اطلاعات مرتبط با ترکیبات و مواد شیمیایی
عملکرد کرم های ضد آفتاب
صنایع آرایشی از اكسیدهای غیرآلی، نظیر اكسید روی و تیتانیم، استفاده میكنند، اما استفاده از این اكسیدها به علت خاصیت سفیدكنندگی روی پوست محدود است. سفیدی به طور مستقیم با پخش نور رابطه دارد. به طور كلی با كاهش اندازة ذرات، شاهد افزایش جذب نور ماوراء بنفش توسط ذرات (به علت عبور كمترِ اشعهها از بین ذرات) و كاهش پدیدة سفیدی (به علت كاهش پدیدة پخش نور) هستیم. بهتازگی روشهای گوناگون برای تولید نانوذرات، توسعه یافته و بر صنعت کرمهای ضدآفتاب اثر گذاشتهاند.
۱. سفیدی
وقتی ماده نوردهی شود، پدیدههای زیر دیده میشوند:
شكل ۱: شِمای نور عبوری و انعكاسیافته از یك لایة نازك
۱. عبور نور که منجر به گذشتن آن از ماده بدون هیچ تأثیر متقابلی است؛
۲. نورِ نافذ که منجر به پخش نور میشود؛
۳. انعکاس نور از سطح، مانند آنچه در آینه رخ میدهد؛
۴. انعکاس نفوذی که منجر به پخش نور از سطح میشود.
در شکل ۱ پدیدههای گفتهشده نشان داده شدهاند. اثر سفیدی ناشی از پخش نور به وسیلة ذرات ــ برای مثال در کِرِمها ــ است. بنابراین، برای کاهش سفیدی باید میزان نور پخششده را کم كرد.
۲. پخش نور و اندازة ذرات
شدت نور پخششده به وسیلة یک تکذره، تابعی از اندازة ذره است. همانطور كه در شكل ۲ بهروشنی مشاهده میشود، با افزایش اندازة ذرات، نور مرئی به علت برخورد با ذرات پخش میشود و با برگشت نور به چشم، ذراتْ سفید دیده میشوند. بنابراین، برای کاهش تأثیر سفیدی، کاهش اندازة دانه راهی است بسیار مؤثر.
شكل۲: الف. نانوماده نور را بدون انحراف از خود عبور میدهد، به همین خاطر نسبت به نور شفاف است.
ب. مواد با ذرات در ابعاد میكرومتر نور را پراكنده میكنند. بنابراین، نسبت به نور مات و نیمهشفافاند و سفید دیده میشوند.
در شكل ۳ میزان پخش نور بر حسب اندازة دانه به نمایش درآمده و مشخص است كه با افزایش اندازة ذرات، میزان پخششوندگی نور بیشتر میشود.
۳. جذب اشعة ماورای بنفش و بهترین اندازة ذره
نور ماورای بنفش (UV) طول موج كمتر از نور مرئی و انرژی بیشتر از نور مرئی دارد. قرار گرفتن در مقابل تابش ماورای بنفش از مهمترین علل آسیبهای پوستی و سرطان پوست است. به همین خاطر، جذب این اشعه و ممانعت از رسیدن آن به پوست بدن موضوع تحقیق بسیاری از مراكز علمی دنیا برای سالیان طولانی بوده است. جذب UV در مواد غیرآلی نظیر TiO۲ و ZnOناشی از دو اثر است:
الف ـ جذب فاصلة باند؛
ب ـ پخش نور UV
الف ـ جذب فاصلة باندی
اکسید روی و اکسید تیتانیم نیمههادیاند و بهشدت نور UV را جذب و نور مرئی را عبور میدهند. سازوكارِ جذب UV در این مواد شامل مصرف انرژی فوتون برای تهییج الکترون از نوار ظرفیت به نوار رسانایی است.
فاصلة باندی یا «گپ انرژی» چیست؟
می¬دانیم که اتم¬ها از ترازهای انرژی تشکیل شده¬اند و این ترازهای انرژیِ حاوی الکترون، در جسم جامد تشکیل نوارهایی را می¬دهند که الکترونها در آنها قرار ¬گرفتهاند.
اما فضاهایی بین این نوارهای انرژی وجود دارند که هیچ نوار حاوی الکترونی نمی¬تواند در آنها جا بگیرد. این فضاها را «فاصلة باندی» یا «گپ انرژی» می¬گویند. در جامدهای رسانا نوارهای انرژی می¬توانند پر، نیمهپر یا خالی از الکترون ــ که در اصطلاح «نوار رسانایی» نامیده می¬شود ــ باشند. همچنین گپ انرژی آنها در مقایسه با نیمههادی¬ها کوچکتر است. در نیمههادی¬ها نوارهای انرژی نیمهپر وجود ندارند و گپ انرژی آنها کمی بزرگتر از رساناهاست. از همین رو، الکترونها در رسانا¬ها و نیمهرساناها می¬توانند با گرفتن مقداری انرژیِ گرمایی ــ برای رساناها کمتر، برای نیمهرساناها بیشتر ــ برانگیختگی گرمایی پیدا كنند و از لایه¬های انرژیِ پُر به لایه¬های انرژیِ خالی بروند. این عمل در نارساناها به علت بزرگ بودن گپ انرژی امکان ندارد.
ZnO و TiO۲ دارای انرژی باند ev۳/۳ تا ev۴/۳ مربوط به طول موجهای تقریباً ۳۶۵ نانومتر تا ۳۸۰ نانومتر هستند. نورهای زیر این طول موجها انرژی کافی برای تحریك الکترونها دارند. به بیان ساده، الكترونهای این ذرات انرژی نور UV را جذب میكنند و از رسیدن این امواج به پوست مانع میشوند. پس ZnO و TiO۲ دارای خاصیت شدید در جذب UV هستند و اگر به اندازة کافی کوچک باشند، شفافیت خوبی در برابر نور مرئی خواهند داشت.
ب ـ اندازة دانة بهینه برای جذب UV
شكل ۴: تأثیر اندازة دانه بر عبور نور
با ریزتر شدن ذرات، علاوه بر اینكه در مسیر نور UV ذرات بیشتری برای جذب فاصلة باند وجود دارند، نور UV بیشتر پخش خواهد شد. بنابراین، عبور این نور كاهش می¬یابد. جذب فاصلة باند به طور کلی تابعی از تعداد اتمهایی است که در مسیر نور UV قرار گرفتهاند. بر اساس تحقیقات تجربی، با کاهش اندازة ذرات، به علت کم شدن فاصلة بین آنها برای عبور نور UV، شاهد عبور كمترِ این اشعه هستیم. این موضوع در شکل شمارة ۴ نشان داده شده است. با توجه به این شكل، در محدودة نور فرابنفش (زیر ۴۰۰ نانومتر) با كاهش اندازة ذرات، عبور نور كمتر خواهد شد. همین پدیده است كه متخصصان را به تولید محصولات ضدآفتاب با خاصیت جذب (SPF) بالاتر رهنمون شده است.
شكل ۵: مقایسة تأثیر متقابل نور در برابر اندازة ذرات مختلف
SPF چیست؟
کرمهای ضدآفتاب بر اساس میزان توانایی آنها در جذب و دفع اشعة UV درجهبندی میشوند. این معیار Sun Protection Factor یا SPF نام دارد. درجات SPF، مانند SPF۱۵ یا SPF۲۰ نشانگر آناند که مصرفکنندة آن قبل از اینکه دچار آفتابسوختگی بشود، تا چه حد میتواند زیر نور آفتاب بماند. برای مثال، شما میتوانید بدون استفاده از کرم ضد آفتاب ده دقیقه زیر نور خورشید باقی بمانید و احساس سوختگی نکنید. هنگامی که از کرم ضد آفتاب استفاده میکنید، میتوانید زمان ۱۰ دقیقه را ضرب در میزان SPF کرم کنید و به مقدار زمان به دست آمده زیر آفتاب بمانید. اگر SPF کرم شما ۱۵ باشد، شما ۱۵۰ دقیقه یا ۲ ساعت و نیم میتوانید در آفتاب بمانید. اگر پس از مدتی مجددا از کرم استفاده کنید، میزان محافظت آن بیشتر میشود اما، در مقدار زمان ایمن آن تاثیری ندارد.
نتایج:
۱- ایجاد پدیده سفیدی در ضد آفتاب ها ناشی از پدیده پخش نوردر محدوده نور مرئی(۴۰۰-۷۰۰ نانومتر) است. با توجه به شكل ۴ این پدیده در ضد آفتاب ها با اندازه ذره درشت، بسیار شدیدتر است.به عبارت دیگر كاهش شفافیت باعث افزایش پدیده سفیدی می شود.در شكل ۵ با ریزتر شدن ذرات شاهد عبور بیشتر نور مرئی و در نتیجه كاهش سفیدی و افزایش شفافیت هستیم.
۲- بر طبق شكل ۵ در محدوده نور UV با توجه به كمتر بودن فاصله بین ذرات در حالت نانومتری شاهد عبور كمتر نور هنگام ریزتر شدن ذرات هستیم.
کرمهای ضدآفتاب نانویی چگونه کار ميکنند
خلاصه مقاله:
صنايع آرايشي از اكسيدهاي غيرآلي، نظير اكسيد روي و تيتانيم، استفاده ميكنند، اما استفاده از اين اكسيدها به علت خاصيت سفيدكنندگي روي پوست محدود است. سفيدي به طور مستقيم با پخش نور رابطه دارد. به طور كلي با كاهش اندازة ذرات، شاهد افزايش جذب نور ماوراء بنفش توسط ذرات (به علت عبور كمترِ اشعهها از بين ذرات) و كاهش پديدة سفيدي (به علت كاهش پديدة پخش نور) هستيم. بهتازگي روشهاي گوناگون براي توليد نانوذرات، توسعه يافته و بر صنعت کرمهاي ضدآفتاب اثر گذاشتهاند.
1. سفيدي
وقتي ماده نوردهي شود، پديدههاي زير ديده ميشوند:
1. عبور نور که منجر به گذشتن آن از ماده بدون هيچ تأثير متقابلي است؛
2. نورِ نافذ که منجر به پخش نور ميشود؛
3. انعکاس نور از سطح، مانند آنچه در آينه رخ ميدهد؛
4. انعکاس نفوذي که منجر به پخش نور از سطح ميشود.
در شکل 1 پديدههاي گفتهشده نشان داده شدهاند. اثر سفيدي ناشي از پخش نور به وسيلة ذرات ــ براي مثال در کِرِمها ــ است. بنابراين، براي کاهش سفيدي بايد ميزان نور پخششده را کم كرد.
