسیار بالایی وجود دارد این شاخه از فیزیک ماده چگال کمتر به بخش تیوری یا تجربی تقسیم می‌‌شود و البته بیشتر کارها بر مبنای شبیه سازیهای کامپیوتری انجام می‌‌شود.
    قدیم ترها به فیزیک ماده چگال، فیزیک حالت جامد نیز گفته می‌‌شد اما حتماً می‌‌دانید که چرا این اسم دیگر کاربرد زیادی ندارد! شاید بشود گفت فیزیک ماده چگال گسترده‌ترین شاخه فیزیک است. حدود ۶۰% دانش جویان دکترای فیزیک در این گرایش تحصیل می‌‌کنند. زیاد نیست؟
    شاخه‌های فیزیک ماده چگال
    فیزیک ماده چگال شامل دو شاخه‌ فیزیک ماده چگال سخت , فیزیک ماده چگال نرم است.

  3. #53
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    تاریخ علم فیزیک



    سرچشمه اصلی علم فیزیک
    رسیدن به منبع و سرچشمه اصلی علم فیزیک به اندازه رسیدن به سرچشمه بسیاری از رودهای بزرگ دشوار است. همانگونه که یک رود بزرگ از چندین چشمه کوچک حاصل می‌گردد، چشمه‌هایی که رود عظیم علم فیزیک را بوجود آورده‌اند، در سراسر زمین پراکنده بودند که انسان اولیه ، یعنی انسان متفکر بر آن سکونت داشته است. اما به نظر می‌رسد که بیشتر این مردم در دامنه جنوبی شبه جزیره بالکان (یونان باستان) بوده‌اند. جالب توجه است که ملل قدیمی دیگر مانند بابلیان و مصریان که در توسعه ریاضیات و نجوم سهیم بوده‌اند، در پیشرفت فیزیک هیچ سهمی نداشته‌اند.

    چون خدایان بابلیان و مصریان دور از مردم و در میان ستارگان می‌زیستند، حال آنکه خدایان یونانیان در ارتفاعی تنها در حدود ۳۰۰۰ متر بر قله کوه اولمپ زندگی می‌کردند. و اصطلاح مانیتیسم (مغناطیس) از نام چوپانی به نام (σηυγαm) سرچشمه می‌گیرد. تشخیص تقدم یا تأخر زمانی این کشفیات افسانه‌ای دشوار است.



    نقش دانشمندان در پیدایش فیزیک

    * کشف فیثاغورث کاملاً مستند است. وی با اطمینان از اینکه اعداد بر جهان حکومت می‌کنند، به تحقیق درمورد رابطه میان طول تارها در آلات موسیقی پرداخت که ترکیبات هماهنگی از اصوات تولید می‌کنند. این کشفیات او شاید نخستین بیان ریاضی یک قانون فیزیکی باشد و بتواند نخستین گام در پیدایش فیزیک نظری باشد.

    * یکی دیگر از افرادی که در پیدایش فیزیک سهم داشته است، ارسطو می‌باشد. هر چند ارسطو در تمام مباحث کارهای بزرگی انجام داده است که اندیشه انسانی را مدت ۲۰۰۰ سال پس از مرگ خود تحت تأثیر قرار داده ، اما مهمترین سهم او در فیزیک نام گذاری این علم می‌باشد که از کلمه‌ای یونانی به نام طبیعت اقتباس شده است.
    * ارشمیدس دانشمند نامدار دیگری است که حدود یک قرن بعد از ارسطو زندگی می‌کرد. وی دانشمند علم مکانیک بوده که قوانین اهرمها را بیان نموده و مسأله یافتن مرکز ثقل هر جسم معین را مورد بحث قرار داد. مهمترین کشف ارشمیدس قانون او درمورد اجسام غوطه ور در یک مایع می‌باشد.
    تحولات اولیه علم فیزیک
    با زوال فرهنگ یونانی ، تکامل علم بطور کلی و علم فیزیک ، بخصوص به یک حالت رکود مجازی در آمد و این مدت تقریباً هزار سال طول کشید، تا اینکه سرانجام امپراطوری عربی در قرن هشتم تمام سرزمینهای جنوبی دریای مدیترانه را احاطه کردند و از تنگه جبل الطارق تا اسپانیا پیش رفتند. اعراب کتابهای به جا مانده از کتابخانه‌های یونانیان را ترجمه کرده و پرچمدار علم شدند. اما اعراب در زمینه علم فیزیک چندان کار زیادی انجام ندادند.
    سرانجام در قرن ۱۲ امپراطوری عرب با حمله چنگیزخان مغول و سیر تاریخی جنگهای صلیبی در بیت المقدس به سرعت رو به زوال رفت و در همین دوران کشورهای اروپایی به تدریج از دوران هرج و مرج و تاریکی قرون وسطی خارج شدند. و آموزش دوباره رونق گرفت، اما این آموزش بیشتر زیر نظر کلیسا بود و لذا بیشتر مطالعات بر نوشته‌های ارسطو مبتنی بود. و چون ارسطو در زمینه علوم طبیعی چندان تبحری نداشت، لذا به تجدید حیات علم فیزیک در اروپا کمکی نکرد.
    سیر تکاملی علم فیزیک
    * درهم آمیختگی علوم طبیعی با علوم الهی را در این دوره می‌توان از کتاب هیأت مردوز یوهان کپلر دریافت.
    * یکی از افرادی که در این دوره در علم دینامیک به پیشرفتهای خوبی نایل شد، گالیله بود که با مطالعه حرکت آونگ شروع کرد. وی از نخستین فیزیکدانان نظری و عملی بود.
    * بعد از گالیله ، اسحاق نیوتن دومین دانشمند فیزیک به شمار می‌رود که مطالعات ثمربخشی را در زمینه‌های مختلف فیزیک انجام داد، بطوری که بعد از او دانشمندان زیادی مانند پاسکال (Pascal) ، برنولی (Bernoulli) ، هویگنس و غیره هر کدام در زمینه خاصی مطالعات اسحاق نیوتن را ادامه دادند.
    * هویگنس به ادامه مطالعات اسحاق نیوتن در زمینه نور پرداخت. اسحاق نیوتن نور را ذره می‌دانست، اما هویگنس عقیده داشت که نور موج است، اما چون اسحاق نیوتن در این زمان در میان معاصرانش شخصیت برجسته‌ای بود و نیز به دلیل ناتوانی هویگنس در تکمیل نظریه‌هایش با دقت ریاضی ، با وجود برتری ظاهری نظریه او بر نظریه نیوتن ، نظریه هویگنس پذیرفته نشد و لذا این بحث معلق ماند. تا اینکه در سال ۱۸۰۰ تامس یانگ توانست پدیده حلقه‌های نیوتن را بر مبنای طبیعت موجی نور توضیح دهد.
    * کارهای یانگ و معاصر فرانسویش فرنل (Fresnel) صحت و اعتبار نظریه موجی نور را به طرز قاطعی برقرار ساختند. بعد از این ، تقریباً علم فیزیک به شاخه‌های مختلف تقسیم شد و دانشمندان مختلف در زمینه‌های گوناگون فیزیک مطالعات ارزنده‌ای را انجام دادند که پایه و مبنای این مطالعات را می‌توان همان کارهای اسحاق نیوتن و گالیله دانست و بدین ترتیب علم فیزیک در شاخه‌های مختلف توسعه یافت.
    سهم بکرل در تکامل علم فیزیک
    در سال ۱۸۹۶ هانری بکرل (Becquerel) که از کشف اشعه ایکس توسط رونتگن اطلاع یافته بود، بر آن شد که ببیند آیا چیز دیگری هم شبیه اشعه ایکس از مواد فلورسانس که براثر تابش نور درخشان می‌شوند، صادر می‌شود یا نه. لذا بلورهایی از کانی (سنگ معدن) معروف به اورانیل (سولفات مضاعف اورانیوم و پتاسیم) را انتخاب کرد. چون بکرل عقیده داشت که تابش نتیجه روشنایی خارجی است، یک بلور اورانیل را در صفحه کاغذ سیاه قرار داد و آنرا جلوی پنجره گذاشت. وقتی که بعد از چند ساعت قرار دادن در مقابل نور خورشید فیلم عکاسی را ظاهر کرد، لکه‌های تیرهایی را بر روی فیلم مشاهده کرد.
    او این آزمایش را چند بار تکرار کرد و هر بار با آنکه کاغذ سیاه بیشتری دور صفحه می‌پیچید، باز هم لکه را مشاهده می‌کرد. چون هوای پاریس چندین روز بارانی بود، لذا بکرل صفحه عکاسی لفاف پوش با بلور اورانیل را در کشوی میز خود قرار داد تا هوا مساعد شود. خورشید تا چند روز در هوا نمایان نشد و روزی هم که خورشید در آسمان ظاهر می‌شد، اغلب ابرهایی آنرا پوشانده بود.
    با این حال بکرل بازهم صفحه عکاسی را درمعرض نور آفتاب قرار داد. بعد از مدتی که صفحه عکاسی را ظاهر کرد، برخلاف تصور ملاحظه کرد که بجای لکه های سیاه که قبلاً در روزهای آفتابی ملاحظه می کرد، لکه سیاه قیر مانندی در زیر جایی که اورانیل قرار داشت روی صفحه ظاهر شده بود. لذا وی دریافت که ظاهر شدن لکه های سیاه ربطی به قراردادن در مقابل نور آفتاب ندارد.
    بکرل بلور اورانیل را گرم کرد، سپس آنرا سرد کرد و بصورت گردی درآورد و در اسیدها حل کرد. خلاصه دریافت که این خاصیت تازه کشف شده ماده که نام رادیواکتیویته بر آن داده شده است، هیچ سر و کاری با راه فیزیکی یا شیمیایی که بوسیله آن اتمها به یکدیگر پیوسته‌اند، ندارد بلکه خاصیتی نهفته در خود اتم است.
    Last edited by sajadhoosein; 16-02-2011 at 10:32.

