فيزيك پلاسما (Plasma Physics)
.wysiwyg { background-attachment: scroll; background-repeat: repeat; background-position: 0% 0%; background-color: #f5f5ff; background-image: none; color: #000000; font-family: Tahoma; font-style: normal; font-variant: normal; font-weight: 400; font-size: 11px; line-height: normal } p { margin: 0px; }فيزيك پلاسما
مي دانيم كه براي ماده سه حالت جامد ، مايع و گاز در نظر گرفته ميشود. اما در مباحث علمي معمولا يك حالت چهارم نيز براي ماده فرض ميشود. حدوث طبيعي پلاسما در دماهاي بالا ، سبب تخصيص عنوان چهارمين حالت ماده به آن شده است. يك نمونه بسيار طبيعي از پلاسما آتش است بنابراين خورشيد نمونهاي از پلاسماي داغ بزرگ است.
تعريف پلاسما
پلاسما گاز شبه خنثايي از ذرات باردار و خنثي است كه رفتار جمعي از خود ارائه ميدهد. به عبارت ديگر ميتوان گفت كه واژه پلاسما به گاز يونيزه شدهاي اطلاق ميشود كه همه يا بخش قابل توجهي از اتمهاي آن يك يا چند الكترون از دست داده و به يونهاي مثبت تبديل شده باشند. يا به گاز به شدت يونيزه شدهاي كه تعداد الكترونهاي آزاد آن تقريبا برابر با تعداد يونهاي مثبت آن باشد، پلاسما گفته ميشود.
حدود پلاسما
اغلب گفته ميشود كه 99% ماده موجود در طبيعت در حالت پلاسماست، يعني به شكل گاز الكتريسته داري كه اتمهايش به يونهاي مثبت و الكترون منفي تجزيه شده باشد. اين تخمين هر چند ممكن است خيلي دقيق نباشد ولي تخمين معقولي است از اين واقعيت كه درون ستارگان و جو آنها، ابرهاي گازي و اغلب هيدروژن فضاي بين ستارگان بصورت پلاسماست. در نزديكي خود ما ، وقتيكه جو زمين را ترك ميكنيم بلافاصله با پلاسمايي مواجه مي شويم كه شامل كمربندهاي تشعشعي وان آلن و بادهاي خورشيدي است.
در زندگي روزمره نيز با چند نمونه محدود از پلاسما مواجه ميشويم. جرقه رعد و برق ، تابش ملايم شفق قطبي ، گازهاي داخل يك لامپ فلورسان يا لامپ نئون و يونيزاسيون. مختصري كه در گازهاي خروجي يك موشك ديده ميشود. بنابراين مي توان گفت كه ما در يك درصدي از عالم زندگي ميكنيم كه در آن پلاسما بطور طبيعي يافت نميشود.
آيا كلمه پلاسما يك كلمه بامسما است؟
كلمه پلاسما ظاهرا بيمسما به نظر ميرسد. اين كلمه از يك لغت يوناني آمده است كه هر چيز به قالب ريخته شده يا ساخته شده را گويند. پلاسما به علت رفتار جمعي كه از خودشان نشان ميدهد، گرايشي به متاثر شدن در اثر عوامل خارجي ندارد، و اغلب طوري عمل ميكند كه گويا داراي رفتار مخصوص به خودش است.
حفاظ دباي
يكي از مشخصات اساسي رفتار پلاسما ، توانايي آن براي ايجاد حفاظ در مقابل پتانيسيلهاي الكتريكي است كه به آن اعمال ميشوند. فرض كنيد بخواهيم با وارد كردن دو گلوله بارداري كه به يك باتري وصل شدهاند يك ميدان الكتريكي در داخل پلاسما بوجود آوريم. اين گلوله ها ، ذرات يا بارهاي مخالف خود را جذب ميكنند و تقريبا بلافاصله ، ابري از يونهاي اطراف گلوله منفي و ابري اطراف گلوله مثبت را فرا ميگيرند.
اگر پلاسما سرد باشد و هيچگونه حركت حرارتي وجود نداشته باشد، تعداد بار ابر برابر بار گلوله ميگردد، در اين صورت عمل حفاظ كامل ميشود و هيچ ميدان الكتريكي در حجم پلاسما در خارج از ناحيه ابرها وجود نخواهد داشت. اين حفاظ را اصطلاحا حفاظ دباي مي گويند.