2. پخش نور و اندازة ذرات
شدت نور پخششده به وسيلة يک تکذره، تابعي از اندازة ذره است. همانطور كه در شكل 2 بهروشني مشاهده ميشود، با افزايش اندازة ذرات، نور مرئي به علت برخورد با ذرات پخش ميشود و با برگشت نور به چشم، ذراتْ سفيد ديده ميشوند. بنابراين، براي کاهش تأثير سفيدي، کاهش اندازة دانه راهي است بسيار مؤثر.
در شكل 3 ميزان پخش نور بر حسب اندازة دانه به نمايش درآمده و مشخص است كه با افزايش اندازة ذرات، ميزان پخششوندگي نور بيشتر ميشود.
3. جذب اشعة ماوراي بنفش و بهترين اندازة ذره
نور ماوراي بنفش (UV) طول موج كمتر از نور مرئي و انرژي بيشتر از نور مرئي دارد. قرار گرفتن در مقابل تابش ماوراي بنفش از مهمترين علل آسيبهاي پوستي و سرطان پوست است. به همين خاطر، جذب اين اشعه و ممانعت از رسيدن آن به پوست بدن موضوع تحقيق بسياري از مراكز علمي دنيا براي ساليان طولاني بوده است. جذب UV در مواد غيرآلي نظير TiO2 و ZnOناشي از دو اثر است:
الف ـ جذب فاصلة باند؛
ب ـ پخش نور UV
الف ـ جذب فاصلة باندي
اکسيد روي و اکسيد تيتانيم نيمههادياند و بهشدت نور UV را جذب و نور مرئي را عبور ميدهند. سازوكارِ جذب UV در اين مواد شامل مصرف انرژي فوتون براي تهييج الکترون از نوار ظرفيت به نوار رسانايي است.
فاصلة باندي يا «گپ انرژي» چيست؟
مي¬دانيم که اتم¬ها از ترازهاي انرژي تشکيل شده¬اند و اين ترازهاي انرژيِ حاوي الکترون، در جسم جامد تشکيل نوارهايي را مي¬دهند که الکترونها در آنها قرار ¬گرفتهاند.
اما فضاهايي بين اين نوارهاي انرژي وجود دارند که هيچ نوار حاوي الکتروني نمي¬تواند در آنها جا بگيرد. اين فضاها را «فاصلة باندي» يا «گپ انرژي» مي¬گويند. در جامدهاي رسانا نوارهاي انرژي مي¬توانند پر، نيمهپر يا خالي از الکترون ــ که در اصطلاح «نوار رسانايي» ناميده مي¬شود ــ باشند. همچنين گپ انرژي آنها در مقايسه با نيمههادي¬ها کوچکتر است. در نيمههادي¬ها نوارهاي انرژي نيمهپر وجود ندارند و گپ انرژي آنها کمي بزرگتر از رساناهاست. از همين رو، الکترونها در رسانا¬ها و نيمهرساناها مي¬توانند با گرفتن مقداري انرژيِ گرمايي ــ براي رساناها کمتر، براي نيمهرساناها بيشتر ــ برانگيختگي گرمايي پيدا كنند و از لايه¬هاي انرژيِ پُر به لايه¬هاي انرژيِ خالي بروند. اين عمل در نارساناها به علت بزرگ بودن گپ انرژي امکان ندارد.
ZnO و TiO2 داراي انرژي باند ev3/3 تا ev4/3 مربوط به طول موجهاي تقريباً 365 نانومتر تا 380 نانومتر هستند. نورهاي زير اين طول موجها انرژي کافي براي تحريك الکترونها دارند. به بيان ساده، الكترونهاي اين ذرات انرژي نور UV را جذب ميكنند و از رسيدن اين امواج به پوست مانع ميشوند. پس ZnO و TiO2 داراي خاصيت شديد در جذب UV هستند و اگر به اندازة کافي کوچک باشند، شفافيت خوبي در برابر نور مرئي خواهند داشت.
ب ـ اندازة دانة بهينه براي جذب UV
با ريزتر شدن ذرات، علاوه بر اينكه در مسير نور UV ذرات بيشتري براي جذب فاصلة باند وجود دارند، نور UV بيشتر پخش خواهد شد. بنابراين، عبور اين نور كاهش مي¬يابد. جذب فاصلة باند به طور کلي تابعي از تعداد اتمهايي است که در مسير نور UV قرار گرفتهاند. بر اساس تحقيقات تجربي، با کاهش اندازة ذرات، به علت کم شدن فاصلة بين آنها براي عبور نور UV، شاهد عبور كمترِ اين اشعه هستيم. اين موضوع در شکل شمارة 4 نشان داده شده است. با توجه به اين شكل، در محدودة نور فرابنفش (زير 400 نانومتر) با كاهش اندازة ذرات، عبور نور كمتر خواهد شد. همين پديده است كه متخصصان را به توليد محصولات ضدآفتاب با خاصيت جذب (SPF) بالاتر رهنمون شده است.
SPF چيست؟
کرمهاي ضدآفتاب بر اساس ميزان توانايي آنها در جذب و دفع اشعة UV درجهبندي ميشوند. اين معيار Sun Protection Factor يا SPF نام دارد. درجات SPF، مانند SPF15 يا SPF20 نشانگر آناند که مصرفکنندة آن قبل از اينکه دچار آفتابسوختگي بشود، تا چه حد ميتواند زير نور آفتاب بماند. براي مثال، شما ميتوانيد بدون استفاده از کرم ضد آفتاب ده دقيقه زير نور خورشيد باقي بمانيد و احساس سوختگي نکنيد. هنگامي که از کرم ضد آفتاب استفاده ميکنيد، ميتوانيد زمان 10 دقيقه را ضرب در ميزان SPF کرم کنيد و به مقدار زمان به دست آمده زير آفتاب بمانيد. اگر SPF کرم شما 15 باشد، شما 150 دقيقه يا 2 ساعت و نيم ميتوانيد در آفتاب بمانيد. اگر پس از مدتي مجددا از کرم استفاده کنيد، ميزان محافظت آن بيشتر ميشود اما، در مقدار زمان ايمن آن تاثيري ندارد.
نتايج:
1- ايجاد پديده سفيدي در ضد آفتاب ها ناشي از پديده پخش نوردر محدوده نور مرئي(400-700 نانومتر) است. با توجه به شكل 4 اين پديده در ضد آفتاب ها با اندازه ذره درشت، بسيار شديدتر است.به عبارت ديگر كاهش شفافيت باعث افزايش پديده سفيدي مي شود.در شكل 5 با ريزتر شدن ذرات شاهد عبور بيشتر نور مرئي و در نتيجه كاهش سفيدي و افزايش شفافيت هستيم.
2- بر طبق شكل 5 در محدوده نور UV با توجه به كمتر بودن فاصله بين ذرات در حالت نانومتري شاهد عبور كمتر نور هنگام ريزتر شدن ذرات هستيم.
nanoclub.ir
معرفی گروه های عاملی روش های شناسایی
مقدمه:
پيوند كربن-كربن داراي ويژگي غيرعادي مخصوص به خود است.اگر چه اتم هاي ديگر نيزمي توانند اين ويژگي را داشته باشند ولي كاربرد پيوند كربن-كربن بسيار وسيع است .به دليل اين خاصيت منحصربه فرد بيشتر از سه ميليون تركيبات مختلف حاوي كربن به نام تركيبات آلي در كتب شيمي گزارش شده اند.در نتيجه جمع آوري دانشي كامل از خواص همه اين تركيبات عملا بسيار سخت است.پيچيدگي تركيبات آلي را مي توان تا حدودي از طريق جمع آوري اطلاعات به دست آمده از گروه هاي طبيعي اين تركيبات با خواص شيميايي مشابه تقليل داد.
اين گروه بندي ها توسط اتم يا گروهي از اتم ها كه قسمتي از مولكول آلي را تشكيل مي دهند شناسايي مي شوند.عموما اين اتم يا گره اتم را گروه عامل مي نامند.پس مي توان گروه عاملي را به صورت كامل تري تعريف كرد:
به هر يك از ويژگي هاي ساختاري كه مشخص كننده يك طبقه خاص از تركيبات آلي باشند گروه عاملي مي گويند.
هر گروه عامل نسبت به بقيه مولكول هاي آلي داراي خواص شيميايي جداگانه يافت مي شوند
هيدروكربن ها:
ساده ترين گروه در شيمي آلي هيدروكربن ها بوده كه تركيباتي حاوي ات هاي كربن و هيدروژن مي باشند.با توجه به خواص شيميايي آنها به سه زيرگروه تقسيم مي شوند:هيدروكربن هاي اشباع شده-هيدروكربن هاي اشباع نشده وهيدروكربن هاي آروماتيكي.
هيدروكربن هاي اشباع شده را هم چنين را هم چنين آلكان مي نامنددر آلكان ها همه پيوند هاي كربن-كربن از نوع پيوند ساده بوده كه انرژي پيوندي آن در حدود350كيلوژول مي باشد.انرژي پيوند هاي هيدروژن-كربن در حدود 420كيلوژول است.پس آلكانها از نظر شيميايي تقريبا بي اثر مي باشد.مهم ترين واكنش آنها سوختن است كه آب و دي اكسيدكربن(محصولات سوختن آلكان) توليد مي شوند.
هيدروكربن هاي اشباع نشده داراي 2زير گروه آلكنهاوآلكينها مي باشند.آلكنها داراي يك يا چند پيوند كربن-كربن بوده وآلكينها نيز حاوي يك يا چند پيوند سه گانه كربن-كربن مي باشند .پيوند هاي دو گانه وسه گانه كه پيوند هاي غير اشباع ناميده مي شوند از نظر شيميايي كاملا واكنش پذير مي باشند.
الكل ها :
يك الكل هيدروكربني است كه در آن يك گروه عامل-OHجانشين يك اتم هيدروژن شده باشد.همچنين يك الكل مانند آبي است كه در آن يك گروه آلكيل جانشين يك اتم هيدروژن در يك مولكول آب شده باشند.پس الكل ها خواصي بين خواص اب وهيدروكربن ها دارند.
ساختار الکلها :
فرمول عمومی الکلها ، ROH است که در آن ، R يک گروه آلکيل يا آلکيل استخلاف شده است. اين گروه میتواند نوع اول ، دوم يا سوم باشد، ممکن است زنجيرباز يا حلقهای باشد، ممکن است دارای يک اتم هالوژن ، هيدروکسيلهای بيشتر يا يکی از بسياری گروههای ديگری باشد که فعلا برای ما ناآشنا است.
همه الکلها ، دارای گروه هيدروکسيل (-OH) هستند که بعنوان گروه عاملی ، خواص مشخصه اين خانواده از ترکيبها را تعيين میکند. تغيير و تنوع در ساختار R میتواند بر سرعت واکنشهای الکلها و حتی در موارد معدودی بر نوع واکنشها نيز تاثير گذارد.