  4. #54
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    سیستم استاندارد بین‌المللی واحدها



    سیستم استاندارد بین‌المللی واحدها (International System of Units) که معمولاً با عناوین «سیستم متریک» یا «سیستم SI» شناخته می‌شود، دستگاه بین‌المللی استانداردشده‌ای برای سنجش کمیت‌ها بر حسب یکاها (واحدها) است. این سیستم در سال ۱۹۶۰ بنیانگذاری شد.
    واحدهای اصلی
    واحدهای اصلی این سیستم عبارت‌اند از :
    * واحد طول : متر با نماد m
    * واحد جرم : کیلوگرم با نماد kg
    * واحد زمان : ثانیه با نماد s
    * واحد شدت جریان الکتریکی : آمپر با نماد A
    * واحد دما : کلوین با نماد K
    * واحد مقدار ذره (ماده) : مول با نماد mol
    * واحد شدت نور : کاندلا با نماد cd
    واحدهای فرعی
    واحدهایی هستند که از ترکیب چند واحد تشکیل شده‌اند؛ مانند متر بر ثانیه برای سنجش سرعت. در اصل در اینجا سرعت به‌عنوان کمیتی بر حسب طول و زمان (یعنی به شکل مقدار طول طی‌شدهٔ مشخص در مدت زمان مشخص) بیان می‌شود.
    از دیگر واحدهای فرعی می‌توان به درجه سلسیوس که برای سنجش دما بکار می‌رود نام برد. این واحد نیز با استفاده از یک رابطهٔ خطی قابل تبدیل به/از درجهٔ کلوین است.