معيارهاي پلاسما
طول موج دباي (لانداي دي) بايد خيلي كوچكتر از ابعاد پلاسما ( L ) باشد.
تعداد ذرات موجود در يك كره دباي (ND ) بايد خيلي بزرگتر باشد.
حاصلضرب فركانس نوسانات نوعي پلاسما ( W ) در زمان متوسط بين برخوردهاي انجام شده با اتمهاي خنثي ( t ) بايد بزرگتر از يك باشد.
كاربردهاي فيزيك پلاسما
- تخليه هاي گازي :
قديميترين كار با پلاسما ، مربوط به لانگمير ، تانكس و همكاران آنها در سال 1920 ميشود. تحقيقات در اين مورد ، از نيازي سرچشمه ميگرفت كه براي توسعه لوله هاي خلائي كه بتوانند جريانهاي قوي را حمل كنند، و در نتيجه ميبايست از گازهاي يونيزه پر شوند احساس ميشد.
- همجوشي گرما هستهاي كنترل شده:
فيزيك پلاسماي جديد ( از حدود 1952 كه در آن ساختن راكتوري بر اساس كنترل همجوشي بمب هيدروژني پيشنهاد گرديد، آغاز ميشود.
- فيزيك فضا:
كاربرد مهم ديگر فيزيك پلاسما ، مطالعه فضاي اطراف زمين است. جريان پيوستهاي از ذرات باردار كه باد خورشيدي خوانده ميشود، به مگنتوسفر زمين برخورد ميكند. درون و جو ستارگان آن قدر داغ هستند كه ميتوانند در حالت پلاسما باشند.
- تبديل انرژي مگنتو هيدرو ديناميك ( MHD ) و پيشرانش يوني:
دو كاربرد عملي فيزيك پلاسما در تبديل انرژي مگنتو هيدرو ديناميك ، از يك فواره غليظ پلاسما كه به داخل يك ميدان مغناطيسي پيشرانده ميشود، ميباشد.
- پلاسماي حالت جامد :
الكترونهاي آزاد و حفرهها در نيمه رساناها ، پلاسمايي را تشكيل ميدهند كه همان نوع نوسانات و ناپايداريهاي يك پلاسماي گازي را عرضه مي دارد.
- ليزرهاي گازي:
عاديترين پمپاژ ( تلمبه كردن ) يك ليزر گازي ، يعني وارونه كردن جمعيت حالاتي كه منجر به تقويت نور ميشود، استفاده از تخليه گازي است.
- شايان ذكر است كه كاربردهاي ديگري مانند چاقوي پلاسما ، تلويزيون پلاسما ، تفنگ الكتروني ، لامپ پلاسما و غيره نيز وجود دارد كه در اينجا فقط كاربردهاي پلاسما در حالت كلي بيان شده است.
منبع : دانشنامه رشد
مواد تشكيل دهنده ماده تاريك
ماده معمول
سيارات
ماده تاريك ممكن است از چيزهاي معمولي مثل جنس سيارات تشكيل شده باشد، ولي سياراتي مثل زمين به اندازه كافي جرم ندارند، پس ممكن است ژوپيترها تشكيل دهنده ماده تاريك باشند.
اما اين نظريه چندين مشكل دارد، اول اينكه ما فرض كرده ايم سيارات فقط در اطراف ستارگان شكل گرفته اند، بنا بر اين ستارگان به ميزان بسيار كمي جرم آن ها را بالا مي برند. با اين حساب امگا = 0.005 خواهد بود كه براي تشكيل دادن 88% جرم عالم كافي نيست.
دومين و مهمترين مشكل از تركيب هسته اي مهبانگ (big bang nacleosynthesis) ناشي مي شود. در لحظه تولد عالم وقتي مهبانگ رخ داد عالم ماده اي بسيار گرم تشكيل شده از انواع ذرات بود، در حالي كه عالم بزرگ و بزرگتر و به سردي مي گراييد ذرات ماده معمول مثل الكترون، نوترون و پروتون ها نيز سرد مي شدند و اتمهاي مواد موجود در عالم را تشكيل مي دادند. غالب اين اتمها مربوط به هليوم و هيدروژن هستند.
BBN يك تئوري موفق است كه نه تنها هيدروژن و هليوم را به عنوان بيشترين عناصر جهان معرفي مي كند بلكه نسبت آنها را نيز به درستي بيان مي كند.