خواص فيزيکی الکلها :
دمای جوش در ميان هيدروکربنها ، به نظر میرسد که عوامل تعيين کننده دمای جوش ، عمدتا وزن مولکولی و شکل مولکول باشند. در الکلها ، با افزايش تعداد کربن ، دمای جوش بالا میرود و با شاخهدار کردن زنجير ، دمای جوش پايين میآيد، اما نکته غير عادی در مورد الکلها اين است که آنها در دمای بالا به جوش میآيند. اين دمای جوش بسيار بالاتر از دمای جوش هيدروکربنها با وزن مولکولی يکسان است و حتی از دمای جوش بسياری ترکيبها با قطعيت قابل ملاحظه بالاتر است.
دمای جوش بالای آنها ، به علت نياز به انرژی بيشتر برای شکستن پيوندهای هيدروژنی است که مولکولها را در کنار هم نگه داشتهاند. حل شدن الکلها رفتار الکلها بعنوان حل شده نيز توانايی آنها برای تشکيل پيوندهای هيدروژنی را منعکس میکند. برخلاف هيدروکربنها ، الکلهای سبک با آب امتزاجپذيرند. از آنجا که نيروهای بين مولکولی الکلها همانند نيروهای بين مولکولی آب است، دو نوع مولکول با يکديگر قابل اختلاط هستند. انرژی لازم برای شکستن يک پيوند هيدروژنی بين دو مولکول آب يا دو مولکول الکل ، با تشکيل يک پيوند هيدروژنی بين يک مولکول آب و يک مولکول الکل تامين میشود.
آلدهيد:يك آلدهيد داراي گروه عامل –CHOدر مولكول آلي مي باشد.كلمه آلدهيد(Aldehyde)از دو اژه الكل وهيدروژن گيري گرفته شده است.هرگاه از الكل نوع اول هيدروژن گيري شود در آن صورت توليد مي گردد كه آلدهيد ناميده مي شود.
كتون: يک کتون يک گروه عاملی است که با يک گروه کربونيل که با دو اتم کربن ديگر پيوند دارد ؛ شناخته میشود. يک کتون را میتوان با فرمول زير بيان کرد.
R۱(CO)R۲
اتم کربن که با دو اتم کربن پيوند دارد آن را از گروههای عاملی کربوکسيليک اسيدها ، آلدهيدها، استرها، آميدها و ديگر ترکيبهای اکسيژندار جدا میکند. پيوند دوگانهٔ گروه کربونيل نيز کتونها را از الکل ها و اترها باز میشناساند.
به کربنی که به کربن گروه کربونيل چسبيده کربن آلفا و به هيدروژنی که به اين کربن چسبيده هيدروژن آلفا گويند. در حضور يک کاتاليزور اسيدی کتون به keto-enol tautomerism مربوط میشود. واکنش با يک پايه قوی انول متناظر را نتيجه ميدهد.
خواص شيميايي آلدهيد ها و كتون ها:
آلدهيد ها وكتون ها در چند نوع فعل و انفعال شركت مي كنند كه اهم آن به قرار زير است:
1)حمله الكترونخواهي اسيدهاي لوئيس روي اكسيژن گروه كربونيل موجب افزايش دانسيته بار مثبت كربن گروه كربونيل مي شود كه در نهايت موجب افزايش خصلت اسيدي پروتون ههاي كربن هاي آلفاي كربونيل مي گردد.صحت اين نكته به وسيله روش هاي افزاري تائيد شده است.
2)حمله هسته خواهي بركربن گروه كربونيل دومين دسته وسيع از واكنشهاي آلدهيد ها وكتون ها را تشكيل مي دهد.به عنوان مثال از افزايش آب بر آلدهيد ها وكتون ها ديول دوقلو(gemdiol)ايجاد مي شود و درصد تشكيل آن به ساختمان ماده و به پايداري محصول حاصل بستگي دارد.به عنوان مثال مقدار ديول دوقلوي حاصل از استون در دماي 20درجه سانتي گراد خيلي كم و قابل اغماض است در صورتيكه آلدهيد فرميك و تري كلرو استالدهيد به خوبي و به طور كامل به ديول دو قلو تبديل مي شوند.
تهيه آلدهيد ها و كتون ها از راه اكسايش الكل ها:
مصرف زياد آلدهيد و كتون در سنتزهاي آلي باعث مي شود كه نحوه تهيه آنها اهميت بسياري داشته باشد.اين اجسام را مي توان از آلكين ها –كربوكسيليك اسيدها و مشتق كربوكسيليك اسيدها سنتز كرد.آلكينها دراثرآبداركردن باكاتاليزور اسيد به وسيله هيدروبورداركردن-اكسايش به آلدهيد يا كتون تبديل مي شوند.
كربوكسيليك اسيدها يا مشتقات آنها با تركيبات آلي فلزدار يا معرف هاي كاهند ديگر تركيب مي شوند و آلدهيد يا كتون مي دهند.با وجود اين يكي از معمولترين روش هاي سنتزي اكسايش الكل هاي نوع اول و دوم با كروميك اسيد H2CrO4 يا پتاسيم پرمنگنات است.
در اين گزارش كار نحوه مصرف كروميك اسيد در تبديل الكلها به آلدهيد ها و كتون ها مورد بحث قرار مي گيرد.
كروميك اسيد براي مدت طولاني پايدار نيست و بنابراين آن را در هنگام لزوم از تركيب سديم يا پتاسيم دي كرومات با اسيد اضافي مانند سولفوريك يا اسد استيك يا با انحلال كروميك انيدريد در آب تهيه مي كنند.
در روش اخير سولفوريك اسيد يا استيك اسيد نيز اضافه مي شود زيرا كه سرعت اكسايش الكل ها با كروميك اسيد در محلول اسيدي بسيار زيادتر است.در تهيه يا اكسايش اجسامي كه در محيط اسيدي قوي تجزيه مي شوند كروميك انيدريدرا در پيريدين حل مي كنند يا پتاسيم پرمنگنات بازي را به عنوان معرف اكسيد كننده به كار مي برند.
الكلها در مجاورت كروميك اسيد به استر تبديل مي شوند.اين عمل كاملا به واكنش الكل ها وكربوكسيليك اسيدها شباهت دارد.
وجود چند واكنش جانبي مهم اكسايش الكل نوع اول به آلدهيد را پيچيده مي كند.
به احتمال زياد مهمترين واكنش جانبي اكسايش سريع آلدهيد با كروميك اسيد و تبديل آن به كربوكسيليك اسيد است.براي تقليل اين اكسايش اضافي نامطلوب كروميك اسيد را به الكل نوع اول اضافه مي كنند تا عامل اكسنده اضافي در مخلوط واكنش موجود نباشد وهم چنين آلدهيدرا در هنگام تشكيل از مخلوط واكنش تقطير مي كنند.بنابراين چنان چه در اكسايش با كرو ميك اسيد لازم باشد كه آلدهيد با بازده زيادي تهيه مي شودبايد آلدهيد موردنظر خيلي فرارباشد يعني در كمتر از حدود 150بجوشد.
كتون ها در محيط اسيدي ملايم در برابر اين اكسنده بسيار پايدارتر از آلدهيدها هستند از اين رو در تبديل الكل هاي نوع دوم به كتون ها ميزان واكنش هاي جانبي كه در اكسايش الكل هاي نوع اول گفته شد چندان قابل ملاحظه نيستند.ولي در شرايط بازي يا اسيدي قوي كتون هايي كه به فرم انولي در مي آيند اكسيد مي شوند و به دو قسمت كربونيل دار تجزيه مي شوند.براي مثال مي توان سيكلو هگزانول را با كروميك اسيد اكسيدكرد وبازده زيادي از سيكلوهگزانون به دست آورد ولي اين جسم در اثر تركيب با پتاسيم پرمنگنات در محيط بازي ضعيف به آديپيك اسيد تبديل مي شود.بدون شك در اين واكنش ابتدا كتون به يون انولات تبديل مي شود تبديل مي شودو بعداين يون با پرمنگنات اكسيد مي شود.
سيكلوهگزانون يك كتون متقارن است و فقط يك يون انولات مي دهد.چنان چه كتون متقارن نباشد دو يون انولات متفاوت تولي مي شود وهر يك از آنها با پرمنگنات به محصول جداگانه اي اكسيد مي شود.در اكسايش كتون هاي نامتقارن مخلوط پيچيده اي از چند محصول تشكيل مي شود وچنين مشكلي مصرف سنتزي اين واكنش ها را كم مي كند.
استرها:
يك استر از واكنش يك اسيد آلي با يك الكل توليد مي شود.استرها داراي گروه عامل-COO-بوده كه از يك پيوند دوگانه كربن-اكسيژن(-C=O)ويك پيوند ساده كربن-اكسيژن(C-O-)تشكيل شده اند.اغلب استرها فرار هستندوداراي بوي مطبوعي مي باشند.رايحه طبيعي بسياري از گلها وطعم بسياري ازميوه ها به حضور يك يا چند استر بستگي دارد.بعضي از استرهاي طبيعي مهم در چربي وروغن ها(روغم برزك-روغن دانه پنبه-روغن زيتون)در سنتزمارگارين(كره نباتي)كره بادام زميني وعصاره ي سبزيجات به كار مي روند.
شناسايی گروههای عاملی
در شناسايی يک جسم مجهول پس از تجزيه و تعيين خواص فيزيکی آن با توجه به نتايج حاصله بايد آزمايشات شناسايی گروههای عاملی را روی نمونه انجام داد. مثلا اگر در تجزيه عنصری نمونه وجود O اثبات شده، حال اين مسئله پيش می آيد که اکسيژن ممکن است به صورت گروه –C=O يا –OH يا C–O–C و يا غيره باشد. بنابر اين يک سری آزمايشات برای تشخيص گروه عاملی نمونه لازم است. نکته ای که معمولا بايد به آن توجه کرد اين است که چنانچه در انجام آزماشات برای حل کردن نمونه از يک حلال استفاده نموديد برای اطمينان خاطر برای اينکه حتما بدانيد که حلال با معرف وارد واکنش نشده يک شاهد تهيه کنيد. بدين ترتيب که در يک لوله مقداری حلال ريخته و به همان اندازه معرفی اضافه کنيد که به محلول شامل حلال و نمونه مورد نظر اضافه نموده ايد و دو لوله را با يکديگر مقايسه کنيد.
بخش عملي:
شناسايی آلکنها:
الف) آزمايش برم در استيک اسيد: در يک لوله آزمايش 1 ميلی ليتر سيکلوهگزن ريخته و به آن محلول Br2/CH3COOH قطره قطره اضافه کنيد، با از بين رفتن رنگ برم ميتوان نتيجه گرفت که برم در واکنش شيميايی شرکت کرده و مصرف ميشود
ب) پرمنگنات پتاسيم: يک قطره سيکلوهگزن را در 2 ميلی ليتر آب حل کرده و به آن 3 قطره محلول KMnO4 اضافه نمائيد و محلول را خوب به هم زده و نتيجه مشاهده شده را يادداشت کنيد.
شناسايی الکلها:
الف) حلاليت: 6 لوله آزمايش برداشته و در هر کدام 1 ميلی ليتر آب ريخته و هر يک از الکلهای زير ر ا به يکی از لوله ها اضافه کنيد و هم بزنيد. 1) متانول 2) اتانول 3) پروپانول 4) نرمال بوتانول 5) بوتان 2-اُل 6) 2-متيل پروپان 2 - اُل
سپس اين آزمايش را برای حلال هگزان تکرار کنيد و نتايج هر کدام را بنويسيد.
ب) انيدريدکروميک: 3-1 ميلی ليتر از هر يک از الکلهای فوق را در لوله آزمايش ريخته به آن يک الی دو قطره معرف انيدريد کروميک اضافه کنيد. تشکيل رسوب سبز مايل به آبی دليل بر مثبت بودن آزمايش است. اين آزمايش برای الکلهای نوع اول و دوم جواب مثبت ميدهد.
ج) يدوفرم: در يک لوله آزمايش 5/0 ميلی ليتر اتانول ريخته بدان 1mL سود 10% افزوده و آنقدر به محلول اخير محلول يد در يديد پتاسيم (I2/KI) اضافه کنيد تا رنگ قهوه ای محلول اخير باقی بماند. بعد رنگ يد اضافی را با يک قطره سود 10% همراه با تکان دادن از بين ببريد. حال لوله را از آب پر کرده و آنرا برای 15 دقيقه به حال خود بگذاريد. تشکيل رسوب زرد ليموئی (رسوب يدوفرم) دليل بر مثبت بودن آزمايش است.
اين آزمايش را برای متانول – نرمال بوتانول – استن – بنزآلدئيد – استوفنون – ترشری بوتيل الکل انجام دهيد.
د) استری شدن الکلها توسط اسيدهای آلی: يک قطره از استيک اسيد غليظ را وارد 1mL اتانول نموده و قطره ای اسيد سولفوريک غليظ بدان اضافه کنيد حال محلول را در حمام آب گرم حرارت داده تا بجوش آيد، پس از مدتی بوی مخصوصی به مشام ميرسد. نوع بوی حس شده را با بوی اسيد مقايسه کنيد.
آزمايش لوکاس: بر روی نيم ميلی ليتر از ترشری بوتيل الکل 3 ميلی ليتر اسيد کلريدريک غليظ بريزيد. محلول ابتدا بيرنگ است ولی کم کم کدر شده و رسوب ميدهد. مشخصات رسوب را نوشته و اين آزمايش را برای اتانول و بوتان 2-اُل هم انجام دهيد
شناسايی آلدئيدها و کتونها
الف) 2، 4 دی نيترو فنيل هيدرازين: 1 ميلی ليتر استن در لوله آزمايش ريخته و بدان چند قطره معرف 2، 4 دی نيتروفنيل هيدرازين اضافه کنيد و مشاهده خود را يادداشت کنيد. اين آزمايش را روی بنزآلدئيد و استوفنون نيز انجام دهيد. اين آزمايش به آلدئيدها و کتونها جواب ميدهد.
ب) سديم بی سولفيت: يک ميلی ليتر از معرف غليظ را در يک لوله آزمايش ريخته به آن 3/0 ميلی ليتر از جسم مورد نظر اضافه کنيد و شديدا تکان دهيد، تشکيل رسوب سفيد دليل بر مثبت بودن آزمايش است. اکثر گروههای کربونيل فعال به اين آزمايش جواب مثبت ميدهند، چون اين واکنش نوکلئوفيلی است هرچقدر گروه کربنيل مثبت تر باشد امکان جواب مثبت بيشتر است، در نتيجه اين آزمايش بيشتر مخصوص آلدئيدها ميباشد. اين آزمايش را برای استون و بنزآلدئيد انجام دهيد.
ج) تالنز: 1 ميلی ليتر بنزآلدئيد در لوله آزمايش ريخته و به آن 1 ميلی ليتر از معرف تازه تهيه شده اضافه کنيد. در صورت لزوم کمی حرارت دهيد (توسط حمام آب گرم ملايم) تشکيل آئينه نقره ای مثبت بودن آزمايش را نشان ميدهد.
د) معرف کروميک اسيد: 1 قطره از جسم مايع يا يک صدم گرم از جسم جامد را در 1 ميلی ليتر استون حل کنيد و چند قطره معرف به آن اضافه نمائيد.
معرف اسيد کروميک
25 گرم انيدريد کروميک CrO3 را در 25 سی سی اسيد سولفوريک غليظ حل کنيد و به هم بزنيد تا خمير يکنواختی به دست آيد، بعد محلول حاصل را بوسيله 75 سی سی آب مقطر با احتياط رقيق نمائيد. رنگ معرف نارنجی روشن است.
نیکل و تاثیرات آن بر انسان
● نیکل:
نیکل یکی از فراوانترین عناصر است. نیکل در طبیعت معمولا در ترکیب با اکسیژن (اکسیدها) یا گوگرد (سولفیدها) وجود دارد. این فلز در همه خاکها وجود دارد و از آتشفشانها نیز نشر می شود. نیکل خالص، فلزی سخت و به رنگ سفید-نقره ای است که با دیگر فلزات برای تشکیل آلیاژها ترکیب می شود. تعدادی از فلزات که با نیکل آلیاژ می شوند عبارتند از آهن، مس، کروم و روی .
این آلیازها در ساخت سکه های فلزی، جواهرات و اجناس فلزی مورد استفاده قرار می گیرند.
ترکبات نیکل همچنین در آبکاری نیکل، سرامیکهای رنگی، بعضی از باطریها و همچنین به عنوان کاتالیزور برای افزایش سرعت واکنشها بکار می روند. نیکل و ترکیباتش بو مزه خاصی ندارند.
نیکل برای حفظ سلامت حیوانات ضروری است. با اینکه هیچ اثری در نتیجه کمبود نیکل در انسان دیده نشده است ولی احتمالا مقدار کمی از آن برای سلامتی انسان ضروری است. در محیط، نیکل بیشتر در خاک و رسوبات وجود دارد زیرا نیکل با ذراتی که حاوی آهن یا منگنز هستند و در خاکها و رسوبات موجود هستند، اتصال برقرار می کند.
آژانس حفاظت از محیط زیست (epa)، حداکثر مقدار مجاز نیکل در آب آشامیدنی کودکان را ۰۴/۰ میلی گرم در لیتر تعیین کرده است. میزان مجاز نیکل در هوای محل کارهای مرتبط، یک میلی گرم در مترمکعب برآورد شده است. در حال حاضر مقدا نیکل موجود در محیطهای کار، بسیار کمتر از گذشته است و به همین دلیل علائم آلودگی با نیکل در کارگران کمتر دیده می شود.
منابع اصلی آلودگی با نیکل استعمال تنباکو، اگزوز خودرها، کودهای شیمیایی، سوپر فسفاتها، فرآورده های غذایی، روغنهای هیدروژنه، فاضلابهای صنعتی، صنایع فولاد زنگ نزن، آزمایش تجهیزات هسته ای، بکینگ پودر و ... می باشند. تنفس هوا یا دود تنباکوی محتوی نیکل و یا خوردن مواد غذایی و آب حاوی نیکل و تماس با سکه ها و فلزات حاوی نیکل، منابع اصلی آلودگی انسان با نیکل هستند.
● تاثیرات نیکل بر انسان:
متداولترین اثر نیکل بر انسان یک واکنش آلرژیک است. انسان می تواند در صورت آلودگی با منابع ذکر شده در بالا دچار حساسیت شود. اشخاصی که به نیکل حساس هستند، در صورت تماس زیاد با آن دچار یک واکنش می شوند و معمولترین واکنش، تحریک آن قسمت از پوست است که با نیکل تماس پیدا کرده است. در برخی موارد ممکن است فرد حساس، در صورت آلودگی با نیکل دچار تنگی نفس می شوند. در کارگرانی که مقادیر بالایی از نیکل را تنفس کرده بودند مشکلات ریوی، شامل برونشیت مزمن و کاهش توان ریه ها مشاهده گردید.
مسمومیت حاد با استنشاق نیکل کربونیل اتفاق می افتد. این اثرات حاد در طی دو مرحله ظاهر می شوند، مرحله اول اثرات فوری و مرحله دوم با اثرات با تاخیر. سردرد، سرگیجه، تنفس بریده بریده، تهوع و استفراغ علائم اولیهء آلودگی شدید است. اثرات تاخیری (۱۰ تا ۳۶ ساعت بعد) ظاهر می شوند و شاملِ درد سینه، سرفه، تنفس بریده بریده، بی رنگی و مایل به آبی شدن پوست و در موارد بسیار حاد, هذیان گویی، تشنج و مرگ می باشد. بهبودی این مسمومیت، طولانی خواهد بود. کارگرانی که بطور تصادفی آب آشامیدنی را که حاوی ۱۰۰٫۰۰۰ برابر حد مجاز نیکل را مصرف کردند، دچار شکم درد، مشکلات کلیوی و خونی شدند.
آلودگی طولانی مدت و مداوم با نیکل کربونیل با افزایش شیوع سرطان ریه و سینوس ها همراه است . محصولات حاصل از تجزیهء نیکل (نیکل اکسید و کربن مونوکسید)، نسبت به خود نیکل کربونیل سمیت کمتری دارند. در موشهایی که برای مدتی ترکیبات نیکل را استنشاق کرده بودند، ترکیباتی از نیکل که به سختی در آب حل می شوند، موجب سرطان شدند و ترکیباتی که در آب حل می شدند، موردی را ایجاد نکردند.
بخش سلامت و سرویسهای انسانی (dhhs)، نیکل و ترکیبات خاصی از آن را بعنوان عوامل سرطانزای احتمالی معرفی کرده اند. در کارگران پالایشگاهها و کارخانجات آبکاری که غلظتهای بالایی از ترکیبات نیکل را استنشاق کرده بودند، سرطان ریه و سینوسهای بینی مشاهده شده بود. Iarc ، نیکل و ترکیباتش را در گروه ۲b (عوامل سرطانزای احتمالی) طبقه بندی کرده اند.