  5. #55
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    شاتل فضایی



    شاتل فضایی در حال پرواز
    در انتهای برنامه آپولو مقامات ناسا برنامه آینده فضایی ایالات متحده را بررسی می کردند. در آن زمان فضانوردان و تجهیزات توسط موشک های یکبار مصرف به فضا ارسال می شد و آنها به وسیله ای مطمین و کم هزینه نیاز داشتند که بتوانند از آن چندین بار استفاده کنند. به این ترتیب ایده شاتل فضایی را بوجود آوردند. این یک کار بزرگ و پروژه ای طولانی مدت بود که برای ارسال ۲ میلیون کیلوگرم تجهیزات و مسافربه مدار ۱۸۵تا۶۴۳ کیلومتری بالای زمین طراحی می شد. این شاتل نیاز به سه موتور اصلی و مخزن سوخت بیرونی و دو موشک جامد تقویت کننده و نیز سیستم مدیریت مقصد داشت. ناسا شروع به مطالعه و طراحی شاتل فضایی کرد و بالاخره پس از سالها آزمایش روی بخشهای مختلف ۴ شاتل کلمبیا، آتلانتیس، دیسکاوری و چالنجرآماده پرواز شدند. پرواز اول در سال ۱۹۸۰ شاتل کلمبیا با خلبانی جان یانگ و رابرت کریمن با موفقیت انجام گرفت. در سال ۱۹۸۶ بخاطر ایجاد شعله در مخزن سوخت بیرونی شاتل چالنجر منفجر شد و تمام خدمه آن درراه علم از بین رفتند و این غمی بزرگ برای دوستداران فضا نوردی بود. برنامه سفر با شاتل ها جهت رفع اشکالات فنی چند سال به تعویق افتاد. بعد از این حادثه شاتلهای فضایی بازهم به کار خود ادامه دادند تا اینکه در روز شنبه ۱۲ بهمن ۱۳۸۱ در حدود ساعت ۱۴ به وقت جهانی هفت فضانورد شاتل کلمبیا در پایان یک مأموریت ۱۶ روزه علمی آماده میشدند که به زمن بازگردند، اما در کمال حریت مردمان این فضا پیما در اثر یک مشکل در قسمت مخازن سوخت منفجر شد و ازبین فت. این دومین بار در تاریخ فضانوردی بود که غم دیگری را برای آنها بناگذارد. اما ناسا به تحقیقات خود ادامه داد و توانست جایگاه خود را بازیابد. امروزه شاتل های فضایی قادرند تا ۱۰۰ پرواز به فضا را به راحتی انجام دهند. ماموریت شاتل های فضایی ۷یا ۸ روزه است. ولی قادرند بسته به ماموریت های محموله تا ۲۰ روز هم پرواز کنند. اجزای حرکتی شاتل عمدتا عبارتند از:
    ۱- دو موشک جامد تقویت کننده
    ۲- مخزن سوخت بیرونی
    ۳- سه موتور اصلی نصب شده روی مدار پیما
    ۴- سیستم مدیریت مقصد در فضا نصب شده روی مدار پیما
    موشکهای جامد تقویت کننده فراهم کننده بیشترین نیرو ( حدود ۷۱%) برای بلند کردن شاتل فضایی از سکوی پرتاب هستند. موشکهای جامد آخرین بخشی هستند که پس از اجازه پرتاب روشن می شوند. چون پس از آتش گرفتن دیگر قابل خاموش کردن نیستند. ارتفاع هر یک از این موشکها ۴۶ متر و وزن آنها همراه سوخت جامد به ۶۰۰ تن می رسد. داخل هر یک از این موشکها سوخت جامد- موتور احتراق- سیستم کنترلی رها شدن ( جدا شدن از شاتل ) و چتر فرود ( برای فرود سالم در اقیانوس و استفاده مجدد از موشکها ) تعبیه شده است.
    مخزن سوخت بیرونی سوخت مایع موتورهای اصلی را در خود ذخیره دارد. ارتفاع این مخزن ۴۸ متر و قطر آن ۴/۸ متر می باشد و
    شاتل فضایی در حال پرواز
    قادر است ۲ میلیون لیتر سوخت ( با نسبت: اکسیژن یک و هیدروژن ۶ واحد) را در خود نگاه دارد. سه موتور روی مدار پیما ( هر کدام با ارتفاع ۳/۴ متر و عرض ۳/۲ متر) نصب شده اند. که سوخت مخزن بیرونی را که شامل اکسیژن و هیدروژن است را با هم ترکیب می کنند و باقیمانده نیرو را ( حدود ۲۹%) برای بلند کردن شاتل فراهم می کنند. موتورها قادرند حجم عظیمی از سوخت مخزن بیرونی را با سرعت و قدرت بسوزانند( معادل حجم یک استخر بزرگ در عرض ۱۰ ثانیه). آب حاصل از ترکیب اکسیژن و هیدروژن بخاطر گرمای فوق العاده سریع بخار می شود و می توان بخار حاصله را به هنگام بلند شدن شاتل مشاهده کرد. دو موتور سیستم مدیریت مقصد هم در بخش عقب مدارپیما روی دم های آن قرار دارند. این موتورها برای قرار دادن شاتل در مدار نهایی و تغییر مکان شاتل از مداری به مدار دیگر و کم کردن سرعت شاتل به هنگام فرود تعبیه شده اند. داخل این موتورها دو مخزن هلیم و اکسیدایزر قرار دارد. خاصیت این مواد در این است که در نبود اکسیژن می توانند با هم ترکیب شده و فوراً آتش بگیرند. در ضمن روی دماغه هم ۱۴ موتور جت کوچک نصب شده اند که از همین نوع سوخت استفاده می کنند.
    مراحل پرتاب شاتل به فضا:
    پس از آنکه شاتل در سکوی پرتاب آماده پرتاب شد از ۳۱ ثانیه قبل از پرتاب مراحل زیر اتفاق می افتد:
    ۳۱ ثانیه قبل: کامپیوترهای مرکزی تمام کنترل ها را بر عهده می گیرند.
    ۶/۶ ثانیه قبل: موتورهای اصلی نوبت به نوبت روشن می شوند و به ۹۰% قدرت خود می رسند.
    ۳ ثانیه قبل: موتورهای اصلی آماده پرتاب شاتل به فضا هستند.
    لحظه پرتاب: موشکهای جامد تقویت کننده آتش می گیرند.
    ۲۰ ثانیه بعد: شاتل به طور مستقیم به فضا پرتاب می شود.
    ۶۰ ثانیه بعد: موتورهای اصلی به ۱۰۰ % قدرت خود می رسند.
    ۲ دقیقه بعد: در ارتفاع ۴۵ کیلومتری موشکهای جامد تقویت کننده از شاتل جدا می شوند. در این لحظه چتر نجات موشکها ی جدا شده باز می شوند تا ۲۰۰ کیلومتر دورتر و در اقیانوس آرام فرود آیند.
    ۵/۸ دقیقه بعد: موتورهای اصلی خاموش می شود.
    ۹ دقیقه بعد: مخزن سوخت بیرونی از شاتل جدا می شود و بخاطر برخورد با سرعت بالا به مولکولهای هوا در جو زمین می سوزد.
    ۵/۱۰ دقیقه بعد: موتورهای سیستم مدیریت مقصد روشن می شوند تا شاتل را در مدار پایینی قرار دهند.
    ۴۵ دقیقه بعد: موتورهای سیستم مدیریت مقصد دوباره روشن می شوند تا شاتل را در مدار بالا یی ( ارتفاع ۴۰۰ کیلومتری از سطح زمین ) قرار دارند.
    اکنون شاتل به یک مدار پیما تبد یل شده و خارج از جو آماده ادامه ماموریت است.
    مدار پیما:
    در بخش میانی مدارپیما تجهیزات و بازوی مکانیکی و در بخش پیشانی مرکز فرمانده ای و محل اسقرار خدمه و مخازن هوا و غذا قرار دارد. وقتی مدارپیما به ایستگاه مورد نظر رسید دربهای بالای بدنه باز شده و تجهیزات توسط بازوی مکانیکی که درون آن تعبیه شده به ایستگاه تحویل می شود. هرگاه لازم باشد که مدارپیما جابجا شود ( مثلا" برای تنظیم کردن تلسکوپ یا عکس برداری از زمین) موتورهای کوچکی که روی دماغه تعبیه شده اند برای چند لحظه روشن می شوند تا مدار پیما به راحتی بچرخد یا دور بزند. در دماغه مدارپیما هم دربهای مخصوصی قرار دارند تا خدمه بتوانند از آن بیرون بیایند و خارج از مدارپیما به کارهای نصب و تعمیرات ایستگاهای فضایی و ماهواره ها رسیدگی کنند.
    تصوی از درون یک شاتل
    پس از آنکه ماموریت مدارپیما به اتمام رسید نوبت بازگشت به زمین می رسد. در اول فوریه سال ۲۰۰۳ قدیمی ترین مدارپیمای ناسا ( کلمبیا) در ارتفاع ۲۰۰ هزار پایی بالای سطح زمین منفجر شد و تمامی خدمه آن جان باختند. بازگشت مدارپیما یکی از حساسترین مراحل سفر است. ابتدا مدارپیما باید ۱۸۰ درجه گردش کند و سپس تحت زاویه خاص ( ۲۸ تا ۳۶ درجه) گردش کند تا سطح زیرین آن به اتمسفر برخورد کند. مدارپیما در این حالت با سرعت ۲۸ هزار کیلومتر در ساعت از اتمسفر زمین عبور می کند و دمای سطح آن در این لحظه به ۳۰۰۰ درجه سانتیگراد می رسد. به همین دلیل سطح مدارپیما را از مواد خاص (ترکیبات سخت کربن ) می سازند تا در برابر حرارت شدید مقاوم باشد پس از اینکه مدار پیما از جو عبور کرد به ارتفاعی می رسد که غلظت هوا در آنجا زیاد است. از این به بعد مدار پیما مانند هواپیما با کمک بالها در یک ناحیه s شکل ابتدا تحت زاویه ۴۰ درجه وسپس ۲۰ درجه به طرف زمین مانور میدهد تا سرعت سقوطش کم شود. پس از اینکه مدارپیما به باند فرود رسید دماغه را بالا می آورد وسپس چتر سرعت گیر را باز میکند تا آرام روی باند توقف کند .