اما مسئله اي وجود دارد. مقدار هر ماده اي كه تشكيل مي شود به ميزان ماده معمول تشكيل دهنده اتم (ماده بارنوييك) بستگي دارد و BBN مقدار اين ماده را براي عالم كنوني چيزي در حدود امگا = 0.1 پيش بيني مي كند.
بايد توجه كرد كه اين ميزان ماده بارنوييك براي مواد قابل مشاهده در عالم ما زياد است در نتيجه مقداري ماده معمول تاريك (از جمله سيارات و ستارگان سوخته) وجود دارد اما اين مواد نمي توانند توجيه كننده سرعت خوشه و منحني دوران آنها باشند.
ستارگان تاريك - ژوپيترها، كوتوبه هاي قهوه اي، كوتوله هاي سفيد
ماده معمول ديگري كه مي تواند تشكيل دهنده ماده تاريك باشد ستارگاني هستند كه جرم كافي براي سوختن و درخشان شدن ندارند- كوتوله هاي قهوه اي - يا ژوپيترها - ژوپيترها كوتوله هايي به مراتب (حدود 10 برابر) سنگين تر هستند و به صورت ستارگان بسيار كوچك و كم نور فعاليت دارند. اما اين احتمالات مثل سيارات در مقابل BBN با مشكل مواجه مي شوند و باز باريون كافي وجود ندارد. احتمال اين نيز مي رود كه نظريه BBN اشتباه باشد ولي چون اين نظريه تا كنون بسيار موفق بوده است به دنبال انتخاب هاي ديگري براي ماده تاريك هستيم.
ماده عجيب
اين ماده آنقدر ها هم عجيب نيست فقط ماده اي است كه الكترون، نوترون و پروتون ندارد. بسياري از چنين ذرات شناخته شده اند و چند مورد از آن ها در حد تئوري هستند تا بتوان مشكل ماده تاريك را حل كرد.
نوترينو ها
نوترينو ها ذرات بدون جرمي هستند كه وجودشان ثابت شده و لي دلايلي وجود دارد كه نشان داده گاهي اوقات جرم بسيار كوچكي دارند. در عالم مقدار بسيار زيادي از اين ذرات وجود دارد، با اين حال حتي يك جرم بسيار كوچك تر براي ماده تاريك پر اهميت است. جرمي به اندازه 1/5000 جرم الكترون، امگايي به اندازه 1 بدست مي دهد.
ويمپ ها (WIMPs)
بيشتر انتخاب هاي ماده عجيت در دسته ويمپ ها Weakly Interaching massive particles قرار مي گيرند. ويمپ ها دسته اي از ذرات سنگين هستند كه به سختي با ذرات ديگر واكنش مي دهند از اين ذرات مي توان در تراسنيو ها و آكسيون ها را نام برد.
اثبات وجود ماده تاريك
جاذبه دليل وجود ماده تاريك
وجود يك پديده را از دو روش مي توان اثبات كرد:مشاهده مستقيم پديده يا مشاهده تاثير آن بر پديده هايي كه راحت تر مشاهده مي شوند.
اين مطلب كه در آسمان شب چيزهايي هست كه به راحتي ديده نمي شود و هميشه مورد توجه بوده است. هنگام استفاده از تلسكوپ يا راديو تلسكوپ فقط اشيايي رصد مي شوند كه از خود نور يا امواج راديويي گسيل مي كنند. اما هر پديده اي اين خصوصيات را ندارد حتي سياره خودمان زمين نيز به علت تاريكي بيش از حد قابل مشاهده نيست.
خوشه هاي كهكشاني
مقدار قابل توجهي ماده در بررسي خوشه هاي كهكشاني وجود دارد كه ما نمي توانيم به آساني آنها را ببينيم. خوشه هاي كه از تجمع چند صد تا چند هزار كهكشان يا كهكشان هاي تك در فضا بوجود آمده اند. در دهه 1930، zwicky، Smith، دو خوشه تقريبا نزديك به هم Coma و Virgo را از لحاظ كهكشان هاي تشكيل دهنده و سرعت خوشه ها مورد بررسي قرار دادند، و سرعتي كه بدست آوردند چيزي بين 10 تا 100 برابر مقداري بود كه انتظار داشتند.
