یک مسئله (به همراه پاسخ) و در خواست راهنمایی
سلام .
مسئله به همراه پاسخ:
Martina has three weeks to prepare for a tennis tournament. She decides to play at least one set every day but not more than 36 sets in all. Show that there is a period of consecutive days during which she will play exactly 21 sets.?
Soln. Let a1 represent # sets played on day 1, a2, … a21 defined similarly. Then create a list of 21 natural numbers: { a1, a1 + a2, … , a1 + a2 + … + a21 }. Since she plays at least one set each day, each ai ≥ 1. Also a1 + a2 + … + a21 represents the total number of sets she will play, which is at most 36. Therefore 1 ≤ a1 < a1 + a2 < … < a1 + a2 + … + a21 ≤ 36. There is only one natural number between 1 and 36 that is divisible by 21, namely 21. So if a1 + a2 + … + ai = 21 for some i, then we are done. Otherwise all the sums are not divisible by 21 so they must fall into the 20 congruence classes of the integers mod 21 = 20 , , 2 , 1 K . However, we have 21 numbers and 20 congruence classes, so by the Pigeon-Hole Principle, at least two terms,
bs = a1 + a2 + … + as and bt = a1 + a2 + … + at, belong to the same congruence class, and so are divisible by 21. Therefore bs − bt = at+1 + at+2 + … + as and she plays 21 games on the days t+1 through s
.
پس اگر بازیکن در روز 21 1م 16 بازی انجام بده و 20 روز قبلی را روزی فقط 1 بازی بکنه چگونه بر خلاف خواسته مسئله ، دنبالهای از روزهای متوالی که بازیکن طی آنها دقیقاً 21 بار بازی کرده ، نخواهیم داشت!.
البته مطمئنم که صورت سوال و پاسخش رو خوب متوجه نشدم.
لطفآ یه پاسخ قانع کننده بدید.
ممنون.