  6. #56
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    میکروسکوپ الکترونی





    یکی از تجهیزات بزرگ علمی میکروسکوپ الکترونی است که براساس قوانین نوری کار میکند دراین دستگاه شار الکترون پر انرژی از یک منبع الکترون خارج شده وتحت شتاب به طرف هدف میرود در مسیر خود از روزنه های تعبیه شده در یک فلز عبور کرده وبا عبور از لنزهای مغناطیسی بر روی شی مورد نظر تابانده شده ودر نتیجه بازتاب نور تصو یر شی دیده خواهد شد.
    اطلاعاتی را که میکروسکوپ الکترونی ارایه میدهد:
    ۱- توپوگرافی شی : (نقشه برداری )که با اشکار کردن مشخصات سطح و بافت داخلی شی میتوان به خواصی مانند سفتی و میزان ارتجایی بودن ان پی برد.
    ۲- مورفولوژی (ریخت شناسی): از ان رو که در این رویت شکل و سایز ذرات مشخص است میتوان به سختی و استحکام پی برد.
    ۳-ترکیب: این میکروسکوپ میتواند عناصر سازنده شی را مشخص نماید بنابراین میتوان به خواصی مانند نقطه ذوب اکتیویته شی نیز دست یافت.
    ۴-بلور شناسی: میکرو سکوپ الکترونی چگونگی چیده شدن اتمها را در مجاورت یکدیگر را می دهد وبه این تر تیب میتوان انها را از نظر رسانایی و خواص الکتریکی بررسی نمود.

    این تصویر در میکروسکوپ الکترونی مشاهده شده است که مربوط به حشره زیبایی به نام مگس می باشد.

  7. #57
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    فیزیک نیمه رسانا



    در اواسط قرن نوزدهم با فراگیر شدن رادیو و تلویزیون ضرورت بهبود بخشیدن به کیفیت لامپهای دیودی وتریودی احساس گردید . تا اینکه در ۲۳ دسامبر ۱۹۴۷ ترانزیستور توسط سه فیزیکدان به نامهای شاکلی؛باردین وبرتین به صنعت الکترونیک معرفی گردید. همانطور که در شکل دیده می شود اولین ترانزیستور دنیا از یک نارسانای مثلثی تشکیل شده که توسط دوسوزن طلا به نیمه رسانای ژرمانیم متصل میشود .این ترانزیستور برعکس لامپهای دیودی برای به گرما احتیاج نداشت وسریعا به کار می افتاد و همچنین بسیار سبکتر و ارزانتر از لامپهای دیودی بود. بدین ترتیب شاکلی و همکاران وی به کمک فیزیک نیمه رسانا انقلابی را در عرصه الکترونیک پدید اوردند وبه پاس این اختراع مهم این محققان مفتخر به دریافت جایزه نوبل گردیدند.
    ترانزیستور به سرعت روند تکاملی خود را طی مینمود به طوریکه در سال ۱۹۴۸ترانزیستور صفحه ای ساخته شد.
    امروزه ترانزیستورها عموما pnp,npnهستند که بعنوان کلید قطع و وصل جریان ویا بعنوان تقویت کننده در مدارات الکترونیکی استفاده می شوند. در سالهای ۱۹۵۰و ۱۹۷۰ به دلیل استفاده از ترانزیستور حجم وسایل ا لکترونیکی بسار کوچک شد به همین دلیل به واژه میکروالکترونیک متدول گردید. میکروالکترونیک نیز بسرعت رشد می کرد .بطوریکه امروزه با استفاده از فن سا ختمان اکسید فلز می توان تعداد زیادی از ترانز یستورها را بر روی یک نیمه رسانا جا داد. امروزه از اکسیدهای نیمه رسانا مانند اکسید روی در ترانزیستورهای با سرعت انتقال بالا استفاده می کرد ( ترانزیستورهای فایل افکت -FET)
    جدیدا محققان ژاپنی هیدو هوسونو و کولت کاگوش از یک صفحه نیمه رسانای کریستال مجرد درترانزستورهای فایل افکت استفاده کردند که سرعت انتقال ان ۸۰ سانتیمتر مربع ولت بر ثانیه است که دها بار سریعتر از ترانزیستورهای قبلی می باشد(ساختمان مولکولی آن در شکل دیده می شود)
    اگرچه این ترانزیستور فعلا بسیار گران است ولی این تحقیقات نشان داد که امکان رسیدن به سرعتهای بالا وجود دارد.

  8. #58
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    لیزر



    لیزر مخفف عبارت light amplification by stimulated emission of radiation می باشد و به معنای تقویت نور توسط تشعشع تحریک شده است.

    اولین لیزر جهان توسط تیودور مایمن اختراع گرذید و از یاقوت در ان استفاده شده بود در سال ۱۹۶۲ پرو فسورعلی جوان اولین لیزر گازی را به جهانیان معرفی نمود وبعدها نوع سوم و چهارم لیزرها که لیزرهای مایع ونیمه رسانا بودند اختراع شدند.در سال ۱۹۶۷ فرانسویان توسط اشعه لیزر ایستگاههای زمینی شان دو ماهواره خود را در فضا تعقیب کردند بدین ترتیب لیزر بسیار کار بردی به نظر امد.
    نوری که توسط لیزر گسیل می گردد در یک سو وبسیار پر انرژی و درخشنده است که قدرت نفوذ بالایی نیز دارد بطوریکه در الماس فرو میرود . امروزه استفاده از لیزر در صنعت بعنوان جوش اورنده فلزات و بعنوان چا قوی جراحی بدون درد در پزشکی بسیار متداول است.
    لیزرها سه قسمت اصلی دارند:
    ۱-پمپ انر ژی یا چشمه انرژی: که ممکن است این پمپ اپتیکی یا شیمیا یی و یاحتی یک لیزر دیگر باشد.
    ۲- ماد پایه وفعال که نام گذاری لیزر بواسطه ماده فعال صو رت می گیرد.
    ۳- مشدد کننده اپتیکی : شامل دو اینه بازتابنده کلی و جزیی می باشد.
    طرز کار یک لیزر یاقوتی:
    پمپ انرژی در این لیزر از نوع اپتیکی میباشد ویک لامپ مارپیچی تخلیه است(flash tube) که بدور کریستال یاقوت مدادی شکلی پیچیده شده(ruby) کریستال یاقوت نا خالص است و ماده فعال ان اکسید برم و ماده پایه ان اکسید الو مینم است.
    بعد از فعال شدن این پمپ انرژی کریستال یا قوت نور باران می شودو بعصی از اتمها رادر اثرجذب القایی-stimulated absorption برانگیخته کرده وبه ترازهای بالاتر می برد.
    پدیده جذب القایی: اتم برانگیخته = اتم+فوتون
    با ادامه تشعشع پمپ تعداد اتمهای برانگیخته بیشتر از اتمهای با انرژی کم میشود به اصطلاح وارونی جمعیت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتمهای برانگیخته توان نگهداری انرژی زیادتر را نداشته وبه تراز با انرژی کم بر میگردند وانر ژی اصافی را به صورت فوتون ازاد می کنند که به این فرایند گسیل خودبخودی گفته می شودولی از انجایی که پمپ اپتیکی مرتب به اتمها فوتون می تاباند پدیده دیگریزودتر اتفاق می افتد که به ان گسیل القایی-stimulated emission گفته می شود همانطور که در شکل انیمیشین زیر می بینید وقتی یک فوتون به اتم برانگیخته بتابد ان را تحریک کرده وزودتر به حالت پایه خود بر می گرداند.