معني اين چيست؟ در يك گروه از كهكشان ها مثل خوشه تنها نيروي موثر بر كهكشان ها گرانش است و اين گرانش اثر كششي كهكشان ها بر يكديگر است كه باعث بالا رفتن سرعت آنها مي شود.
سرعت مي تواند مقدار ماده موجود در كهكشان را به دو طريق مشخص كند:
جرم خوشه ها
جرم بيشتر كهكشان باعث مي شود نيروي شتاب دهنده به كهكشان نيز بيشتر شود.
شتاب و سرعت خوشه ها
اگر شتاب يك كهكشان خيلي زياد باشد مي تواند از ميدان جاذبه خوشه خارج شود. اگر شتاب كهكشان بيش از سرعت فرار باشد، خوشه را ترك خواهد كرد.
به اين ترتيب همه كهكشان ها سرعتي پايين تر از سرعت فرار (گريز) خواهند داشت. و با اين نگرش مي توان جرم كل خوشه را حدس زد كه مقدار قابل توجهي از ميزان مشاهده شده است. با اين حال اين نظريه به علت اينكه مبني بر مشاهده بود و مشاهدات غالبا با اشتباه همراهند مدت طولاني مورد توجه قرار نگرفت.
هنگامي كه چيزي به وسعت يك خوشه كهكشاني نگاه مي كنيد با اينكه ممكن است سرعت ها زياد باشند در مقابل وسعت خوشه ها چيزي به حساب نمي آيند پس مشاهده مداوم يك خوشه در طي چندين سال تصوير يكساني از آن بدست مي دهد. ما نمي توانيم كهكشان هايي را كه بدون الگو حركت مي كنند با دقت ببينيم. پس يك كهكشان با سرعت زياد ممكن است از خوشه جدا شده باشد يا اصلا متعلق به خوشه نباشد. حتي ممكن است بعضي از كهكشان ها فقط مقابل كهكشان هاي ديگر در راستاي خط ديد آنها باشند. با اين حساب اين كهكشان گمراه كننده خواهد بود.
منحني حركت انتقالي كهكشان ها
دلايل قابل اعتماد تري در دهه 1970 در پي اندازه گيري منحني هاي دوران كهكشان ها ارايه شد. علت قابل اعتماد تر بودن آنها اين است كه اطلاعات موثق تري در مورد تعداد يشتري كهكشان دست مي دهند.
از گذشته مي دانستيم كه كهكشان ها حول مركز شان دوران دارند درست شبيه به چرخش سيارات به دور خورشيد و مانند سيارات از قوانين كپلر پيروي مي كنند. اين قوانين مي گويند سرعت چرخشي حول يك مركز فقط به فاصله از مركز و جرم موجود در مدار بستگي دارد.
پس با پيدا كردن سرعت چرخش يك كهكشان مي توانيم جرم موجود در كهكشان را محاسبه كنيم. همان طور كه در كناره هاي كهكشان ميزان نور به سرعت كم مي شود انتظار مي رود سرعت چرخش نيز پايين بيايد ولي اين اتفاق نمي افتد و سرعت در همان ميزاني كه محاسبه شده بود ثابت مي ماند و اين مطلب آشكارا نشان مي دهد در كناره هاي كهكشان جرمي وجود دارد كه ما نمي بينيم. اين آزمايش در مورد چندين كهكشان حلزوني - از جمله كهكشان راه شيري خودمان - انجام شده و هر بار به همين نتيجه رسيده است. و اين محكمترين و بهترين اثبات براي وجود ماده تاريك است
ميزان وجود ماده تاريك
چه ميزان ماده تاريك وجود دارد؟
كيهان شناسان ميزان موجود در عالم را با پارامتري به نام امگا مورد بحث قرار مي دهند. در يك عالم بسته يعني عالمي كه جرم آن در حدي است كه عاقبت در خود فرو مي ريزد امگا بيش از 1 تعريف مي شود. در يك عالم باز يعني عالمي كه تا ابد اجزاي آن در حال دور شدن از يكديگر هستند امگا كمتر از 1 است و يك عالم مسطح به طور ايده آل امگايي برابر 1 خواهد داشت.
ميزان ماده قابل مشاهده موجود در عالم در حدود 0.05 = امگا است و به هيچ وجه بيش از آن نمي باشند. نظريه پردازان مايلند امگاي عالم را چيزي 1 در حدود در نظر بگيرند به آن معني كه ماده تاريك 0.95 = امگا يا 95% عالم را تشكيل داده است.