مشتقات سنتز شده كربوفسفاتها
با آن كه بیش از۲۰۰ سال از سنتز نخستین تركیب آلی فسفر دار می گذرد، اما در طول سه دهه اخیرتنوع و كاربرد این تركیبات بیش از هر زمان دیگری رشد و پیشرفت داشته است. تنوع و كاربردهای مهم این تركیبات در ساخت كودهای شیمیایی، مواد شوینده، مواد ساختمانی، مواد مورد كاربرد در صنعت دندانسازی و داروسازی، غذاهای حیوانی،
آفت كش ها، استرهای فسفات صنعتی و سمی و محصولات طبیعی انجام تحقیقات گسترده تر در این زمینه را ضروری ساخت است.
در حال حاضر بررسی و پژوهش در خصوص سنتز و كاربرد این تركیبات مورد توجه بسیاری از شیمیدانهای جهان قرار گرفته است.
شیمی فسفر شامل بررسی تركیب های اكسی فسفر است كه تمامی آنها پیوند فسفر- اكسیژن دارند، بسیاری از این تركیب ها، از نوع فسفات هستند. تقریباً در همه تركیب های فسفر طبیعی، پیوند فسفر- اكسیژن وجود دارد. در این میان استرهای فسفات آلی كه شامل پیوند فسفر- اكسیژن- كربن هستند، اهمیت بیوشیمیایی دارند. تركیبات آلی فسفر(تركیبات كربوفسفر) كه پیوند فسفر- كربن دارند، دومین گروه مهم تركیبات فسفر را تشكیل می دهند. تركیباتی كه دارای پیوند فسفر- نیتروژن هستند( تركیب های آزافسفر)، سومین گروه این طبقه است. تركیبات متالوفسفر كه پیوند بین فلز و فسفر را شامل می شوند، گروه بسیار مهم و بزرگی از این تركیبات را تشكیل می دهند كه با شناخت و سنتز سایر تركیبات هم گروه خود، از نظر تعداد به سرعت در حال رشد هستند. تركیبات هر یك از این گروه ها بسیار زیاد و متنوع است.
آپاتیت معدنی، بزرگترین و گسترده ترین تركیب فسفر در جهان است و اسید فسفریك، مهمترین تركیب صنعتی فسفر است. هم اكنون استرهای آلی فسفات كه به عنوان داكسی ریبونوكلئیك اسید(dna) شناخته شده اند، قلب بیوشیمی و ژنتیك در دنیا محسوب می شوند و بیشترین مطالعات بر روی آنها انجام شده است.
امروزه حفاظت از گیاهان به عنوان یكی ا ز اصلی ترین منابع غذایی از توجه روز افزونی برخوردار است. تركیب های آلی فسفر به علت داشتن آثار كوتاه مدت (از نظر پایداری، تخریب و ...)، تنوع و چگونگی عملكرد خاصشان توجه زیادی را به خود جلب كرده اند.
از این رو مطالعات ساختاری و مكانیسمی تركیبات آلی فسفر گسترش روز افزونی داشته و شیمی فسفر همچون شیمی كربن به سرعت توسعه یافته است. واكنش های چنین تركیباتی معمولاً در زیر مجموعه شیمی آلی طبقه بندی می شوند. چرا كه از روش های آزمایشگاهی مشابهی استفاده می شود و واكنش های مشتركی برای این دو عنصر( كربن و فسفر) وجود دارد.
از این تركیبات می توان به صورت مؤثر در ساخت داروها از جمله داروهای ضد سرطان استفاده كرد.
همچنین در صنعت از این تركیبات به عنوان نرم كننده، ضد اكسیداسیون و پایدار كننده و افزودنی های مواد نفتی هم استفاده می شود.
تركیبات جدیدی از خانواده ارگانوفسفر كه دارای Co- Nh- Po هستند می توانند به عنوان لیگاند مناسبی برای فلزات سنگین (به خصوص گروه لانتانیدها) باشند كه علاوه بر خصوصیات جالب ساختاری كه مورد توجه شیمیدان هاست، می توانند به صورت سوپر مولكول هایی باشند كه همانند زئولیتها عمل كنند.
علاوه بر این، این تركیبات می توانند به عنوان جاذب مؤثری برای فلزات سنگین خاص از پساب كارخانه ها عمل كنند. ارگانوفسفر طبقه بندی شده می توان به عنوان باز دارنده های مؤثر آنزیم استیل كولین استراز عمل كنند. بنابراین می توانند به عنوان سموم و آفت كش هایی، مورد استفاده قرار گیرند كه در محیط زیست به دلیل تخریب، تركیبات بی خطری تولید می كند. بنابراین انجام این تحقیق و سنتز این تركیبات می تواند گام مؤثری در پیشبرد اهداف علمی و كاربردهای صنعتی، كشاورزی و داروسازی در كشورباشد.
متداولترین موارد استفاده از تركیبات فسفر عبارتند از:
۱) مورد استفاده در ساخت كودهای شیمیایی،
۲) مورد استفاده در ساخت مواد شوینده، انجام عملیات سطحی روی سطح فلز،
۳) مورد استفاده در ساخت عینك ها،
۴) مورد استفاده در ساخت سیمان،
۵) مواد نسوز و ساختمانی،
۶) مورد استفاده در ساخت مواد دندان سازی و دارویی،
۷) مورد استفاده در تكنولوژی غذایی،
۸) مورد استفاده در ساخت غذاهای حیوانی و ساخت استرهای فسفات صنعتی و آفت كش ها،
۹) مورد استفاده در ساخت استرهای سمی و تركیبات دارویی،
۱۰) مورد استفاده در ساخت بسپارهای سنتزی و كند كننده آتش و محصولات طبیعی.
استرهای فسفات كه از جمله تركیب های آلی فسفر هستند، از اجزای مهم موجودات زنده بدست می آیند كه در بسیاری از فرآیندهای حیاتی مانند سنتز پروتئین ها، كد گذاری ژنتیكی، فتوسنتز، تثبیت نیتروژن و دیگر اعمال متابولیكی نقش اساسی ایفا می كنند.
اسانس ها چه ترکیباتی هستند؟
هنگام استفاده از بعضی از محصولات، بوی مطبوعی متناسب با عملکرد آن محصول به مشام می رسد. به عنوان مثال وقتی که از یک صابون، خمیر دندان و یا محصولات مشابه آنها استفاده می کنیم، اغلب بوی یک میوه و یک گیاه خاص را احساس می کنیم. همچنین هنگام مصرف فرآورده های خوراکی ممکن است بو و یا طعم خاصی را درک کنیم و یا موقع خرید در یک فروشگاه به انواع محصولات مختلف با برچسب تبلیغاتی که خریدار را از کیفیت کالا آگاه می کنند برخورد می کنیم. به طور معمول در قفسه یک فروشگاه شامپو و یا صابونی را مشاهده می کنیم که در رنگهای مختلف موجود می باشد و پس از دقت در مشخصات آنها در می یابیم که یکی از تفاوتهای این محصولات بوی آنها می باشد و یا می توان آدامسهایی با طمعهای مختلف را تهیه کنیم.
● اسانس ها چه ترکیباتی هستند؟
اسانس ها ترکیبات معطری هستند که در اندامهای مختلف گیاهان یافت می شوند. در واقع اسانس ها مخلوطی از مواد مختلف با ترکیبات شیمیایی بسیار متفاوت از یکدیگر بوده و دارای بوی بسیار قوی می باشند. در دمای محیط اسانس ها در مجاورت هوا تبخیر می شوند و به همین دلیل به آنها روغنهای فرار، روغنهای معطر، روغنهای استری و یا اسانس های روغنی می گویند.
● مصرف اسانس ها به چه زمانی باز می گردد؟
استعمال اسانس ها به دوران باستان باز می گردد، بطوریکه مصریان استان ۴۵۰۰ سال پیش از میلاد مسیح از روغنهای معطری که از گیاهان بدست می آوردند برای انجام مناسک مذهبی، آئین ها و نیز مداوای بیماران استفاده می کردند. نوشته هایی بدست آمده است که نشان می دهد مصریان ۴۰ قرن قبل از میلاد می دانستند که چگونه اسانس ها را از گیاهان بدست آورند. در واقع مصریان از اسانس ها برای مومیایی کردن فراعنه استفاده می کردند. مومیاگران بعد از خارج نمودن احشاء، شکم جسد را از اسانس های سیر، دارچین و اسانسهای معطر دیگر پر می کردند.
● اسانس ها دارای چه خصوصیاتی هستند؟
به طور کلی اسانس ها ترکیبات بی رنگی هستند، بخصوص اگر تازه تهیه شده باشند. با گذشت
زمان به علت اکسید شدن رنگ آنها تیره می گردد. آنها در الکل کاملا حل می شوند، در صورتی که با آب غیر قابل اختلاط هستند. اما به اندازه کافی در آب حل شده و بوی خود را به آن انتقال می دهند (مانند عرقیات گیاهی).
مواد اصلی موجود در اسانس ها در اثر حرارت و گرما تغییر می یابند. بوی اسانس ها نیز بی نهایت متفاوت می باشد که این امر به دلیل ترکیبات مشخص هرگیاه است. بوی اسانس ها به طور محسوسی در معرض هوا تغییر می کند. همچنین طعم اسانس ها نیز با یکدیگر متفاوت است و می توان گفت اسانس ها دارای طعمهای شیرین، تلخ، ملایم، گس و سوزاننده می باشند.
تفاوت اسانس ها یا روغنهای معطر با روغنهای معمولی در این است که اسانس ها یا روغنهای
معطر فاقد ترکیبات اسیدهای چرب هستند و بر خلاف روغنهای معمولی تند نمی شوند و همچنین
اسانس ها بر روی کاغذ یا پارچه، لکه چربی بر جای نمی گذارند.
اسانس ها بسته به نوع گیاه ممکن است در اندامهای مختلف گیاه وجود داشته باشد. نکته حائز اهمیت این است که برای بدست آوردن حداکثر مقدار اسانس در یک گیاه، باید حتما گیاه را قبل از گل دادن چید. در این زمان است که گیاه حداکثر اسانس را داراست و بعد از گل دادن گیاهان حدود ۷۰% اسانس خود را از دست می دهند. در ضمن باید از گیاهانی استفاده کرد که از مواد شیمیایی در پرورش آنها استفاده نشده باشد و گیاه در طبیعی ترین حالت ممکن باشد تا در اسانس آن مواد شیمیایی و رادیواکتیو موجود نباشد. در واقع اسانس هر گیاه شیره ذاتی و رکن اصلی و ارزشمند هر گیاه بوده و به منزله روح گیاه می باشد.
اسانس ها در اکثر مواد مخلوطی از ترکیبات مختلف شیمیایی هستند که با یکدیگر تفاوت بسیار داشته ولی در بعضی از خواص فیزیکی با هم اشتراک دارند. به عنوان مثال اسانس ها دارای بوی مشخص و نافذ می باشند. اکثر آنها با استفاده از دوبار تقطیر، قابلیت بی رنگ شدن را دارند. البته در این مورد اسانس بابونه یک استثناء بوده و رنگ خود اسانس آبی می باشد. همچنین اسانس ها در معرض هوا رنگی می شوند. به عنوان مثال، اسانس نعناع به رنگ زرد و اسانس دارچین به رنگ قهوه ای در می آیند.
مقدار اسانس موجود در گیاهان بسیار اندک می باشد، بطوریکه مقادیر لازم از گیاهان مختلف برای تهیه ی کیلوگرم از اسانس آنها به شرح زیر می باشد:
▪ میخک: ۲۰ کیلوگرم
▪ اسطوخودوس (لاواندا): ۱۵۰ کیلوگرم
▪ نعناع: ۳۰۰ کیلوگرم
▪ آویشن قرمز: ۵۰۰ کیلوگرم
▪ مریم گلی: ۸۰۰ کیلوگرم
▪ بابونه: ۱۰۰۰ کیلوگرم
▪ گل سرخ: ۳۰۰۰ کیلوگرم
● اهمیت و کاربرد اسانس ها:
اسانس ها به دلیل معطر بودن و داشتن طعمهای مشخص در صنایع غذایی، عطرسازی و لوازم آرایشی، داروسازی و بطور کلی در صنایعی که محصولات معطر و یا دارای طعم خاص تولید می کنند، مورد مصرف دارند. اسانس ها کاربردهای فراوانی در صنایع داروسازی دارند. همانطور که گفته شد، اسانس ها دارای ترکیبات شیمیایی متنوع و پیچیده ای هستند و به همین دلیل نمی توان خصوصیات داروئی مشترکی را برای آنها ذکر کرد. ولی بطور کلی اسانس ها دارای خاصیت ضد نفخ (Carminative) می باشند. ار دیگر خصوصیات داروئی که برای اسانس ها ذکر شده است، که به برخی موارد در زیر اشاره شده است:
۱) ضد عفونی کننده
۲) ضد تشنج
۳) ضد تورم و التهاب
۴) خلط آور
۵) ضد قارچ، باکتری و کرم
۶) محرک
۷) مسکن درد دندان
۸) ضد خارش موضعی
۹) محرک دستگاه گوارش
۱۰) ضد رماتیسم
برای اسانس ها در صنایع مختلف نیز کاربردهای متنوعی ذکر شده است، از این صنایع می توان به بعضی اشاره کرد:
۱)تهیه حشره کش ها
۲) تهیه آدامسهای معطر
۳) صنایع صابون سازی
۴) تهیه خمیر دندان
۵) تهیه مواد پلاستیکی
۶) صنایع عطرسازی
۷) فرآورده های خوراکی
در واقع مهمترین کاربرد اسانس ها علاوه بر موارد ذکر شده، اثرات درمان کننده آنهاست.
● اسانس ها در بدن انسان چگونه اثر می کنند؟
واضح ترین اثر اسانس ها تحریک حس بویایی می باشد. بوها تاثیری بر احساسات ما داشته و
مستقیما بر روی مغز اثر می گذارند. دستگاه بویایی به سیستم لیمبیک که مرکز کنترل هیجان، حافظه و احساسات جنسی است متصل بوده و در کنترل ضربان قلب، فشار خون، استرس، تنفس و تعادل هورمونها دخالت دارد. همچنین اسانس ها بعد از استعمال موضعی و یا مصرف بصورت استنشاقی جذب خون شده و اثر خود را از راه خون اعمال می کنند.
● اسانس ها برای گلها و گیاهان حامل خود چه فایده ای دارند؟
اسانس ها برای گیاهان بوجود آورنده خود نیز دارای فوایدی می باشند. به عنوان مثال، اسانس موجود در گیاه دارای خاصیت دورکنندگی حشرات موذی بوده و به این وسیله از خراب شدن گلها و برگها جلوگیری بعمل می آورند. همچنین کاربرد مهمتر اسانس ها در جذب حشراتی است که جهت انجام عمل گرده افشانی و لقاح به گیاهان کمک می کنند.
مس و تاثیرات آن بر روی انسان
● مس:
مس اولین عنصر شناخته شده است و فلزی نسبتا قرمز رنگ است و قابلیت هدایت الکتریکی و حرارتی بالایی دارد. مس از پرکاربردترین فلزات در صنعت است. مس در صنایعی از قبیلِ الکترونیک (در سیم ها، لامپهای پرتو کاتدی، در IC ، لامپهای خلاء، کلیدها و تقویت کننده های الکترونیکی)، صنایع نظامی (تهیه اسلحه)، صنایع فلزی (تهیه آلیاژها و تهیه سکه ها)، وسایل آشپزخانه، در تصفیه آب، به عنوان واکنشگر در شیمی، در تهیه سموم کشاورزی و .... کاربرد دارد.
مس یکی از عناصر رایج در طبیعت است که بر اثر پدیده های طبیعی در محیط زیست به مقدار فراوان یافت می شود. بسیاری از ترکیبات مس در رسوبات یا ذرات خاک ته نشین شده یا به این ذرات می چسبند. ترکیبات قابل حل مس ممکن است برای سلامت انسان مضر باشند. معمولاً پس از فعالیتهای کشاورزی ترکیبات محلول در آبِ مس، در محیط آزاد می شوند.
به علت انتشار آبهای آلوده به مس درکناره رودخانه ها، گل و لای آلوده به مس تجمع می یابد. مس، در اثر احتراق سوختهای فسیلی وارد هوا می شود. این مس، قبل از این که به واسطه بارش باران ته نشست کند ، مدتی طولانی در هوا باقی می ماند. بنابراین میزان آن در خاک کاهش می یابد. در نتیجه بعد از ته نشست مس موجود در هوا، خاک حاوی مقدار زیادی مس خواهد بود.
مس هم از طریق منابع طبیعی و هم در اثر فعالیتهای بشری، در محیط پراکنده می شود. از جمله منابع طبیعی آن، گرد و غبار حاصل از باد، گیاهان فاسد شده، آتش سوزی جنگلها و آب دریا می باشد. تنها تعداد اندکی از فعالیتهای بشری که باعث انتشار مس می شوند، مشخص شده اند. عوامل دیگر انتشار مس، فعالیتهای معدنی، تولید فلز، تولید چوب و تولید کودهای فسفاته است.
مس عموما در نزدیکی معدنها، مکانهای صنعتی و محل دفع زباله ها یافت می شود. مس در محیط زیست تجزیه نمی شود و به همین علت وقتی در خاک باشد، در گیاهان و جانوران تجمع می یابد. در خاکهای غنی از مس تعداد محدودی از گیاهان شانس بقا دارند. به همین علت است که در نزدیکی کارخانجات مس، پوشش گیاهی زیادی وجود ندارد. به خاطر اثرات مس بر گیاهان، بسته به اسیدیته خاک و میزان مواد آلی، این عنصر تهدیدی جدی برای مزارع محسوب می شود. هنگامی که مزارع با مس آلوده شوند، جانوران غلظت بالاتری از مس را جذب می کنند که به سلامت آنها آسیب می رساند.
مقدار مس موجود در هوا بسیار کم است، بنابراین تنفس مس خیلی ناچیز است. اما افرادی که در نزدیکی مناطقی که به ذوب و فرآوری مس می پردازند، زندگی می کنند، ممکن است مقدار بیشتری مس در مقایسه با افراد عادی دریافت و استنشاق نمایند. در لوله کشی برخی از منازل از لوله های مسی استفاده می شود. افرادی که در چنین خانه هایی زندگی می کنند، نیز مقدار مس بیشتری در مقایسه با افراد عادی مصرف می کنند. زیرا ممکن لوله ها با گذشت زمان پوسیده شوند و مقداری از مس وارد آب آشامیدنی شود.
● تاثیرات مس بر انسان:
معمولا ما انسانها در معرض آلودگی با مس قرار داریم. مس در انواع مختلف غذاها، آب آشامیدنی و هوا وجود دارد. به همین دلیل روزانه ما مقدار قابل توجهی مس از طریق خوردن، آشامیدن وتنفس دریافت می کنیم. جذب مس برای بدن انسان حیاتی است. زیرا مس جزء عناصر کمیابی است که بدن انسان به آن نیاز دارد. مس به عنوان مركز فعال کوپرُ آنزیم هایی نظیر سیتوکروم اکسیداز c كه جزیی از زنجیره تنفسی میتوکندری ها است عمل می کند. کمبود جزئی مس در تعدادی از جوامع انسانی دیده شده است. در یک بررسی در تعدادی از بچه هایی که دچار کمبود مس بودند علائمی نظیر هیپوترمی، اختلالات ذهنی، مشکلاتی در مو، ناخن، پوست و بعضی بافتها مشاهده گردید. در مقابل مسمومیت با مس نیز موجب اختلالات ژنتیکی می شود. میزان مجاز مس موجود در رژیم غذایی در آمریکا و کانادا برای بزرگسالان ۹ میلی گرم در روز و حداکثر مقدار آن ۱۰ میلی گرم در روز تعیین شده است.
اگرچه بدن انسان می تواند مقدار زیاد مس را تحمل کند، اما مقدار زیاد آن برای سلامت انسان ضرر دارد. گزارشهای زیادی در مورد مسمومیت با مس در نتیجه بلع مشروبات (حاوی آب) که با مس آلوده شده بودند و همچنین بخاطر مصرف نمکهای حاوی مقادیر بالای مس وجود دارد. در محیط کار، انتشارمس منجر به ایجاد عوارض آنفولانزا مانندی می شود که به نام تب فلز شناخته می شود. این عوارض بعد از دو روز از بین می رود و در اثر حساسیت بیش از اندازه ایجاد می شود. قرار گرفتن طولانی مدت در معرض مس، باعث آبریزش بینی، دهان و چشم، سردرد، دل درد، سرگیجه و اسهال و استفراغ، اسهال، تپش قلب و مشکلات تنفسی می شود.
جذب مقدار زیادی مس باعث آسیب کبد و کلیه و حتی مرگ می شود. اما سرطان زایی مس هنوز اثبات نشده است. مس هم به شکل فلزی و هم به صورت فلز پرکننده یافت می شود. استنشاق فیوم های مس می توانند سبب تب دود فلزی شده و عوارضی در ریه ایجاد کند که کوپروزیس نامیده می شود. در بیماری ویلسون، سمیت مس باعث سیروز هپاتیتی، آسیب مغز، بیماریهای کلیوی و رسوبگذاری مس در قرنیه می شود.
در بسیاری از مقالات علمی، رابطه میان قرار گرفتن در معرض غلظت بالای مس برای مدت طولانی و کاهش هوش در نوجوانان مشخص شده است. ارتباط آن با ایجاد سرطان در انسان مورد بررسی است.
از مگسهای ظرف ادرار تا کشف انسولین
اگرچه فردریک بانتینگ و پروفسور جان مکلئود، پزشکان کانادایی دانشگاه تورنتو، به عنوان کاشفین انسولین شناخته میشوند، واقعیت این است که این دو در واقع دنبالکننده راه دو پزشک آلمانی به نام جوزف فون مرینگ و اسکار مینکوفسکی بودند که مدتها قبل، ارتباط بین پانکراس و سطح قند خون را کشف کرده بودند.
این دو پزشک آلمانی در سال ۱۸۸۹ برای تحقیق درباره نقش پانکراس در هضم غذا، غده پانکراس چند سگ سالم را از بدنشان خارج کردند. چند روز بعد، این پزشکان به طور کاملاً اتفاقی متوجه شدند که تعداد زیادی مگس در اطراف ظرف ادرار سگها جمع شده است. آنها روی ادرار سگها آزمایش کردند و دیدند که مقدار زیادی قند در ادرار سگها جمع شده است. با توجه به سالم بودن سگها قبل از برداشتن پانکراس، مرینگ و مینکوفسکی نتیجهگیری کردند که حتما پانکراس سالم مادهای را ترشح میکند که سوخت و ساز قند را در بدن کنترل میکند.
دانشمندان زیادی از آن پس سعی کردند تا این ماده خاص را که از پانکراس ترشح میشود، شناسایی و جداسازی کنند اما اولینبار بانتینگ و مکلئود کانادایی بودند که موفق به جداسازی انسولین شدند. این مسأله و اهمیت فوقالعاده آن در کنترل دیابت موجب شد تا دکتر بانتینگ و پروفسور مکلئود در سال ۱۹۲۳ برنده جایزه نوبل شوند.
فرایند تولید و مصارف گریس
یکی از مهمترین روانکارهایی که در اکثر صنایع مورد استفاده قرار می گیرد، گریس است. این ماده بعد از روغنها بیشترین مصرف را در جهان( در حدود چهار درصد) به خود اختصاص می دهد. شاید بتوان گفت که بدون استفاده از این روانکار چرخ اقتصاد هیچ کشوری به گردش در نخواهد آمد. فرمولاسیون، ساخت، واکنشها و کاربرد گریس مجموعه کاملی از تکنولوژیهای گوناگون شامل بخشهای وسیعی از علم فیزیک، شیمی و مهندسی شیمی را به خود اختصاص می دهد. برای شناخت کامل از این روانکار، به بررسیهای بسیار دقیقی نیاز است. همزمان با ساخت ماشین آلات و تجهیزات جدید که در مقایسه با گذشته دارای سرعت، شرایط سخت کارکرد، تغییرات دما و مزیت های دیگری هستند، تهیه روانکارهای جدید ویژه ماشین آلات امروزی نیز ضروری می نماید. از این رو شناخت کامل از ساختار و فرایند تهیه گریس های جدید اهمیتی دو چندان می یابد.
در طول سالیان متوالی و پس از کسب تجربیات فراوان، دانش بسیاری در خصوص ساختار گریس بدست آمده است. اخیراً با استفاده از ابزارهای پیشرفته مانند میکروسکوپ های الکترونیکی و با گرفتن فیلمهای مخصوص و استفاده از اشعه X، موارد بسیاری در خصوص ساختار گریس مشخص شده است. با کسب این دستاوردها، مطالعه برروی ساختار صابونها و نحوه ترکیب آن با روغن و کریستال شدن صابون در روغن با امکانات بیشتری میسّر بوده است.
تعریف گریس
تاکنون تعاریف متعددی برای گریس ارایه شده که عمده ترین آنها را می توان به این شرح خلاصه کرد:
۱) گریس ماده ای است جامد یا نیمه جامد که از مشتقات نفتی و صابون(با ترکیب چند صابون) همراه با پرکننده (fillers)، تشکیل شده و قابل کاربری برای مصارف خاص است.
۲) گریس ماده ای است جامد و یا نیمه جامد که از ترکیب یک پرکننده در داخل روغن ساخته شده است، سایر مواد (برای افزایش خاصیت) نیز ممکن است در آن بکار گرفته شود.
۳) گریس ماده روانکاری است که در ساختار آن از پرکننده استفاده شده تا بتواند به قطعات متحرک چسبیده و تحت نیروی جاذبه و یا فشار کارکرد از قطعه جدا نشود.
ساختار
گریس ماده ای است ژلاتینی بصورت جامد و یا نیمه جامد که از یک ماده روانساز(روغنهای معدنی یا سنتتیک) و یک پرکننده (thickener) معدنی یا آلی، تشکیل یافته است. این ماده در جایی مورد استفاده قرار می گیرد که نتوان از روانکارهای دیگر با غلظت کم(روغنها) استفاده کرد. چرخ دنده های صنعتی، یاتاقان های بزرگ، فلکه ها و نظایر آن از جمله کاربردهای گریس هستند. این ماده مانند روغنها برای به حداقل رساندن اصطکاک بین دو قطعه مورد استفاده قرار می گیرد. از مهمترین مزایای کاربرد گریس می توان به کاهش دفعات روانکاری، سهولت استفاده، جلوگیری از ضربه چکشی به قطعات در زمان کارکرد و چسبندگی بهتر اشاره کرد.
پایه صابونی
انواع گریس را با پایه صابونی آن نامگذاری می کنند. در زمان پخت، الیاف و یا رشته های صابونی(Fibers) در داخل روغن تشکیل شده و حالت ژلاتینی به آن می دهد. این الیاف به چند گروه طبقه بندی شده اند: الیاف کوتاه، بلند، کره ای و یا ریش ریش. طول آنها در ساختار رشته ای از یک تا صد میکرون متفاوت است. در نوع بافت کره ای قطر آنها از۰/۰۱۲ تا۰/۸ میکرون اندازه گیری شده است. برای مطالعه برروی ساختار گریس از میکروسکوپ الکترونیکی و فیلمبرداری اشعه ایکس و نور پلاریزه استفاده می شود. هرچه نسبت طول الیاف به قطر آن بیشتر باشد، گریس قوام بهتری دارد. پخت گریس نیاز به تجربه طولانی و مهارتهای خاص دارد.
پرکننده های گریس پرشمارند ولی مهمترین آنها از این قرارند:
▪ صابون کلسیم(گریسهای کاپ، شاسی)
▪ صابون سدیم(RBB ، فایبر یا نام تجاری آن والوالین)
▪ صابون لیتیم(مالتی، ماهان)
▪ صابون غیرآلی(گریس نسوز، بنتون)
▪ صابون آلومینیوم
برای کارکرد در شرایط سخت نیز می توان از مواد بالا برنده مقاومت در فشار استفاده کرد.
کاربرد و اهمیت استفاده از گریس
بسیاری از نیروهای محرکه بدون استفاده از گریس قابل استفاده نیستند. گرچه گریس در مقایسه با سایر روانکارها از مقدار مصرف کمتری برخوردار است، ولی جایگاه آن قابل جایگزینی با مواد دیگر نیست. اهم مزیت های کاربردی آنرا می توان به این شرح خلاصه کرد:
۱) تعداد دفعات روانکاری گریس در مقایسه با روغن کمتر است که این مزیت باعث کاهش هزینه نگهداری و تعمیرات می شود. این خود یک مزیت برای کاربردهایی است که دسترسی به ماشین آلات در آن سخت باشد، مثل موتورهای نصب شده برروی سقف ها، خطوط محرکه، بلبرینگهای غیرقابل دسترسی و نظایر آن.
۲) گریس به عنوان یک مانع به صورت آببندی برای ورود گرد و خاک و یا خروج برخی مواد از ماشین آلات عمل می کند.
۳) اگر ماشین آلات به درستی گریس کاری شده باشند، اجزای قطعات آن در اثر کارکرد از هم پاشیده و جدا نمی شوند. گریس نشت نمی کند و از این جهت در بحث شرایط نگهداری کارگاه و تولید آلودگی کمتر، حائز اهمیت است.
۴) آببندی قطعات و کاربرد کاسه نمدها و نظایر آن با هزینه کمتری انجام می شود. کاسه نمدهای آببندی روغن هم اصطکاک بیشتری با قطعات داشته و هم نیروی بیشتری را برای این منظور به خود اختصاص می دهد.
۵) گریس اگر حتی در قطعه دیده نشود، باز در مقایسه با روغن روانکار مدت بیشتری کار می کند. برخی گریس ها طوری ساخته شده اند که بصورت آببندی در قطعه بوده و طول عمر آن با قطعه یکی است.
۶) زمانیکه از قطعه استفاده نشود و روانکار آن خارج شود امکان زنگ زدگی قطعه ای که از گریس استفاده کرده در مقایسه با روغن بسیار کمتر است.
۷) برخی از گریسها مشکل روانکاری در مجاورت با آب را - در مقایسه با روغن- حل کرده اند.
۸) بعضی از گریسها اصطکاک کمتری را در زمان شروع راه اندازی دستگاه ایجاد می کند.
۹) گریس می تواند باعث کاهش ارتعاش و صدای برخی دستگاهها مانند دنده های بزرگ شود. گریس مانند یک لایه نرم بین قطعات قرار گرفته و باعث کاهش صدا و ارتعاش و کارکرد روان دستگاهها، به ویژه چرخ دنده های بزرگ می شود.
۱۰) گریس در کارکرد تحت فشار زیاد، دمای بالا، شرایط سخت عملیات، سرعت پایین، شوکهای مداوم و یاتاقانهایی که گردش محوری آنها مرتباً معکوس می شود، بهتر عمل می کند.
۱۱) جایی که ماشین آلات به شدت خوردگی و سایش داشته باشند، گریس کاربرد بهتری دارد.
۱۲) اکثر گریسها در دماهای متغیر کاربرد وسیعی دارند ولی دمای کارکرد بیشتر روغنها معین است.
۱۳) در طراحی بوشها و یاتاقانهای ماشین آلات، گریس نقش مؤثرتری نسبت به روغن دارد.
مقایسه کاربرد گریس با روغن
۱) گریس دستگاهها را در زمان کارکرد خنک نمی کند.
۲) روغنها به سهولت در مجاری دستگاهها نفوذ پیدا می کنند ولی این برای گریسها یک نقطه ضعف است.
۳) روغنها از نظر نگهداری در انبار مزایای بیشتری دارند.
طبقه بندی گریس (گرید)
گریس از نظر طبقه بندی به۹ گروه (گرید) تقسیم بندی شده است. این تقسیم بندی براساس درجه نفوذ پذیری نسبی از قوام گریس صورت گرفته است.
اتيلن كليگول ، مهمترين سيال در مايعات خنك كننده
در گذشته از آب به دليل قيمت ارزان و خاصيت انتقال حرارتي آن به عنوان مايع
خنك كننده در بخش هاي داخلي موتور استفاده مي شد. اما با گذشت زمان و پيشرفت تكنولوژي مشخص شد كاربرد آب به تنهايي به عنوان خنك كننده داراي معايب مختلف است كه مي توان به موارد زير اشاره كرد:
- پايين بودن نقطه جوش آب يكي از
ويژگي هاي منفي آن است. با پيشرفت صنايع خودرو سازي و توليد حرارت بيشتر در موتورهاي جديد، آب در سيستم خنك كننده بخار شده و موجب اختلال در اين سيستم مي شود.
- بالا بودن نقطه انجماد آب و افزايش حجم حدود9 درصدي آن (برخلاف ساير تركيبات شيميايي كه در اثر انجماد كاهش حجم مي يابند) موجب تخريب رادياتور و حتي بخشي از موتور خواهد شد.
- خوردگي و زنگ زدگي فلزات مصرفي در سيستم خنك كننده توسط آب بسيار شديد است.
تا سال1920 ميلادي متانول بدست آمده از تقطير چوب، بيشترين كاربرد را در ساخت ضد يخ داشت. الكل اتيليك، گليسيرين، كلرور كلسيم و همچنين آب نمك مايعاتي بودند كه به عنوان خنك كننده به كار مي رفتند. آب شكر و مخلوط آب عسل نيز به مقدار محدود به عنوان مايع
خنك كننده كاربرد داشتند. همچنين نفت و روغن هاي نفتي كه با آب مخلوط نمي شوند نيز به عنوان مايع خنك كننده كاربردهاي محدودي داشتند.
در طول سال هاي1920 تا1930 ميلادي و با توسعه صنعت خودروسازي، مصرف مايعات خنك كننده موتور نيز افزايش چشمگيري پيدا كرد. در اين سالها الكل اتيليك به دليل قيمت ارزان و توليد مناسب به عنوان بهترين مايع خنك كننده موتور به كار گرفته شد و به تدريج استفاده از تركيبات ياد شده هر يك به دلايلي منسوخ شد. در اين ميان كاربرد ضد يخ پايه الكلي، به دليل پايين بودن نقطه جوش مخلوط آب و الكل، تبخير سريع الكل و احتمال آتش گرفتن آن و همچنين سمّي بودنِ متانول كه موجب صدمه به سرنشينان مي شد، نامناسب تشخيص داده شد. مصرف گليسيرين نيز تابع بازار توليد و مصرف بود. مصرف كلسيم كلريد و آب نمك نيز كه در بعضي نواحي به عنوان مايع ضديخ به كار
مي رفت، به دليل خاصيت شديد خورندگي، به ميزان قابل توجهي محدود شد. همچنين استفاده از محلول شكر و يا عسل در آب به دليل نياز به محلول هاي غليظي از اين مواد براي نزول نقطه انجماد منسوخ شد.
در اين سالها روغن هاي نفتي كه به علت نقطه انجماد پايين و عدم خوردگي مورد توجه قرار گرفته بودند، به دلايلي از جمله نياز به حجم بيشتري از سيال (به علت عدم اختلاط با آب)، گران بودن، اثر نامطلوب بر لوله هاي لاستيكي و خطر آتشگيري، ديگر مورد استفاده قرار نگرفت. همچنين بكارگيري مايعاتي از قبيل روغن هاي معدني و نفتي به دليل پايين بودن قابليت انتقال حرارتي و افزايش گرانروي آنها در فصل زمستان (كه موجب كاهش تبادل حرارتي
مي شود) متوقف شد. علاوه بر دلايل ياد شده هنگام استفاده از اين تركيبات، اگر درجه نشان دهنده دما در خودرو خراب مي شد، بالا رفتن حرارت مايع خنك كننده معلوم نمي شد و بدين ترتيب اين تركيبات در حرارت هاي بالا موجب ذوب لحيم هاي موجود در رادياتور و سوختن موتور مي شد.
در برخي موارد از متوكسي و پروپانول كه يك گليكول اتر است به عنوان ضديخ استفاده
مي شد، كه مزيت آن سازگاري با روغن موتور و مخلوط شدن با آن (در صورت ايجاد نشت) بود. ولي به دليل پايين بودن نقطه اشتعال، نقطه جوش و قيمت بالا كاربرد آن منسوخ شد.
در سال1925 ميلادي براي اولين بار مصرف اتيلن گليكول به عنوان خنك كننده موتور رواج پيدا كرد. در ابتدا مصرف اين ماده كم بود ولي به تدريج با آگاهي بيشتر نسبت به مزاياي محصول توليدي، مصرف آن افزايش يافت و در حال حاضر بيشترين مصرف اتيلن گليكول به منظور توليد سيال خنك كننده موتور است.
با افزايش مصرف اتيلن گليكول و كاربردهاي مناسب آن براي سيال خنك كننده موتور، به تدريج مصرف متانول، الكل اتيليك و ساير مواد شيميايي براي توليد ضد يخ كاهش يافت مصرف اين مواد در فرمولاسيون مايعات خنك كننده موتور در سال1950 به كلي منسوخ شد به گونه اي كه توليد و مصرف اتيلن گليكول از49 ميليون ليتر به71 ميليون ليتر در سال رسيد.
در جدول1 به مقايسه خواص فيزيكي گليكول ها با ساير تركيبات مصرفي به عنوان ضد يخ اشاره شده است.
محلول44 تا70 درصد اتيلن گليكول در آب، سيستم رادياتور را در بالاترين ظرفيت طراحي شده نگه مي دارد و به اين ترتيب با استفاده از اين محلول مطمئن مي شويم كه موتور به دليل جوش آوردن صدمه نخواهد ديد. علاوه بر اين، اختلاط نسبت معيني از اتيلن گليكول با آب، عمل خنك كردن را در دامنه وسيعي از دما انجام مي دهد و نقطه انجماد آب را به ميزان كافي پايين مي برد.
يكي ديگر از مزاياي به كارگيري اتيلن و پروپيلن گليكول به عنوان سيال پايه در فرمولاسيون ضد يخ، پايين بودن ميزان آثار مخرب زيست محيطي اين تركيبات است. اتيلن و پروپيلن گليكول مي توانند پس از مصرف وارد محيط آبي شوند. هر دو محلول قابليت حلاليت بالا داشته و ميزان آثار زيان بار اين دو ماده براي ماهي ها، حيات وحش، حيات گياهي و ميكروارگانسيم ها پايين است. تجزيه بيوشيميايي اين دو ماده سريع و كامل انجام مي شود.
باکی بال ، یکی از فلورن های کربن
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
یکی از ساختارهایی که از کربن می شناسیم گرافیت است که در آن اتمهای کربن بصورت شش ضلعی کنار هم قرار گرفته اند و ساختار ورقه ای ایجاد کرده اند . ودیگری الماس که در آن اتمهای کربن شکل چهارضلعی دارند و در سه جهت فضا تکرار شده اند . در سال 1985 دانشمندان ساختار جدیدی از کربن را کشف کردندکه فولرن نامیده شد در این ساختار۶۰ ، ۷۰ یا تعداد بیشتری اتم کربن میتوانند با هم بصورت خوشه تجمع کنند و مولکولی قفس مانند بسازند. باکی بال شناخته شده ترین فولرن است که شبیه توپ فوتبال می باشد و از 20 شش ضلعی و 12 پنج ضلعی ساخته شده است . فولرنها به شدت الکترون خواه هستند و به آسانی با هسته دوستها واکنش میدهند مهمترین واکنشهای آنها عبارتند از:
۱- واکنش افزایشی : تشکیل برون وجهی با افزایش هسته دوستها یا رادیکالها ، حلقه زایی ، و ایجاد کمپلکس با فلزات واسطه .
۲- واکنشهای انتقال الکترون : کاهش شیمیایی فولرنها به راحتی بوسیله واکنش با فلزهای قلیایی و قلیایی خاکی الکتروپوزیتیو یا مولکولهای آلی اکترون دهنده امکان پذیر است،
۳-تشکیل ناجور فولرنها : جانشین کردن اتمهایی مانند نیتروژن یا بور به جای اتم کربن در اسکلت فولرن
۴-واکنشهای باز شدن حلقه : تولید یک حفره در اسکلت با شکستن تعداد مشخصی از پیوندها
۵-تشکیل درون وجهیها :وارد کردن و به تله انداختن اتمها در داخل قفس کروی شکل
. کاربردهایعمده باکی بال ها فعلا در زمینه تولید ابررسانا و ذخیره و حمل و نقل مواد در ابعادنانومتر است. برای مثال تحقیقات گسترده ای برای استفاده از باکی بال ها دردارورسانی به عنوان ماده ای که مولکولهای دارو را به اعضای بدن حمل می کند، در حالانجام است
لوله های بسیار باریک کربنی انواع مختلف فولرن می باشند که به نانوتیوب یا نانو لوله معروفنداین لوله ها بسیار مقاومند وقطر آنها حدود 1/4 نانومتر و طول آنها حدود 10-20 میکرون است . در مقیاس اتمی میکرون طول زیادی است ولی در مقیاس معمولی خودمان 100000 بار نازکتر از مو !
نانو لوله های کربنی به دلیل داشتن قطر بسیار کوچک در حدود ۰.۷ نانومتر نخستین نمونه از استوانه های توخالی معروف به سیمهای کوانتومی هستند ، اینها هم به صورت فولرنهای تک لایه هم به صورت فولرنهای چند لایه تو در تو قابل تهیه اند ، در طول دهه گذشته دانشمندان به این نتیجه رسیده اند که نانولوله های کربنی قادرند الکتریسیته را به دو صورت هدایت کنند ، با مقاومت کم ، مانند فلز ، و با مقاومت متغیر ، مانند نیم رسانا .اکنون پژوهشگران دانشگاه برکلی این نظریه را مطرح کرده اند که نانو لوله ها میتوانند در شرایط مناسب ابر رسانا هم باشند ، بلاخره در سال ۱۹۹۹ دانشمندان نانو لوله هایی بسیار کوچک به قطر کمتر از نیم نانومتر و طول ۱۰۰۰ آنگستروم {۳۰۰۰ بار کوتاهتر از دیگر نانولوله ها، جهت اجتناب از نقصهای ساختاری }تولید کردند که پایینتر از ۲۰ درجه کلوین ابر رسانا میشوند.
منبع:
http://www.mkhajehpour.com/index.php?module=pagesetter&func=viewpub&tid=4&pid =7