    گسیل القایی: اتم+دو فوتون = اتم برانگیخته+ فوتون
    این فوتونها دوباره بعضی از اتمها را بر انگیخته میکنند و واکنش زنجیر وار تکرار می شود.
    بخشی از نور ها درون کریستال به حرکت در می ایند که توسط مشددهای اپتیکی درون کریستال برگرداننده می شوند واین نورها در همان راستای نور اولیه هستد بتدرج با افزایش شدت نور لحظه ای می رسد که نور لیزر از جفتگر خروجی با روشنایی زیاد بطور مستقیم خارج می شود.

  9. #59
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    بمب های الکترومغناطیسی



    سلاح تازه ای که ساخت آن بسیار ساده و تأثیر آن کاملاً گسترده است ، نگرانی هایی را برای دانشمندان و دولتمردان بوجود آورده است . به نوشته هفته نامه علمی نیوساینتیست این سلاح مؤثر « بمب الکترو مغناطیسی » نام دارد که اساس و عصاره آنها چیزی نیست جز یک پرتو شدید و آنی از موجهای رادیویی یا مایکروویو که قادر است همه مدارهای الکتریکی را که در سر راهش قرار گیرد ، نابود سازد . در دورانی که بافت و ساخت تمامی جوامع تا حدود بسیار زیادی به دستاوردهای علمی از نوع الکترونیکی وابسته است و همه امور از تجهیزات بیمارستانها تا شبکه های مخابراتی و از رایانه های بانکها و مؤسسات بزرگ مالی یا نظامی تا دستگاههای نظارت و مراقبت ، نحوه کار ماشینها و ادوات صنعتی همگی متکی به ساختارهای الکترونیک هستند ، کاربرد بمبهای الکترو مغناطیس می تواند سبب فلج شدن روند زندگی در مناطق بزرگ مسکونی شود . به اعتقاد برخی کارشناسان به نظر می رسد کشورهای پیشرفته پیشاپیش چنین سلاحی را تکمیل کرده اند و حتی برخی بر این باورند که ناتو در جریان جنگ علیه صربستان از این قبیل بمبها برای تخریب دستگاههای رادار صربها بهره گرفته است . توجه به بمبهای الکترو مغناطیس حدود نیم قرن قبل مطرح شد . متخصصان در آن هنگام به این نکته توجه کردند که اگر بمبی هسته ای منفجر شود ، امواج الکترومغناطیسی که در اثر انفجار پدید می آید تمامی مدارهای الکترونیک را نابود می سازد . اما مسیله این بود که به چه ترتیب بتوان موج انفجار را ایجاد کرد بدون آنکه نیاز به انجام یک انفجار هسته ای باشد ؟
    دانشمندان می دانستند که کلید حل این مسیله در ایجاد پالسهای ( تپ های ) الکتریکی که با عمر بسیار کوتاه و قدرت زیاد نهفته است . اگر اینگونه پالسها به درون یک آنتن فرستنده تغذیه شوند ، امواج الکترومغناطیس قدرتمندی در فرکانسهای ( بسامد ) مختلف از آنتن بیرون می آیند ، هر چه فرکانس موج بالاتر باشد ، امکان تأثیرگذاری آن بر مدارهای الکترونیک دستگاهها بیشتر خواهد شد . بزودی این نکته روشن شد که مناسب ترین امواج الکترومغناطیس برای ساخت بمبهای الکترومغناطیس امواج با فرکانس در حدود گیگا هرتز است . این نوع امواج قادرند به درون انواع دستگاههای الکترونیک نفوذ کنند و آنها را از کار بیندازند . برای تولید امواج با فرکانس گیگاهرتز نیاز به تولید پالسهای الکترونیکی بود که تنها ۱۰۰ پیکو ثانیه تدوام پیدا کنند . یک شیوه تولید این نوع پالسها استفاده از دستگاهی به نام « مولد ژنراتور مارکس » بود . این دستگاه عمدتاً متشکل است از مجموعه بزرگی از خازنها که یکی پس از دیگری تخلیه می شوند و نوعی جریان الکتریکی موجی شکل بوجود می آورند . با گذراندن این جریان از درون مجموعه ای از کلیدهای بسیار سریع می توان پالسهایی با دوره زمانی ۳۰۰ پیکوثانیه تولید کرد . با عبور دادن این پالسها از درون یک آنتن ، امواج الکترومغناطیسی بسیار قوی تولید می شود . مولدهای مارکس سنگین هستند اما می توانند پشت سرهم روشن شوند تا یک سلسله پالسهای قدرتمند را به صورت متوالی تولید کنند . این نوع مولدها هم اکنون در قلب یک برنامه تحقیقاتی قرار دارند که بوسیله نیروی هوایی آمریکا کانزاس در دست اجراست . هدف این برنامه جای دادن مولدهای مارکس روی هواپیماهای بدون خلبان یا در درون بمبها و موشکهاست تا از این طریق نوعی « میدان مین الکترومغناطیس » برای مقابله با دشمن ایجاد شود . اگر هواپیما یا موشک دشمن از درون این میدان مین الکترومغناطیس عبور کند ، بلافاصله نابود خواهد شد . اگر لازم باشد تنها یک انفجار عظیم به انجام رسد ، به دستگاهی نیاز است که بتواند یک پالس الکترونیکی بسیار قدرتمند را بوجود آورد ؛ این کار را می توان با استفاده از مواد منفجره متعارف نظیر « تی . ان . تی » انجام داد . دستگاهی که این عمل را به انجام می رساند ، « متراکم کننده شار » نام دارد . در این دستگاه از انفجار اولیه یک ماده منفجره متعارف برای فشرده کردن یک جریان الکتریکی و میدان الکترومغناطیسی تولید شده بوسیله آن استفاده می شود. زمانی که این جریان فشرده شد ، به درون یک آنتن فرستاده می شود و یک موج الکترومغناطیس بسیار قدرتمند از آنتن بیرون می آید . نیوساینتیست می افزاید : طرح تکمیل دستگاههای متراکم کننده شار از سوی نیروی هوایی آمریکا در ایالت نیو مکزیکو در دست تکمیل است . از جمله طرحهایی که برای کاربرد این دستگاه در نظر گرفته شده ، جای دادن آنها در بمبهایی است که از هواپیما به پایین پرتاب می شود و نصب آنها در موشکهای هوا به هواست . امتیاز بزرگ بمبهای الکترومغناطیس در دو نکته است : نخست آنکه این بمبها مستقیماً جان انسانها را به خطر نمی اندازد و تنها بر دستگاههای الکترونیک اثر می گذارد ؛ و نکته دوم آنکه ساخت آنها بسیار ساده است . بمبهای الکترومغناطیس در صورتی می توانند بالاترین خسارت را وارد آورند که فرکانس امواجشان با فرکانس دستگاههایی که به آنها وارد می شوند یکسان باشد . بنابراین برای ایجاد مصونیت در دستگاههای الکترونیکی که در مراکز حساس کار می کنند ، می توان طراحی مدارها را به گونه ای انجام داد که اولاً میان بخشهای مختلف ، سپرهای محافظتی موجود باشد و ثانیاً در ورودی این قبیل دستگاهها باید صافیها و سنجنده هایی را قرار داد که بتواند علامتهای مورد نیاز و امواج حاصل از انفجار را تشخیص دهند و مانع ورود این قبیل امواج شوند.