اما در صورتي كه واقع بينانه تر نگاه كنيم مي بينيم كه دانشمندان دليلي براي بيشتر بودن اندازه امگا از 0.4 ندارند با اين حساب ميزان ماده تاريك 0.35 امگا خواهد بود كه 88% جرم عالم است.
مي بينيم كه 88% عالممان كاملا ناشناخته است.
به نقل از سي پي اچ تئوري
منبع : دانشنامه رشد
مقاله هاى اينشتين و فيزيك نوين
از ميان مجموعه مقاله هاى اينشتين مقاله اى كه او در سال 1905 عرضه كرد، اثر مهمى در پيشرفت علم داشته است. در آن مقاله پديده فوتوالكتريك را شرح مى دهد و با استفاده از نظريه كوانتوم پلانك نظريه فوتونى نور را بيان مى كند. بر طبق اين نظريه نور مانند انرژى هاى ديگر حالت كوانتومى دارد. كوانتوم نور را كه فوتون مى ناميم مقدار مشخص انرژى است كه اندازه آن، E، از رابطهhv = Eبه دست مى آيد كه v بسامد موج و h ثابت پلانك است.
بنابر اين نظريه هر چه بسامد نور بيشتر يا طول موج آن كمتر باشد، انرژى فوتون بيشتر است. چنانچه اين فوتون ها در مسير حركت خود به الكترون هايى برخورد كنند، جذب الكترون مى شوند و انرژى الكترون را بالا مى برند و در نتيجه الكترون مى تواند از ميدانى كه در آن قرار گرفته است، آزاد و خارج شود. اينشتين به مناسبت توضيح پديده فوتوالكتريك جايزه نوبل سال 1921 فيزيك را دريافت كرد. نظريه فوتونى او نه فقط نور بلكه سراسر طيف موج هاى الكترومغناطيسى از موج هاى گاما تا موج هاى بسيار بلند را دربرمى گيرد و توضيح مى دهد.
موضوع دومين مقاله اينشتين حركت براونى بود. در سال 1827 رابرت براون (1858- 1773) گياه شناس و پزشك انگليسى حركت مداوم معلق دو مايع را مشاهده كرد و متوجه شد كه اين ذره ها با قطرى حدود يك ميكرون پيوسته به اين سو و آن سو حركت مى كنند. اينشتين همين آزمايش را در مقاله اى با استفاده از نظريه جنبشى ذره ها تعبير و تفسير كرد و از روى آن عدد آوودگادرو را به دست آورد.
اينشتين نظريه نسبيت خاص را در مقاله سوم معرفى كرد. در اين مقاله بود كه مفاهيم اساسى طبيعت موجى فضا، حجم، زمان و حركت به طور كامل تغيير كرد. اينشتين ضمن مطالعه هاى خود توانست مسئله سرعت نور را كه از مدت ها پيش تعجب دانشمندان را برانگيخته بود، حل وفصل كند. او نظريه خود را براساس دو اصل زير قرار داد:
1- سرعت نور در جهان ثابت است
2- قانون هاى طبيعت براى ناظرين مختلف كه يكنواخت حركت مى كنند يكسان است.