  10. #60
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    ماهواره های مصنوعی



    ماهواره ی مصنوعی شی ایست که توسط انسان ساخته شده و به طور مداوم در حال حرکت در مداری حول زمین یا اجرام دیگری در فضا می باشد. بیشتر ماهواره های ساخته شده تاکنون حول کره زمین در حرکتند و در مواردی چون مطالعه کائنات، ایستگاه های هوا شناسی، انتقال تماس های تلفنی از فراز اقیانوس ها، ردیابی و تعیین مسیر کشتی ها و هواپیماها و همینطور امور نظامی به کار می روند [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
    ماهواره هایی نیز وجود دارند که دور ماه، خورشید، اجزام نزدیک به زمین و سیاراتی نظیر زهره، مریخ و مشتری در حال گردش می باشند. این ماهواره ها اغلب اطلاعات مربوط به جرم آسمانی که حول آن در گردشند را جمع آوری می کنند.
    به جز ماهواره های مصنوعی مذکور اشیای در حال گردش دیگری نیز در فضا وجود دارند از جمله فضا پیما ها، کپسول های فضایی و ایستگاه های فضایی که به آنها نیز ماهواره می گوییم. البته اجرام دیگری نیز در فضا وجود دارند به نام زباله های فضایی شامل بالابرنده های مستهلک راکت ها، تانک های خالی سوخت و … که به زمین سقوط نکرده اند و در فضا در حرکتند. در این مقاله به این اجرام نمی پردازیم.
    اتحادیه جماهیر شوروی پرتاب کننده اولین ماهواره مصنوعی، اسپاتنیک ۱، در سال ۱۹۵۷ بود. از آن زمان ایالات متحده و حدود ۴۰ کشور دیگر سازنده و پرتاب کننده ماهواره به فضا بوده اند.
    امروزه قریب به ۳۰۰۰ ماهواره فعال و ۶۰۰۰ زباله فضایی در حال گردش به [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ] زمینند.
    انواع مدارها
    مدارهای ماهواره ها اشکال گوناگونی دارند. برخی دایره شکل و برخی به شکل بیضی می باشند. مدارها از لحاظ ارتفاع (فاصله از جرمی که ماهواره حول آن در گردش است) نیز با یکدیگر تفاوت دارند. برای مثال بعضی از ماهواره در مداری دایره شکل حول زمین خارج از اتمسفر در ارتفاع ۲۵۰ کیلومتر(۱۵۵ مایل) در حرکتند و برخی در مداری حرکت می کنند که بیش از ۳۲۲۰۰ کیلومتر (۲۰۰۰۰ مایل) از زمین فاصله دارد. ارتفاع بیشتر مدار برابر است با دوره گردش ( مدت زمانیکه ماهواره یک دور کامل در مدار خود حرکت می کند) طولانی تر.
    یک ماهواره زمانی در مدار خود باقی می ماند که بین شتاب ماهواره ( سرعتی که ماهواره می تواند در طی یک مسیر مستقیم داشته باشد ) و نیروی گرانش ناشی از جرم آسمانی که ماهواره تحت تاثیر آن می باشد و دور آن در گردش است تعادل وجود داشته باشد. چنانچه شتاب ماهواره ای بیشتر از گرانش زمین باشد ماهواره در یک مسیر مستقیم از زمین دور می شود و چنانچه این شتاب کمتر باشد ماهواره به سمت زمین برخواهد گشت.
    برای درک بهتر تعادل بین گرانش و شتاب، جسم کوچکی را در نظر بگیرید که به انتهای یک رشته طناب متصل و در حال چرخش است. اگر طناب پاره شود جسم متصل به آن در یک مسیر صاف به زمین می افتد. طناب در واقع کار گرانش را انجام می دهد تا شی بتواند به چرخش خود ادامه دهد. ضمنا وزن شی و طناب میتوانند نشانگر رابطه بین ارتفاع ماهواره و دوره گردش آن باشد. طناب بلند مانند ارتفاع بلند است. هر چه طناب بلندتر باشد زمان بیشتری نیاز است تا شی متصل به آن یک دور کامل بچرخد. طناب کوتاه مانند ارتفاع کوتاه است و در زمان کمتری شی مذکور یک دور کامل در مدار خود گردش خواهد کرد.
    انواع گوناگونی از مدارها وجود دارند اما اغلب ماهواره هایی که حول زمین در گردشند در یکی از این چهار گونه مدار حرکت میکنند. (۱) ارتفاع بلند، ﮋئوسینکرنوس. (۲) ارتفاع متوسط. (۳) سان سینکرنوس، قطبی. (۴) ارتفاع کوتاه . شکل اغلب این گونه مدارها دایره ایست.
    مدارهای ارتفاع بلند، ﮋئوسینکرنوس بر فراز استوا و در ارتفاع ۳۵۹۰۰ کیلومتر(۲۲۳۰۰ مایل) قرار دارند. ماهواره های اینگونه مدارها حول محور عمودی زمین با سرعت و جهت برابر حرکت زمین حرکت می کنند. بنابراین هنگام رصد آنها از روی زمین همواره در نقطه ای ثابت به نظر می رسند. برای پرتاب و ارسال این ماهواره ها انرﮋی بسیار فراوانی لازم است.
    ارتفاع یک مدار متوسط حدود ۲۰۰۰۰ کیلومتر (۱۲۴۰۰ مایل) و دوره گردش ماهواره های آن ۱۲ ساعت است . مدار خارج از اتمسفر زمین و کاملا پایدار است. امواج رادیویی که از ماهواره های موجود در این مدارها ارسال می گردد در مناطق بسیارزیادی از زمین قابل دریافت است. پایداری و وسعت مناطق تحت پوشش این گونه مدارها آنها را برای ماهواره های ردیاب مناسب می نماید.
    مدارهای سان سینکرنوس، قطبی، ارتفاع نسبتا کوتاهی دارند. آنها تقریبا از فراز هر دو قطب زمین عبور می کنند.مکان این مدارها متناسب با حرکت زمین به دور خورشید در حرکت است به گونه ایکه ماهواره ی این مدار خمواره در یک ساعت محلی ثابت از استوا عبور می کند. از آنجاییکه این ماهواره ها از همه عرض های جغرافی زمین می گذرند قادرند که اطلاعات را از تمامی سطح زمین دریافت نمایند. در اینجا می توان ماهواره TERRA را به عنوان مثال نام برد. وظیفه این ماهواره مطالعه اثرات چرخه ها ی طبیعی و فعالیت های انسان بر روی آب و هوای کره زمین است. ارتفاع مدار این ماهواره ۷۰۵ کیلومتر (۴۳۸ مایل) و دوره گردش آن ۹۹ دقیقه است. زمانیکه این ماهواره از استوا عبور می کند ساعت محلی همیشه ۱۰:۳۰ صبح و یا ۱۰:۳۰ شب است.
    یک مدار ارتفاع کوتاه درست بر فراز جو زمین قرار دارد جاییکه تقریبا هوایی برای ایجاد تماس و اصطکاک وجود ندارد. برای ارسال ماهواره به این نوع مدارها انرﮋی کمتری نسبت به سه نوع مدار مذکور دیگر لازم است. ماهواره ها ی مطالعاتی که مسئول دریافت اطلاعات از اعماق فضا می باشند غالبا در این مدارها در حرکتند. برای مثال تلسکوپ هابل که در ارتفاع ۶۱۰ کیلومتر(۳۸۰ مایل) با دوره گردش ۹۷ دقیقه در حرکت است.
    انواع ماهواره ها
    ماهواره های مصنوعی بر اساس ماموریت هایشان طبقه بندی می شوند. شش نوع اصلی ماهواره وجود دارند. (۱) تحقیقات علمی، (۲) هواشناسی، (۳) ارتباطی، (۴) ردیاب، (۵) مشاهده زمین، (۶) تاسیسات نظامی.
    ماهواره های تحقیقات علمی اطلاعات را به منظور بررسی های کارشناسی جمع آوری می کنند. این ماهواره ها اغلب به منظور انجام یکی از سه ماموریت زیر طراحی و ساخته می شوند. (۱) جمع آوری اطلاعات مربوط به ساختار، ترکیب و تاثیرات فضای اطراف کره زمین. (۲) ثبت تغییرات در سطح و جو کره زمین. این ماهواره ها اغلب در مدارهای قطبی در حرکتند. (۳) مشاهده سیارات، ستاره ها و اجرام آسمانی در فواصل بسیار دور. بیشتر این ماهواره ها در ارتفاع کوتاه در حرکتند. ماهواره های مخصوص تحقیقات علمی حول سیارات دیگر، ماه و خورشید نیز حضور دارند.
    ماهواره های هواشناسی به دانشمندان برای مطالعه بر روی نقشه های هواشناسی و پیش بینی وضعیت آب و هوا کمک می کنند. این ماهواره ها قادر به مشاهده وضعیت اتمسفر مناطق گسترده ای از زمین می باشند.
    بعضی از ماهواره های هواشناسی در مدارهای سان سینکرنوس، قطبی، در حرکتند که توانایی مشاهده بسیار دقیق تغییرات در کل سطح کره زمین را دارند. آنها می توانند مشخصات ابرها، دما، فشار هوا، بارندگی و ترکیبات شیمیایی اتمسفر را اندازه گیری نمایند. از آنجا که این ماهواره ها همواره هر نقطه از زمین را در یک ساعت مشخص محلی مشاهده می کنند دانشمندان با اطلاعات به دست آمده قادر به مقایسه دقیق تر آب و هوای مناطق مختلفند. ضمنا شبکه جهانی ماهواره های هواشناسی که در این مدارها در حرکتند می توانند نقش یک سیستم جستجو و نجا ت را بر عهده گیرند. آنها تجهیزات مربوط به شناسایی سیگنال های اعلام خطر در همه هواپیما ها و کشتی های خصوصی و غیر خصوصی را دارا هستند.
    بقیه ماهواره های هواشناسی در ارتفاع های بلند تر در مدارهای ژئوسینکرنوس قرار دارند. از این مدارها، آنها می توانند تقریبا نصف کره زمین و تغییرات آب و هوایی آن را در هر زمان مشاهده کنند. تصاویر این ماهواره ها مسیر حرکت ابرها و تغییرات آنها را نشان می دهد. آنها همینطور تصاویر مادون قرمز نیز تهیه می کنند که گرمای زمین و ابرها را نشان می دهد [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
    ماهواره های ارتباطی در واقع ایستگاه های تقویت کننده سیگنال ها هستند، از نقطه ای امواج را دریافت و به نقطه ای دیگر ارسال می کنند. یک ماهواره ارتباطی می تواند در آن واحد هزاران تماس تلفنی و جندین برنامه شبکه تلوزیونی را تحت پوشش قرار دهد. این ماهواره ها اغلب در ارتفاع های بلند، مدار ﮋئوسینکرنوس و بر فراز یک ایستگاه در زمین قرار داده می شوند.
    یک ایستگاه در زمین مجهز به آنتنی بسیار بزرگ برای دریافت و ارسال سیگنال ها می باشد. گاهی چندین ماهواره که دریک شبکه و درمدارهای کوتاهترقرار گرفته اند، امواج را دریافت و با انتقال دادن سیگنال ها به یکدیگر آنها را به کاربران روی زمین در اقصی نقاط آن می رسانند. سازمانهای تجاری مانند تلوزیون ها و شرکت های مخابراتی در کشورهای مختلف از کاربران دائمی این نوع ماهواره ها هستند.
    به کمک ماهواره های ردیاب، کلیه هواپیماها، کشتی ها و خودروها بر روی زمین قادربه مکان یابی با دقت بسیار زیاد خواهند بود. علاوه بر خودروها و وسایل نقلیه اشخاص عادی نیز میتوانند از شبکه ماهواره های ردیاب بهره مند شوند.در واقع سیگنال های این شبکه ها در هر نقطه ای از زمین قابل دریافتند.
    دستگاه های دریافت کننده، سیگنال ها را حداقل از سه ماهواره فرستنده دریافت و پس از محاسبه کلیه سیگنال ها، مکان دقیق را نشان می دهند.
    ماهواره های مخصوص مشاهده زمین به منظور تهیه نقشه و بررسی کلیه منابع سیاره زمین و تغییرات ماهیتی چرخه های حیاتی در آن، طراحی و ساخته می شوند. آنها در مدارهای سان سینکرنوس قطبی در حرکتند. این ماهواره ها دائما در شرایط تحت تابش نور خورشید مشغول عکس برداری از زمین با نور مرئی و پرتوهای نا مرئی هستند.
    رایانه ها در زمین اطلاعات به دست آمده را بررسی و مطالعه می کنند. دانشمندان به کمک این ماهواره معادن و مراکز منابع در زمین را مکان یابی وظرفیت آنها را مشخص می کنند.همینطور می توانند به مطالعه بر روی منابع آبهای آزاد و یا مراکز ایجاد آلودگی و تاثیرات آنها و یا آسیب های جنگل ها و مراتع بپردازند.
    ماهواره های تاسیسات نظامی مشتمل از ماهواره های هواشناسی، ارتباطی، ردیاب و مشاهده زمین می باشند که برای مقاصد نظامی به کار می روند.برخی از این ماهواره ها که به ماهواره های جاسوسی نیز شهرت دارند قادر به تشخیص دقیق پرتاب موشکها، حرکت کشتی ها در مسیر های دریایی و جابجایی تجهیزات نظامی در روی زمین می باشند.
    زندگی و مرگ ماهواره ها
    ساخت یک ماهواره
    هر ماهواره حامل تجهیزاتیست که برای انجام ماموریت خود به آن ها نیاز دارد. برای مثال ماهواره ای که مامور مطالعه کائنات است مجهز به تلسکوپ و ماهواره مامور پیش بینی وضع هوا مجهز به دوربین مخصوص برای ثبت حرکات ابرها است.