اينشتين نشان داد كه اگر ثابت نبودن سرعت نور را بپذيريم، نتيجه هاى شگفت انگيزى به بار مى آيد. براى مثل هر چه سرعت حركت جسمى بيش تر شود، طول آن كوتاه تر و جرمش بيشتر مى شود. نتيجه ديگر آنكه به زمان مطلق و فضاى مطلق به شكلى كه پيشينيان تصور مى كردند نمى توان قائل شد و زمان و فضا را جدا و مستقل از يكديگر نمى توان در نظر گرفت. دنياى مادى يك فضا و زمان چهاربعدى است. جرم يك جسم نيز ثابت نيست و با تغيير سرعت تغيير مى كند به طورى كه مى توان جرم را نوعى انرژى متراكم در نظر گرفت و يا انرژى را جرم پراكنده دانست. اينشتين با بيان نظريه نسبيت خاص، قانون بقاى ماده لاوازيه و اصل بقاى انرژى ماير را به اصل بقاى مجموع ماده و انرژى درآورد و رابطه معروف جرم و انرژى را به دست آورد. اينشتين در سال 1916 نظريه نسبيت عام را تنظيم و اعلام كرد. در اين نظريه نه تنها حركت با سرعت ثابت و مسير مستقيم، بلكه هر نوع حركتى در نظر گرفته شده بود. در بسيارى موارد دليل آنكه سرعت و مسير حركت هر متحركى تغيير مى كند، وجود نيروى جاذبه است. بنابراين در نظريه نسبيت عام بايد نيروى جاذبه در نظر گرفته شود. اينشتين يك رشته معادله تنظيم كرد كه نشان مى داد اگر در هيچ جا ماند و نيروى جاذبه وجود نداشته باشد، جسم متحرك مسير مستقيمى را طى مى كند و اگر ماده وجود داشته باشد فضاى پيرامون جسم متحرك دگرگون شده، جسم مسير منحنى را طى مى كند. نظريه نسبيت عام نشان مى دهد كه اين منحنى ها چگونه بايد باشند و اين به طور كامل با آن چه در نظريه جاذبه نيوتن پيش بينى شده بود، تطبيق نمى كرد. براى مثال بر طبق نظريه اينشتين مسير نور تحت تاثير ميدان جاذبه قوى تغيير مى كند. در صورتى كه از قانون هاى نيوتن چنين نتيجه اى به دست نمى آمد. كسوف سال 1919 نظريه اينشتين را ثابت كرد. در سال 1969 دو سفينه پژوهشى كه به سمت مريخ فرستاده شدند، اثر خورشيد بر مسير موج هاى راديويى را مورد مطالعه و مشاهده قرار دادند.
ايران و سال جهانى فيزيك
سال جهانى فيزيك فرصت مناسبى است تا در ايران به نقد آموزش علوم و پژوهش هاى علمى بپردازيم و مشخص كنيم آيا راه و روشى را كه از زمان بنيانگذارى دارالفنون تاكنون برگزيده ايم درست و بجا بوده و توانسته است بسترى مناسب براى فعاليت هاى علمى و پژوهشى به وجود آورد. آيا با همه سرمايه گذارى هاى مادى و معنوى توانسته ايم جامعه ايرانى را به حالتى برسانيم كه به علم باور داشته باشند، علمى بينديشند، بتوانند توليدكننده علم باشند و بدانند كه براى رساندن جامعه به خودكفايى و توسعه پايدار، كارى مداوم و جدى و همگانى لازم است.
گرچه نمى توان منكر تلاش هاى صميمانه افراد و سازمان هاى مؤثر در آموزش علوم جديد در ايران شد ليكن در اين مدت نتوانسته ايم به سطح مورد انتظار جامعه برسيم، ولى توانسته ايم پايه هاى اوليه را طرح ريزى و شروع به سازندگى كنيم. اين كار از يك سو از دبستان ها و از سوى ديگر از دانشگاه ها آغاز شده است. در دبستان ها فعاليت آموزش علوم با طرح جديدى كه هم اكنون در مدرسه ها اجرا مى شود، آغاز شد. كودكان را به مشاهده مستقيم طبيعت و كارگروهى برانگيخته اند و به جاى آنكه فقط دانستنى ها را به ذهن آنها منتقل كنند، معلمان، كودكان را به مشاهده طبيعت، جمع آورى اطلاعات، طبقه بندى و حتى طراحى آزمايش، فرضيه سازى و نتيجه گيرى تشويق مى كنند و همه اينها مقدمه اى است براى آنكه كودكان با روش علمى آشنا شوند.
در دانشگاه ها تحقيقات سازمان يافته آغاز شده است. پروژه هاى تحقيقاتى گرچه در ابتدا حالت تقليدى و كتابخانه اى داشت، كم كم به مرحله علمى نزديك مى شود و اميد است، تحقيقات به معناى واقعى در كشور آموزش داده شود و جريان يابد.
اكنون مشكل بزرگ در برنامه دبيرستان ها وجود دارد. دانش آموزان به جاى آموختن روش حل مسئله به حفظ كردن پاسخ ها مى پردازند تا آنها را تحويل آزمون ها و كنكور دانشگاه دهند و به مدرك هاى بالاتر دست يابند. با توجه به آنكه مخاطبان سال جهانى فيزيك، دانش آموزان نيز هستند مى توان اميدوار بود كه با نيروهاى مخلصى كه در ميان معلمان وجود دارد و نيز تشويق هايى كه از طرف سازمان ها صورت مى گيرد و كارگاه هاى علمى كه از سوى كشورهاى پيشرفته صنعتى در كشور تشكيل و اجرا مى شود، به هدف هاى مورد نظر دست يافت و روش علمى را در فعاليت هاى آموزشى و پژوهشى ياد گرفت و به كار برد.
نويسنده اين نوشته تاكنون شاهد همايش ها و جلسه هاى متعددى بوده كه از سوى دبيران فيزيك و انجمن هاى علمى تشكيل شده و دانش آموزان و دبيران به تهيه و عرضه مقاله هاى علمى و توليد نرم افزارهاى كامپيوترى و نيز ابزارهاى آزمايشگاهى و كارگاهى دست زده اند. همه اين كارها به علاقه مندان اين كشور اميد مى دهد كه جامعه علمى ما در حال بيدار شدن است. بيدارگران پرتلاش و پر اميد به بيدار كردن خواب آلودگان مشغولند. گرچه برخى از سازمان ها و افراد هنوز در كار متوقف كردن جريان علمى در كشور هستند، اما در جامعه نه تنها زنگ ها بلكه ناقوس هاى بيدارى به صدا درآمده و هيچ فردى را فرصت و مهلت خوابيدن نمى دهد.
روزى كه اينشتين رمق فكر كردن نداشت
اينشتين در نوجوانى علاقه چندانى به تحصيل نداشت. پدرش از خواندن گزارش هايى كه آموزگاران درباره پسرش مى فرستادند، رنج مى برد. گزارش ها حاكى از آن بودند كه آلبرت شاگردى كندذهن، غيرمعاشرتى و گوشه گير است. در مدرسه او را «باباى كندذهنى» لقب داده بودند. او در 15 سالگى ترك تحصيل كرد، در حالى كه بعدها به خاطر تحقيقاتش جايزه نوبل گرفت!
شايد شما نيز اين جملات را خوانده يا شنيده باشيد و شايد اين پرسش نيز ذهن شما را به خود مشغول كرده باشد كه چگونه ممكن است شاگردى كه از تحصيل و مدرسه فرارى بوده است، برنده جايزه نوبل و به عقيده برخى از دانشمندان، بزرگ ترين دانشمندى شود كه تاكنون چشم به جهان گشوده است؟
با مطالعه دقيق تر زندگى اين شاگرد ديروز، پاسخ مناسبى براى اين پرسش پيدا خواهيم كرد. آلبرت بچه آرامى بود و والدينش فكر مى كردند كه كندذهن است. او خيلى دير زبان باز كرد، اما وقتى به حرف آمد، مثل بچه هاى ديگر «من من» نمى كرد و كلمه ها را در ذهنش مى ساخت. وقتى به سن چهار سالگى پاگذاشت، با بيلچه سر خواهر كوچكش را شكست و با اين كار ثابت كرد كه اگر بخواهد، مى تواند بچه ناآرامى باشد!
پدر و مادر آلبرت به بچه هاى كوچك خود استقلال مى دادند. آنان آلبرت چهارساله را تشويق مى كردند كه راهش را در خيابان هاى حومه مونيخ پيدا كند. در پنج سالگى او را به مدرسه كاتوليك ها فرستادند. آن مدرسه با شيوه اى قديمى اداره مى شد. آموزش از طريق تكرار بود. همه چيز با نظمى خشك تحميل مى شد و هيچ اشتباهى بى تنبيه نمى ماند و آلبرت از هر چيزى كه حالت زور و اجبار و جنبه اطاعت مطلق داشته باشد، متنفر بود. اغلب كسانى كه درباره تنفر اينشتين از مدرسه، معلم و تحصيل نوشته اند، به نوع مدرسه، شيوه تدريس معلم و مطالبى كه اين دانش آموز بايد فرا مى گرفت، كمتر اشاره كرده اند. بازخوانى يك واقعه مهم در زندگى اينشتين ما را با مدرسه محل تحصيل او آشناتر مى كند: روزى آلبرت مريض بود و در خانه استراحت مى كرد. پدرش به او قطب نماى كوچكى داد تا سرگرم باشد. اينشتين شيفته قطب نما شد. او قطب نما را به هر طرف كه مى چرخاند، عقربه جهت شمال را نشان مى داد. آلبرت كوچولو به جاى اين كه مثل ساير بچه ها آن را بشكند و يا خراب كند، ساعت ها و روزها و هفته ها و ماه ها به نيروى اسرارآميزى فكر مى كرد كه باعث حركت عقربه قطب نما مى شود. عموى آلبرت به او گفت كه در فضا نيروى ناديدنى (مغناطيس) وجود دارد كه عقربه را جابه جا مى كند. اين كشف تاثير عميق و ماندگارى بر او گذاشت. در آن زمان، اين پرسش براى آلبرت مطرح شد كه چرا در مدرسه، چيز جالب و هيجان انگيزى مثل قطب نما به دانش آموزان نشان نمى دهند؟! از آن به بعد، تصميم گرفت خودش چيزها را بررسى كند و به مطالعه آزاد مشغول شود. اينشتين ده ساله بود كه در دبيرستان «لويت پولت» ثبت نام كرد. در آن موقع، علاقه بسيارى به رياضى پيدا كرده بود. اين علاقه را عمويش اكوب و يك دانشجوى جوان پزشكى به نام ماكس تالمود در وى ايجاد كرده بودند. تالمود هر پنجشنبه به خانه آنان مى آمد و درباره آخرين موضوعات علمى با آلبرت حرف مى زد. عمويش نيز او را با جبر آشنا كرده بود. اينشتين در دوازده سالگى از تالمود كتابى درباره هندسه هديه گرفت. او بعدها آن كتاب را مهم ترين عامل دانشمند شدن خود عنوان كرد. با اين كه آلبرت در خانه چنين علاقه اى به رياضيات و فيزيك نشان مى داد، در دبيرستان چندان درخششى نداشت. او در نظام خشك و كسل كننده دبيرستان، علاقه اش را به علوم از دست مى داد و نمراتش كمتر و كمتر مى شدند. بيشتر معلمانش معتقد بودند كه او وقتش را تلف مى كند و چيزى ياد نمى گيرد. هرچند اينشتين به قصد اين درس مى خواند كه معلم شود نه فيزيكدان، اما از معلمان خود دل خوشى نداشت و از زورگويى آنان و حفظ كردن درس هاى دبيرستان، دل پرخونى داشت. از اين رو، خود را به مريضى زد و با اين حيله، مدتى از دبيرستان فرار كرد! چون معلم ها نيز از او دل خوشى نداشتند، شرايط را براى اخراج او از مدرسه فراهم كردند. اينشتين بعدها در اين باره گفت: «فشارى كه براى از بر كردن مطالب امتحانى بر من وارد مى آمد، چنان بود كه بعد از گذراندن هر امتحان تا يك سال تمام، رمق فكر كردن به ساده ترين مسئله علمى را نداشتم!» اينشتين بعدها مجبور شد در دبيرستان ديگرى ديپلم خود را بگيرد و سرانجام با هزار بدبختى گواهينامه معلمى را دريافت كند. بعد از آن، مدتى معلم فيزيك در يك مدرسه فنى شد، اما چون روش هاى خشك تدريس را نمى پسنديد، پيشنهادهايى در مورد تدريس به رئيس مدرسه داد كه پذيرفته نشدند و به اين ترتيب بهانه اخراج خود را فراهم كرد.اينشتين پس از اين واقعه، زندگى دانشجويى را برگزيد و پس از فارغ التحصيلى، در اداره ثبت اختراعات به كار مشغول شد. او از كار كردن در اين اداره راضى بود. عيب دستگاه هاى تازه اختراع شده را پيدا مى كرد و در ساعت ادارى، وقت كافى داشت تا به فيزيك فكر كند. در همين اداره بود كه مقاله هاى متعددى نوشت و در مجلات معتبر منتشر كرد. جالب اين كه دانشمند بزرگ كه با فرضيات خود انقلابى در جهان دانش به پا كرد، در شرايطى كار مى كرد كه براى هر دانشمند ديگرى غيرممكن بود! او نه با فيزيكدان حرفه اى تماس داشت و نه به كتاب ها و مجلات علمى مورد نياز دسترسى داشت. در فيزيك فقط به خود متكى بود و كس ديگرى را نداشت كه به او تكيه كند! اكتشافات او چنان خلاف عرف بودند كه به نظر فيزيكدانان حرفه اى، با شغلى كه او به عنوان يك كارمند جزء در دفتر ثبت اختراعات داشت، سازگار نبودند.
برگرفته از كتاب اينشتين در 90 دقيقه - جان و مرى گريبين /ترجمه پريسا همايون روز .
به نقل از سي پي اچ تئوري