    علاوه بر تجهیزات تخصصی، همه ماهواره ها دارای سیستمهای اصلی برای کنترل تجهیزات خود و عملکرد ماهواره می باشند. از جمله سیستم تامین انرﮋی، مخازن، سیستم تقسیم برق و … . در هر یک از این بخشها ممکن است از سلول های خورشیدی برای جذب انرﮋی مورد نیاز استفاده شود. بخش داده ها و اطلاعات نیز مجهز به رایانه هایی به منظور جمع آوری و پردازش اطلاعات به دست آمده از طریق تجهیزات و اجرای فرامین ارسال شده از زمین می باشد.
    هریک از تجهیزات جانبی و بخشهای اصلی یک ماهواره به طور جداگانه طراحی، ساخته و آزمایش می شوند. متخصصان بخشهای مختلف را کنارهم گذاشته و متصل می کنند تا زمانیکه ماهواره کامل شود و سپس ماهواره در شرایطی نظیر شرایطی که هنگام ارسال از سطح زمین و هنگام استقرار در مدار خود خواهد داشت آزمایش می شود. اگر ماهواره همه آزمایش ها را به خوبی گذراند آماده پرتاب می شود.
    پرتاب ماهواره
    برخی ماهواره ها توسط شاتل ها در فضا حمل می شوند ولی اغلب ماهواره ها توسط راکت هایی به فضا فرستاده می شوند که پس از اتمام سوختشان به درون اقیانوسها می افنتد.بیشتر ماهواره ها در ابتدا با حداقل تنظیمات در مسیر مدار خود قرار داده می شوند. تنظیمات کامل را راکت هایی انجام می دهند که داخل ماهواره کار گذاشته می شوند. زمانیکه ماهواره در یک مسیر پایدار در مدار خودقرار گرفت می تواند مدت های درازی در همان مدار بدون نیاز به تنظیمات مجدد باقی بماند.
    انجام ماموریت
    کنترل بیشتر ماهواره ها در مرکزی بر روی زمین است. رایانه ها و افراد متخصص در مرکز کنترل وضعیت ماهواره را تحت نظر دارند. آنها دستورالعمل ها را به ماهواره ارسال می کنند و اطلاعات جمع آوری شده توسط ماهواره را دریافت می نمایند. مرکز کنترل از طریق امواج رادیویی با ماهواره در ارتباط است. ایستگاه ها یی بر روی زمین این امواج را از ماهواره دریافت و یا به آن ارسال می کنند.
    ماهواره ها معمولا به طور دائم از مرکز کنترل دستورالعمل دریافت نمی کنند. آنها در واقع مثل روباتهای چرخان هستند.روباتی که سلول های خورشیدی خود را برای دریافت انرﮋی کافی تنظیم و کنترل می کند و آنتن های خود را برای دریافت دستورات خاص از زمین آماده نگه می دارد. تجهیزات ماهواره به صورت مستقل و اتوماتیک وظایف خود را انجام می دهند و اطلاعات را جمع آوری می کنند.
    ماهواره ها ی موجود در ارتفاع عای بلند مدار ﮋئوسینکرنوس در ارتباط همیشگی و دائم با زمین می باشند. ایستگاه ها ی زمین می تواند دوازده بار در روز با ماهواره های موجود در ارتفاع کوتاه ارتباط برقرار نمایند. در طول هر تماس ماهواره اطلاعات خود را ارسال و دستورالعمل ها را زا ایستگاه دریافت می کند. تبادل اطلاعات تا زمانیکه ماهواره از فراز ایستگاه عبور می کند می تواند ادامه داشته باشد که معمولا زمانی حدود ۱۰ دقیقه است.
    چنانچه قسمتی از ماهواره دچار نقص فنی شود اما ماهواره قادر به ادامه ماموریت های خود باشد، معمولا همچنان به کار خود ادامه می دهد. در چنین شرایطی مرکز کنترل روی زمین بخش آسیب دیده را تعمیر و یا مجددا برنامه نویسی می کند. در موارد نادری نیزعملیات تعمیرماهواره را شاتل ها در فضا انجام می دهند. و اما چنانچه آسیب های وارد آمده به ماهواره به اندازه ای باشد که ماهواره دیگر قادر به انجام ماموریت های خود نباشد مرکز کنترل فرمان توقف ماهواره را صادر می کند.
    سقوط از مدار
    یک ماهواره در مدار خود باقی می ماند تا زمانیکه شتاب آن کم شود و در چنین حالتی نیروی گرانش ماهواره را به سمت پایین و به سمت اتمسفر می کشاند. سرعت ماهواره هنگام برخورد با مولکول های خارجی ترین لایه اتمسفر کم می شود. هنگامی که نیروی گرانش ماهواره را به سمت لایه های داخلی اتمسفر می کشاند هوایی که در جلوی ماهواره قرار می گیرد سریعا به قدری فشرده و داغ می شود که در این هنگام بخشی و یا تمامی ماهواره می سوزد [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
    تاریخچه
    در سال ۱۹۵۵ شوروی تحقیقات خود را برای پرتاب ماهواره مصنوعی به فضا آغاز کرد. در تاریخ چهارم اکتبر ۱۹۵۷ این اتحادیه ماهواره اسپاتنیک ۱ را به عنوان اولین ماهواره مصنوعی به فضا ارسال نمود. این ماهواره در هر ۹۶ دقیقه یک دور کامل به دور زمین می چرخید و اطلاعات به دست آورده خود را به شکل سیگنال های رادیویی قابل دریافت به زمین ارسال می کرد. در تاریخ ۳ نوامبر ۱۹۵۷ اتحادیه جماهیر شوروی دومین ماهواره مصنوعی یعنی اسپاتنیک ۲ را به فضا فرستاد. این ماهواره حامل اولین حیوانی بود که به فضا سفر کرد. سگی به نام لایکا. پس از آن ایالات متحده ماهواره کاوشگر۱ را در تاریخ ۳۱ ﮋانویه ۱۹۵۸ و ونگارد ۱ را در تاریخ ۱۷ مارس همان سال به فضا فرستاد.
    نخستین ماهواره ارتباطی اکو۱ در ماه اگست سال ۱۹۶۰ از ایالات متحده به فضا فرستاده شد. این ماهواره امواج رادیویی به زمین می فرستاد. در آپریل ۱۹۶۰ نیز اولین ماهواره هواشناسی تیروس ۱ که تصاویر ابرها را به زمین ارسال می کرد فرستاده شد.
    نیروی دریایی آمریکا سازنده اولین ماهواره ردیاب، ترانزیت ۱ب درآپریل سال ۱۹۶۰ بود. به این ترتیب تا سال ۱۹۶۵ در هر سال بیش از ۱۰۰ ماهواره به مدارهایی در فضا فرستاده شدند.
    از سال ۱۹۷۰ دانشمندان به کمک رایانه و نانو تکنولوﮋی موفق به اختراع سازه ها تجهیزات پیشرفته تری برای ماهواره شده اند. به علاوه کشور های دیگر همینطور سازمانهای تجاری مبادرت به خریداری و ارسال ماهواره نموده اند. در سالهای اخیر بیشتر از ۴۰ کشور ماهواره در اختیار دارند و نزدیک به ۳۰۰۰ ماهواره در مدارها به انجام ماموریت های خود می پردازند.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •