سلام دوستان
اگر مي شه يه كتاب معرفي كنيد در مورد نجوم مقدماتي چون من اطلاعات درستي از نجوم ندارم
ممنون
Printable View
سلام دوستان
اگر مي شه يه كتاب معرفي كنيد در مورد نجوم مقدماتي چون من اطلاعات درستي از نجوم ندارم
ممنون
سلام يعني اين قدر سوال سخت بود كه كسي جواب نداد يا جواب نداره
تير، سياره فراموش شده
نوشته: جعفر سپهري
هرچند عطارد، اين جهان شگفتانگيز، يكي از نزديكترين همسايگان زمين است، بيشتر بخشهاي آن ناشناخته مانده است. فلز جيوه، اقليم چهارم، فلك دوم، ... پيوندي تنگاتنگ و ناگسستني با اين هفتمين سياره باستانگان دارد.
عطارد(تير) (Mercury)، نزديكترين همسايه خورشيد زندگيبخش، دنيايي از ركوردهاست. از ميان همه اجرامي كه از فشرده شدن ابر پيشستارهاي خورشيد به وجود آمدهاند، عطارد در بيشترين گرما شكل گرفته است. روز آن از پگاه تا پامگاه برابر با 59 روز زميني، طولانيترين روز منظومه شمسي بوده و حتي از يك سال خودش بيشتر است.
هنگامي كه به سمتالشمس (Perihelion)، نزديكترين نقطه به خورشيد، ميرسد، حركت آن به اندازهاي سريع است كه از ديدگاه ناظري كه بر سطح آن قرار دارد، خورشيد در آسمان متوقف شده، رو به عقب حركت ميكند. اين كار تا زماني كه حركت وضعي سياره، پيشي گرفته و خورشيد را دوباره به حركت رو به جلو وادارد، ادامه خواهد داشت. در طي روز، دماي سطح آن به حدود 700 درجه كلوين، گرمتر از سطح هر سياره ديگر، بيش از دماي ذوب سرب رسيده، در شب به 100 درجه كلوين، كه براي انجماد كريپتون كافياست، سقوط ميكند.
چنين مواردي، به طور استثنائي، عطارد را براي ستارهشناسان، جذاب ميكند. به همين دليل چند تلاش مخصوص، براي پژوهشهاي علمي، در باره اين سياره انجام شده است. خواص استثنائي عطارد، آن را براي تطبيق و هماهنگي با هر طرح فراگير تكامل منظومه شمسي، با مشكل روبرو نموده است. ولي از سوي ديگر، همين خواص غير معمول، به نوعي يك محك دقيق و حساس، براي فرضيههاي ستاره شناسان است. هرچمد عطارد، پس از و زهره (ناهيد Venus) و مريخ (بهرام Mars) نزديكترين همسايه زمين است، تنها درباره پلوتوي دوردست، كمتر از آن ميدانيم. بيشتر دانش ما درباره عطارد، از جمله پيدايش و تكامل، ميدان مغناطيسي اسرارآميز، جو رقيق، هسته احتمالا مايع و چگالي بسيار بالاي آن در پردهاي از ابهام باقي مانده است.
عطارد به روشني ميدرخشد، اما چنان دور است كه ستارهشناسان پيشين نتوانستند هيچ جزئياتي از عوارض زمينه آن را تشخيص دهند، و فقط مسير حركت آن در آسمان را ترسيم كردند. همانند ديگر سيارگان دروني، عطارد از ديدگاه ناظر زميني، هرگز بيش از 27 درجه از خورشيد دور نميشود. اين زاويه كوچكتر از زاويهاي است كه در ساعت 1، عقربههاي يك ساعت با هم تشكيل ميدهند. پس بهاين ترتيب، ديدن آن تنها در طول روز امكانپذير است كه آن هم به دليل پخش شدن نور خورشيد منتفي است، مگر در هنگام طلوع يا غروب كه خورشيد كه درست در زير افق قرار دارد. ولي در آن هنگام، عطارد در آسمان خيلي پايين قرار گرفته است و نور آن بايد از ميان هوايي گذر نمايد كه تا 10 بار آشفتهتر و متلاطمتر از هوائي است كه درست بالاي سر ما قرار دارد. بهترين تلسكوپهاي زميني تنها توانايي ديدن عوارضي از سطح عطارد را دارند كه چندصد كيلومتر يا بيشتر پهنا داشته باشند. اين دقت بهمراتب پايينتر از ديدن ماه با چشم غير مسلح است.
با وجود اين موانع، مشاهدات زميني نتايج جالبي داشته است. در سال 1955 ميلادي،1334، ستاره شناسان توانستند پژواك امواج گسيل شده رادار از سطح عطارد را دريافت كنند. با اندازهگيري اثر جابجايي دوپلر در فركانس امواج بازتابي، به حركت وضعي 59 روزه عطارد پي بردند. تا آن زمان، دانشمندان ميپنداشتند كه دوره حركت وضعي عطارد 88 روز و برابر با يك سال آن است، كه به اين ترتيب يك روي آن بايد همواره به سوي خورشيد ميبود. نسبت ساده دو به سه ميان روز و سال سياره بسيار قابل توجه است. عطارد كه در آغاز سريعتر به دور خود ميچرخيد، احتمالا انرژي خود را در طي پديدههاي كششي از دست داده، كند شده و سرانجام در مداري با اين نسبت عجيب به دام افتاده است.
ممكن است چنين به نشر برسد كه رصدخانههاي فضائي، مانند تلسكوپ فضائي هابل، به دليل آنكه محدوديت آشفتگيهاي جوي را ندارند، بايد ابزارهايي ايدهال براي مطالعه عطارد باشند. ولي متاسفانه هابل مانند بسياري از گيرندههاي فضائي ديگر نميتواند بر عطارد تمركز نمايد. به دليل نزديكي به خورسيد، نور شديد آن ميتواند به فطعات حساس نوري آسيب برساند.
تنها راه ديگري كه براي بررسي عطارد باقي ميماند، فرستادن يك سفينه فضائي است تا آن را از نزديك بررسي كند. تنها يك بار در دهه 1970 يك سفينه، مارينر 10، به عنوان بخشي از يك ماموريت بزرگتر، كه كاوش منظومه داخلي شمسي بود، چنين سفري را انجام داد. بردن يك سفينه به آنجا كار سادهاي نبود. سقوط مستقيم به درون چاه پتانسيل گرانشي خورشيد غيرممكن بود. اين سفينه براي رد كردن انرژي گرانش به زهره، بايد با چرخشي سريع به دور آن به سوي عطارد كمانه ميكرد و در نتيجه اين كار، سرعت خود را براي ملاقات با عطارد از دست ميداد. در اين سفر، مدار مارينر به دور خورشيد امكان سه ملاقات نزديك با عطارد را در 29 مارس 1974، 21 سپتامبر 1974 و 16 مارس 1975 فراهم كرد. اين سفينه تصاويري از حدود 40% سطح عطارد را به زمين مخابره نمود كه در نگاه نخست، ظاهري شبيه به ماه را نشان ميداد.
اين تصاوير، متاسفانه به اشتباه، اين عقيده را القاء نمود كه عطارد تفاوت بسيار كمي با ماه دارد و درست همانند ماه خودمان است كه در گوشه ديگري از منظومه شمسي جاي گرفته است. در نتيجه عطارد از برنامه فضائي ناسا قلم خورد، و بخش بزرگي از اين سياره همچنان بررسي نشده باقي ماند.
در جستجوي آهن
با سفر مارينر، دانش ما از عطارد، از تقريبا هيچ چيز، به آنچه كه امروزه ميدانيم، ارتقاء يافت. تجهيزاتي كه با سفينه حمل شدند،حدود 2000 تصوير با قدرت تفكيك مؤثري حدود 1.5 كيلومتر را به زمين مخابره كردند. دقت اين تصاوير همانند تصاويري از ماه است كه ميتوان از زمين توسط يك تلسكوپ بزرگ گرفت. ولي تمام اين تصاوير، همه از يك سوي عطارد تهيه شده و هنوز ديگر سوي آن ديده نشده است.
با اندازهگيري شتاب مارينر در ميدان گرانش به شدت نيرومند عطارد، ستارهشناسان به يكي از غيرعاديترين خصوصيات آن، يعني چگالي بالاي سياره پي بردند. اجسام جامد (غير گازي) ديگر يعني زهره، ماه و مريخ و زمين، كاملا چگال هستند. كوچكترها، يعني ماه و مريخ، چگالي كمتر و بزرگترها،يعني زمين و زهره، چگالي بيشتري دارند. عطارد خيلي از ماه بزرگتر نيست ولي چگالي آن همانند سيارهاي به بزرگي زمين است.
مشاهده اين پديده سرنخي اساسي براي پي بردن به ساختار دروني عطارد است. لايههاي بيروني يك سياره جامد، از مواد سبكتر مانند سنگهاي سيليكاتي تشكيل شده است. با پيشروي در عمق، به دليل فشار لايههاي بالايي و تركيب متفاوت لايههاي دروني، چگالي افزايش مييابد. هسته بسيار چگال سيارههاي جامد، به طور عمده، از آهن تشكيل شده است.
پس در ميان سيارههاي جامد، عطارد بايد،به نسبت ابعادش، داراي بزرگترين هسته فلزي باشد. اين يافته، گواهي زندهاي براي فرضيه پيدايش و تكامل منظومه شمسي است. ديدگاه بيشتر ستارهشناسان برايناست كه همه سيارهها در يك زمان از فشرده شدن ابرهاي دور خورشيد شكل گرفتهاند. اگر اين فرضيه درست باشد، آنگاه خاص بودن چگالي عطارد را ميتوان به يكي از سه شكل زير توضيح داد:
· يكي اين كه تركيبات ابر خورشيدي در نزديكي مدار عطارد با جاهاي ديگر فرقي اساسي داشته باشد، تفاوتي خيلي بيش از آنكه مدلهاي تئوريك پيشبيني ميكنند.
· دوم آنكه در آغاز عمر منظومه شمسي، خورشيد چنان پر انرژي بوده كه بر اثر گرماي آن عناصر فٌرار و كم چگال عطارد، بخار شده از آن گريختهاند.
· سوم آنكه يك جسم بسيار پرجرم، درست پس از شكل گيري عطارد، با آن برخورد كرده باشد كه موجب بخار شدن مواد كمچگاليتر شده است.
وضعيت شواهد كنوني هنوز به گونهاي نيست كه بتوانيم از ميان اين سه امكان يكي را برگزينيم.
از همه عجيبتر اينكه، تحليل دقيق يافتههاي مارينر به همراه مشاهدات طيفسنجي مداوم از زمين، در شناسائي كوچكترين اثري از آهن در سنگهاي سطح عطارد ناموفق مانده است. فقدان آهن در سطح عطارد، به شدت با مقدار پيشبيني شده آن در قسمتهاي دروني عطارد، در تضاد است. آهن در پوسته زمين وجود دارد. با طيفسنجي، وجود آن در سنگهاي ماه و مريخ نيز تاييد ميشود. پس عطارد، تنها سياره از منظومه داخلي شمسي است كه آهن آن - كه از چگالي بالائي برخوردار است - در هستهاش متمركز شده و در پوسته آن سيليكاتهائي ديده ميشود كه چگالي پايينتري دارند. دانشمندان حدس ميزنند كه عطارد آنقدر مدت زيادي به صورت مذاب بوده است كه مانند يك كوره ذوب آهن - كه در آن آهن پس از ذوب شدن به زير تفالهها ميرود - مواد سنگين در مركز آن تهنشين شده باشند.
يكي ديگر از يافتههاي سفينه مارينر 10، ايناست كه عطارد داراي يك ميدان مغناطيسي نسبتا نيرومند است. ميدان آن از همه سيارگان دروني، به غير از زمين، قويتر است. ميدان مغناطيسي زمين ناشي از فرآيندي به نام ديناموي خودگردان است كه در آن فلزات مذاب هادي الكتريسيته در هسته سيال زمين ميچرخند. اگر ميدان مغناطيسي عطارد هم ناشي از پديدهاي همانند باشد، نتيجه ميگيريم كه اين سياره بايد يك هسته سيال داشته باشد.
اين فرضيه هم يك مشكل دارد. اجسام كوچكي مانند عطارد، به نسبت حجم خود، از مساحت سطحي بالايي برخوردارند. به فرض آنكه ديگر شرايط يكسان باشد، نتيجه ميگيريم كه اجسام كوچكتر انرژي خود را زودتر به فضا گسيل ميكنند. اگر عطارد، همانگونه كه چگالي بالا و ميدان مغناطيسي آن نشان ميدهد، داراي يك هسته آهني باشد، آنگاه اين هسته ميبايست ميليونها سال پيش سرد و جامد شده باشد. يك هسته جامد هم نميتواند اساس و بنيان يك ديناموي خودگردان باشد.
از اين تناقض، نتيجه ميگيريم كه مواد ديگري نيز بايد در هسته باشند كه با پايين بردن نقطه ذوب آهن، باعث مايع ماندن آن در دماهاي پايينتر شوند. گوگرد، يك عنصر فراوان كيهاني، ميتواند يك كانديد مناسب باشد. در مدلهاي جديدتر پيشنهاد ميشود كه هسته عطارد از آهن جامد تشكيل شده ولي پوستهاي مايع از آهن و گوگرد با دماي 1300 درجه كلوين پيرامونش، احاطه شده باشد. اين فرضيه، گرچه هنوز اقبات نشده، به نظر ميرسد پاسخ مناسبي براي تناقض ياد شده باشد.
همين كه سطح سيارهاي به اندازه كافي جامد شد، بر اثر تنشهاي مداومي كه در طي زمانهاي طولاني تحت آن قرار ميگيرد، ترك برداشته، يا در اثر برخورد شهابسنگها مانند تكه شيشهاي خرد ميشود. پس از تولد در چهار ميليارد سال پيش، عطارد تحت بمباران شهابسنگهاي بزرگي قرار گرفته است كه توانستهاند از پوسته شكننده بيروني آن به داخل نفوذ كرده، سيلابهايي از گدازه را بر سطح آن جاري كنند. بعدها نيز، برخوردهايي كوچكتر موجب جريان يافتن گدازه شد. اين برخوردها بايد آنقدر انرژي آزاد كند تا بتواند لايه سطحي را ذوب نموده و يا بتواند در لايههاي زيرين - كه مايع هستند- نفوذ كنند. سطح عطارد، توسط وقايعي كه پس از جامد شدن لايه بيروني آن رخداده، خالكوبي شده است.
زمينشناسان سيارهاي، كوشش كردند با سودجستن از اين عوارض و بدون داشتن آگاهي دقيقي از نوع سنگهايي كه سطح آن را تشكيل ميدهند، پي به تاريخ پر رمزوراز اين سياره ببرند. تنها راه براي تعيين دقيق عمر يك سياره، سودجستن از اطلاعات راديومتري نمونههاي بازگردانده شده از آن سياره است. ( در مورد عطارد چنين چيزي در دسترس نيست و در آينده نزديك هم در دسترس نخواهد بود). ولي بهجز آن زمينشناسان سيارهاي، راهحلهاي نبوغآميري براي تعيين عمر نسبي آن دارند كه بيشتر برپايه اصل برهمنهش (Superposition) است: هر عارضهاي كه بر روي عارضهاي ديگر قرار بگيرد يا شكافي در آن ايجاد كند از آن جوانتر است. از اين اصل استفاده مخصوصي در تشخيص عمر نسبي گودالها (Crate) به عمل ميآيد.
گذشتهاي پر برخورد
در سطح عطارد، چند گودال كه با حلقههاي هم مركز تپهها و درهها احاطه شده به چشم ميخورد. احتمال دارد اين حلقهها هنگامي تشكيل شدهاند كه يك شهابسنگ در هنگام برخورد با سطح عطارد، مانند سنگي كه در يك استخر ميافتد، در سطح ذوب شده، ايجاد امواج دايرهاي نموده، و سپس اين امواج درجا جامد شدهاند. كالوريس (Caloris)، دهانهاي به قطر 1300 كيلومتر، بزرگترين اين گودالها است. برخوردي كه اين گودال در اثرٍ آن ايجاد شد، از خود زمينهاي صاف بر جا گذاشت كه بر روي آن، آثار برخوردهاي كوچكتر بعدي ثبت شده است. با برآوردي از نرخ برخوردها و توزيع اندازه گودالها ميتوان تخمين زد كه زمان اين برخورد حدود 3.6 ميليارد سال پيش بوده است. به اين ترتيب ميتوان از زمان اين برخورد به عنوان يك مبدا زمان سود جست. اين برخورد چنان تكاندهنده بود كه سطح سوي ديگر عطارد را نيز تغيير داد، در نقطه مقابل كالوريس عوارض و شكافهاي زيادي به چشم ميخورد.
همچنين، سطح عطارد، به وسيله خطوطي برجسته با خاستگاهي ناشناخته بريده بريده شده است كه به صورتي مشخص در جهتهاي شمال به جنوب، شمالشرق به جنوبغرب و شمالغرب به جنوبشرق قرار دارند. به اين طرحها شبكه عطارد گفته ميشود. يك توضيح براي علت اين نقشهاي شطرنجي اين است كه پوسته آن هنگامي جامد شده است كه سياره بسيار سريعتر به دور خود ميچرخيد، شايد با روزي كه تنها 20 ساعت به طول ميكشيد. به دليل اين تغيير سريع، سياره يك برآمدگي در استوا پيدا ميكندكه پس از كند شدن آن به اندازه كنوني، جاذبه باعث كرويتر شدن شكل آن ميشود. اين بريدگيها هنگامي ايجاد شدند كه پوسته ميخواست خود را با اين تغيير شكل هماهنگ كند. اين كه اين چينخوردگيها از گودال كالوريس گذر نكردهاند گواه بر اين است كه پيش از اين برخورد تشكيل شدهاند.
در هنگامي كه چرخش عطارد كند ميشد، گرماي آن هم رفته رفته از دست ميرفت تا جايي كه محدودههاي بيروني هسته جامد شد. انقباض حاصله احتمالا از مساحت سطح سياره، حدود يك ميليون كيلومتر مربع كاسته است كه منجر به ايجاد شبكهاي از عوارض گشته است كه به صورت رشتهاي از تپهها يا كوهها بر سطح عطارد ديده ميشوند.
در مقايسه با زمين كه فرسايش، بيشتر گودارهاي حاصل از برخورد شهابسنگها را از سطح آن پاك كرده است، عطارد، مريخ و ماه داراي سطوحي با گودالهاي فراوان هستند. همچنين بهجز گودالهاي عطارد كه كمي بزرگترند، گودالهاي اين سه سياره از نظر اندازه داراي توزيع همانندي هستند. اين پديده نشان ميدهد كه سرعت اشيائي كه با عطارد برخورد كردهاند، از سرعت اشيائي كه با سيارگان ديگر برخورد كردهاند، بيشتر بوده است. اين نكته با گردش اين اجسام در مداري بيضوي به دور خورشيد همخواني دارد: اين اجسام در نزديكي مدار عطارد كه به خورشيد نزديكتر است، سريعتر از نقاط بيروني مدارشان حركت ميكنند. پس اين اجسام همه از يك خانواده بودهاند كه احتمالا از كمربند سياركها سرچشمه ميگيرد. در عوض، اندازه دهانه گودالهاي اقمار مشتري، از توزيع متفاوتي برخوردار است كه نشان ميدهد، با گروه ديگري از اجسام برخورد كردهاند.
جو رقيق عطارد
ميدان مغناطيسي عطارد، آنچنان نيرومند است كه بتواند ذرات بارداري همانند پروتونهاي موجود در باد خورشيدي را به دام اندازد. اين ميدان مغناطيسي باعث تشكيل كرهاي به نام سپر مغناطيسي پيرامون عطارد ميشود، كه نسخه كوچكتري از سپر مغناطيسي زمين است. اين كرهها به نسبت فعاليت خورشيد پيوسته در حال تغيير و دگرگوني هستند. به دليل اندازه كوچكترش، سپر مغناطيسي عطارد ميتواند بسيار سريعتر از سپر مغناطيسي زمين تغيير كند. از اين رو ميتواند به سرعت به باد خورشيدي، كه در محدوده عطارد 10 بار نيرومندتر از زمين است واكنش نشان دهد.
باد تند خورشيدي پيوسته، سطح آفتابديده عطارد را بمباران ميكند. ميدان مغناطيسي عطارد آنچنان نيرومند است كه بتواند جلوي رسيدن اين باد به سطح سياره را بگيرد، مگر هنگاميكه خورشيد بسيار فعال بوده و يا هنگامي كه عطارد در سمتالشمس قرار دارد. در اين هنگام باد خورشيدي راه خود را براي رسيدن به سطح عطارد پيدا كرده، پروتونهاي پر انرژي آن با برخورد به مواد پوسته، باعث كنده شدن آنها ميشوند. همين ذرات كنده شده هستند كه در دام سپر مغناطيسي گرفتار ميآيند.
البته اجسامي به داغي عطارد، به دليل آنكه سرعت حركت مولكولهاي گاز از سرعت گريز سياره بيشتر است، نميتوانند جو قابل ملاحظه و چشمگيري را پيرامون خود نگه دارند. مواد فرار عطارد، به هر اندازه كه باشند، خيلي زود در فضا گم ميشوند. به همين دليل تا مدتهاي مديد نظر بر اين بود كه عطارد جو ندارد. ولي دستگاه طيفسنج سفينه مارينر 10، مقادير ناچيزي از هيدروژن، هليم و اكسيژن را نشان داد. پس از آن، مشاهدات زميني هم آثاري از سديم و پتاسيم را آشكار ساخت.
هنوز به درستي سرچشمه اين جو و علت وجود اين مواد در آن مشخص نشده است. جو عطارد، برخلاف پوشش گازي زمين، پيوسته در حال از دست رفتن و جايگزيني است. بخش اعظم آن به احتمال قوي، مستقيم يا غيرمستقيم توسط باد خورشيدي ايجاد شده است. برخي از مواد تشكيل دهنده آن ممكن است از سپر مغناطيسي يا از سقوط مستقيم مواد به صورت شهابسنگ ايجاد شده باشد. البته همين كه يك اتم، توسط باد خورشيدي از سطح عطارد كنده شود، به اين جو رقيق افزوده ميشود. همچنين ممكن است هنوز هم اين سياره، آخرين بقاياي ذخاير نخستين خود از مواد فرار را به بيرون براند.
منبع : [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
اگر در سياهچاله بيفتم چه اتفاقي براي من مي افتد؟
فرض كنيد سوار بر فضا پيماي خود به طرف سياهچاله اي كه ميليون برابر خورشيد جرم دارد و در مركز كهكشان ما قرار دارد ،حركت مي كنيد .(واقعا جاي بحث دارد كه آيا در مركز كهكشان ما سياهچاله وجود داشته باشد،فرض كنيد چنين چيزي باشد.)
در فاصله بسيار دوري از سياهچاله موشك خود را خاموش كنيد.چه اتفاقي مي افتد؟
اوايل شما هيچ نيروي گرانشي احساس نمي كنيد،ز يرا در حال سقوط آزاد هستيد.همه اعضاي بدن شما و فضا پيما به طور يكساني كشيده مي شوند. به خاطر همين احساس بي وزني مي كنيد.
(اين واقعا همان چيزي است كه براي فضا نوردان در مدار زمين اتفاق مي افتد.حتي اگر نيروي گرانش فضا نورد را به طرف زمين بكشد،هيچ نيروي گرانشي احساس نمي كند.زيرا همه چيز به طور يكساني كشيده مي شود).همچنان كه به مركز سياهچاله نزديك مي شويد احساس نيروي گرانش كشندي مي كنيد.فرض كنيد كه پا هاي شما نسبت به سرتان به مركز سياهچاله نزديكتر باشند.با نزديك شدن شما به مركز سياهچاله نيروي گرانش بيشتر وبيشتر مي شود ،بنا براين پاهايتان نسبت به سرتان تحت تا ثير نيروي گرانش بيشتري قرار مي گيرند،بنابراين احساس كشيدگي مي كنيد.(اين همان نيروي كشندي است و شبيه همان نيرويي است كه باعث جزر و مد روي كره زمين مي شود).همچنان كه به مركز نزديك و نزديكتر مي شويد اين نيرو قوي و قوي تر مي شود،و سر انجام باعث پاره شدن بدن شما مي شود.براي سياهچاله هاي بزرگي مانند اين سياهچاله اي كه در آن افتاده ايد ،نيروي كشندي تا حدود ششصد هزار كيلومتر (km600000)دورتر از مركز آن قابل توجه نيست.
اگر در سياهچاله كوچكتري مي افتاديد ،مثلا سياهچاله اي كه جرم آن در حدود جرم خورشيد است ،در شش هزاركيلومتري(km6000) مركز سياهچاله ،نيروي جزر ومدي شما را تحت تاثير قرار مي دهد،وخيلي قبل از آنكه از افق سياهچاله عبور كنيد،بدن شما را پاره مي كند.(به خاطر همين سياهچاله بزرگي را فرض كرديم ،چون مي خواستيم حد اقل تا زماني كه به داخل سياهچاله وارد شويد زنده بمانيد).
شما در زمان سقوط چه چيزي را مشاهده مي كنيد؟با كمال تعجب چيز خاصي نمي بينيد.تصوير اشياي دور ممكن است به دلايل ناشناسي كج شوند،چون گرانش سياهچاله نور را به طرف خود مي كشد؛ اين درون سياهچاله اتفاق مي افتد.هنگامي كه شما از پيرامون سياهچاله عبور مي كنيد تصوير اشياء خارجي را مي بينيد،زيرا نور اشياءخارجي هنوز به شما مي رسد.هيچ كس از بيرون نمي تواند شما را ببيند،زيرا نور پراكنده از شما نمي تواند از گرانش سياهچاله بگريزد.
اين سفر شما چقدر طول مي كشد؟ بستگي دارد كه از كجا (چقدر دورتر)شروع كرده باشيد.
فرض كنيد در حال سكون از جايي شروع كنيد كه ده برابر شعاع سياهچاله باشد.پس براي سياهچاله اي كه ميليون برابر خورشيد جرم دارد ،حدود هشت دقيقه طول مي كشد تا به آنجا برسيد.بعد از آنكه اين فاصله را پيموديد،فقط هفت ثانيه طول مي كشد كه شما با نقطه تكين برخورد كنيد.اين زمان بستگي به اندازه سياهچاله دارد .بنا بر اين اگر در سياهچاله كوچكتري بيفتيد زمان مرگ شما زود تر فرا مي رسد.بعد از آنكه از افق سياهچاله عبور كرديد در هفت ثانيه باقيمانده ممكن است وحشت كنيدو نا اميدانه تمام تلاش خود را بكنيد و موشك خود را روشن كنيد تا از اين نقطه تكين دور شويد.متا سفانه،بي فايده است چون نقطه تكين جلوي شما قرار دارد و هيچ راهي براي دور شدن از آن وجود ندارد.در حقيقت به سختي مي توانيد موشكتان را روشن كنيد و به زودي با نقطه تكين برخورد مي كنيد.تجربه خوبي است به شرطي كه برگرديد و از ادامه مسافرت لذت ببريد.
ترجمه: زينتي
منبع :parash.persianblog.com
تلاش براي ديدن سايه سياهچاله
نويسنده : فرشيد كريمي
به گفته اخترشناسان طي چند سال آينده ميتوان سايه كلي سياهچاله واقع در مركز كهكشان راه شيري را مشاهده كرد.
در هسته كهكشان راه شيري يك سياهچاله پرجرم قرار دارد كه نور را به درون خود مي مكد و بدين ترتيب باعث نامرئي شدن خود مي شود. اما اختر شناسان مي گويند كه طي چند سال آينده قادر خواهند شد سايه كلي اين سياهچاله را مشاهده كنند.
آوري برادريك (Avery Broderick) از مركز اختر فيزيك هاروارد مي گويد" كليد و اساس اختر شناسي سياهچاله اي اكنون در چنگ ماست. ما اكنون مي توانيم سايه اي كه سياهچاله بر روي مواد اطراف خود مي اندازد مشاهده كرده و اندازه و چرخش خود سياهچاله را تعيين كنيم.هيچ چيز حتي نور نمي تواند از حوزه گرانشي شديد يك سياه چاله فرار كند. و به دليل اينكه از خود نور يا هر گونه شكلي از ماده منتشر نمي كند ، مدرك قابل روئيتي از وجود آنها در دست نيست. اما همينكه ماده به داخل كشيده مي شود ، گرم شده و انرژي را به صورت "نقاط داغ" (Hot Spots) منتشر مي كند. بخشي از اين تابش فرار كرده و قابل رديابي مي گردد. اختر شناسان قبلا تابش ناشي از نقاط داغ را درست بيرون از سياهچاله رديابي كرده اند. آنها عقيده دارند كه اين تابشها پس زمينه اي را ترسيم مي كند كه شناسه و به عبارت ديگر سايه سياهچاله بر روي آن خودنمائي مي كند.به دليل اينكه فن آوري جهت روئيت اين سايه تا چند سال آينده امكان پذير نخواهد بود ، برادريك و آويل اوب از مركز اختر فيزيك هاروارد مدلي را طراحي كرده اند كه ظاهر اين سايه را پيش بيني مي كند.
نقطه داغ تابش به دور سياهچاله مي چرخد اما محققين نمي دانند كه آيا خود سياهچاله هم مي چرخد يا نه. بنابراين Broderick و Loeb دو حالت را ايجاد كردند : يكي سياهچاله بدون حركت و ديگري چرخش با حداكثر سرعت. در هر كدام از حالتها ، نقطه داغ بصورت يك حباب با رنگهاي رنگين كماني كه به دور يك صفحه آبي سخت مي چرخد نمايش داده مي شود. صفحه آبي نمايانگر صفحه پيوسته سياهچاله است كه ماده در آن جمع و داغ مي شود تا در نهايت به درون خود سياه چاله مكيده شود.برادريك مي گويد" مشاهده تمام وقايع تا لبه سياهچاله واقع در مركز كهكشان راه شيري يك رصد واقعا قابل ملاحظه است: چاله اي با قطر 10 ميليون مايل كه بيش از 25.000 سال نوري دور مي باشد. بمنظور روئيت اين سايه ، اختر شناسان به راديو تلسكوپي نياز دارند كه به بزرگي كره زمين باشد. يك چنين تلسكوپي كما بيش درتحقيقات استفاده مي شود. به جاي راديو تلسكوپي كه اندازه غول آساي آن امكان ساخت را غير ممكن مي كند ، اختر شناسان قرائتهاي مجموعه اي از تلسكوپهاي submillimeter سراسر قاره را ادغام خواهند كرد.
قبلا از اين روش كه interferometry ناميده مي شود براي مطالعه پرتوها و علائم طول موج بلند فضاي خارج استفاده شده است. اختر شناسان معتقدند كه بررسي علائم طول موج كوتاه مي تواند تصاويري با كيفيت بالا از ناحيه بيروني سياهچاله ايجاد كند. چاه گرانشي موجود در مركز كهكشان راه شيري بهترين هدف براي رصد با استفاده از interferometry مي باشد زيرا اين روش وسيع ترين منطقه از آسمان را براي رصد سياهچاله پوشش مي دهد. ادغام نتايج رصدهاي انجام شده توسط ابزارهاي فروسرخ مي تواند تصوير با كيفيت تري بوجود آورد.لينكولن گرين هيل (Lincoln Greenhill) از مركز اختر فيزيك هاروارد مي گويد: رصدهاي فرو سرخ و Submillimeter مكمل يكديگر هستند. ما مي بايد هر دو روش را براي بوجود آوردن با كيفيت ترين رصدها مورد استفاده قرار دهيم. اين تنها راهي است كه بتوان يك تصوير كامل از مركز كهكشاني بدست آورد." اما يك تصوير واضح و شفاف از اين سياهچاله تنها حسن شناسائي و رويت سايه آن نيست. اين داده ها در نهايت به اختر شناسان كمك خواهد كرد تا فرضيه نسبيت عام انيشتين را در ميان ميدان گرانشي شديدا قدرتمند يك سياهچاله مورد آزمايش قرار دهند.زمانيكه اختر شناسان به اين هدف نايل شوند ، اولين تصوير از سايه سياهچاله و صفحه يكنواخت درون آن به كتابهاي درسي راه خواهد يافت و نظريات ما در مورد گرانش گستره فضا- زمان كه قويا منحني تصور مي شود مورد آزمايش قرار خواهند گرفت.
نقل از سي پي اچ تئوري
منبع : پارس اسكاي
میدانیم که نظریههایی مثل ابر ریسمان جهان را با ابعاد بیشتر از 3 بعد میدانند. اما یک جهان 4بعدی چگونه خواهد بود؟ منظور از بعد چهارم زمان نیست بلکه بعدی فیزیکی است که بر سه بعد ما عمود است. برای درک بهتر این بعد بهتر است بعد سوم را با بعد دوم مقایسه کنیم. با این کار ما میتوانیم رابطه این دو را به رابطه بعد سوم و چهارم تعمیم دهیم. خوب ما میدانیم که یک کاغذ دو بعد دارد (از ضخامت صرف نظر کنید) :طول و عرض ما میتوانیم این دو خط را در کاغذ بر هم عمود رسم کنیم اما آیا میتوانید خط سومی هم روی کاغذ عمود بر ان دو رسم کنید؟ نه برای رسم این خط ما به بعد سوم نیاز داریم. در مورد بعد چهارم هم همینطور است: بعدی که میتوان از ان خطی بر مکعب عمود کرد. به بعد دوم بر میگردیم. بیاید حیاتی را در بعد دوم در نظر بگیریم در این جهان دو بعدی موجوداتی زندگی میکنند: مربعها مثلثها چند ضلعیها و دایره. حالا سراغ مربع میرویم. این موجود اطرافیان و اجسام را به صورت خط میبیند دقت کنید خود ما هم اطراف خود را دو بعدی میبینیم (مضحک به نظر میرسد!) ولی خیلی ساده دوری و نزدیکی را درک میکنیم. این موجود هم مثل ما است ولی یک بعد کمتر میبیند! حالا خود را فرض کنید که دارید به ان مربع نگاه میکنید. چه میبینید؟ شما میتوانید هم خود مربع و هم پشت و هم داخل بدن مربع را یک زمان ببینید! این برای مربع غیر قابل درک است که کسی بتواند داخل بدن او را ببیند. همان طور که ما نمیتوانیم درک کنیم که یک موجود چهار بعدی میتواند داخل بدن ما را ببیند! ما میتوانیم یک بطری دو بعدی آب را بدون باز کردن در آن بخوریم!. یا یک گاو صندوق دو بعدی را خالی کنیم ! حالا فرض کنید ما یک کره را داخل دنیای آقای مربع بیاندازیم. او چه خواهد دید؟ او اول یک نقطه میبیند که از هیچ به وجود آمده و هر لحظه به قطر آن افزوده و سپس کم و ناپدید میشود! پس اگر یک کره چهار بعدی در جهان ما بیفتد ما یک نقطه میبینیم که به یک کره تبدیل میشود و سپس هر لحظه بزرگتر میشود. سپس کوچک و نا پدید میشود!
اخترشناسان به تازگی با استفاده از تلسکوپ 3.6 متری NTT توانستند از کم نور ترین کوتوله قهوه ای به طور مستقیم تصویر برداری کنند.به عقیده دانشمندان پس از این کشف ما با نسل جدیدی از سیستم های ستاره ای روبرو هستیم که علاوه بر سیارات اجرام ستاره ای را نیز در بر می گیرند.
با جرمی در حدود بیست تا شصت برابر سیاره مشتری، کم سو ترین همدم ستاره HD 3651 در فراسوی خورشید می باشد.فاصله این کوتوله قهوه ای تا ستاره مادر، شانزده بار از فاصله سیاره نپتون تا خورشید بیشتر است. کوتوله های قهوه ای ستارگان کوچکی هستند که برای سوزاندن هیدروژن جرم کافی ندارند.همچنین به علت فقدان گرمای کافی ،در مرکز آنها هم جوشی هسته ای هم صورت نمی گیرد. دمای سطحی یک کوتوله با گذشت زمان کاهش می یابد و به دمای سیاره نزدیک می شود. در نهایت درخشندگی بسیار اندک آشکار سازی آنها بسیار دشوار می کند.
ستاره HD 3651 با جرمی برابر خورشید در فاصله ی 36 سال نوری از ما در صورت فلکی حوت(ماهی) قرار دارد.تا مدت ها تصور می شد که این ستاره تنها میزبان سیاره ای فراخورشیدی می باشد؛ این سیاره نیز با جرمی کم تر از جرم زحل و فاصله ای کم تر از فاصله عطارد تا خورشید هر 62 روز یک بار به دور ستاره مادر در گردش است.
مار کوس موگرائر که مسئولیت هدایت این تحقیقات را بر عهده داشته می گوید: کشف جدید از اهمیت زیادی برخورداری است و می توان از ان نتیجه گرفت که سیارات و کوتوله های قهوه ای توانایی شکل گیری پیرامون یک ستاره مادر را دارا می باشند.
موگرائر به همراه تیم تحقیقاتی خود برای نخستین بار در سال 2003 میلادی با استفاده از تلسکوپ فرو سرخ 3.8 متری یوکیرت در ایالت هاوایی نقطه نورانی مبهمی در اطراف ستارهHD 3651 کشف کردند.سرانجام پس از 3 سال تحقیق و رصد های شبانه روزی با استفاده از تلسکوپ 3.6 متریNTT واقع در لاسی لا، آنها به این نتیجه رسیدند که نقطه نورانی ،ستاره ای در پس زمینه نبوده، بلکه یک کوتوله قهوه ای است.
[IMG]
http://www.parssky.com/news/my_documents/pictures3/BZ8_2006-1019dwarf.jpg[/IMG]
نمایی از ستاره HD 3651 HD 3651Bبه همراه کوتوله قهوه ای
کوتوله قهوه ایHD 3651B کم سو ترین همدم ستاره ای است که تا کنون به طور مستقیم کشف شده و علاوه بر این در ماموریت نقشه برداری از آسمان پالومار هم ثبت نشده است.به بیان دیگر به دلیل دمای پایین کوتوله قهوه ای که بین 500 تا 600 درجه سانتیگراد می باشد و همچنین جرم نسبتا اندک آن، سیصد هزار بار کم نور تر از خورشید بوده و در طیف فرو سرخ نیز قابل مشاهده نمی باشد. HD 3651B در دسته ستارگان کوتوله قهوه ای سردT ) ( جای می گیرد.
موگرائر می افزاید: با توجه به درخشندگی بسیار اندک کوتوله های قهوه ای سرد، جستجوی آنها در طیف فرو سرخ هم بسیار مشکل است به طوری که تا کنون تنها دو نوع از این گونه اجرام آن هم به طور غیر مستقیم کشف شده است.مطالعه کوتوله های قهوه ای نقش بسیار مهمی در افزایش دانش ما نسبت به اجزای تشکیل دهنده اتمسفر آنها دارا می باشد.
در حال حاضر بیش از 170 ستاره در فراسوی خورشید دارای همدم سیاره ای می باشند.در اطراف برخی از این ستارگان علاوه بر سیاره، اجرام ستاره ای نیز وجود دارند؛این بدان معنا است که سیارات نیز می توانند در محیط و شرایطی آشفته بوجود آیند.در حالیکه سیارات منظومه شمسی در محیطی نسبتا آرام و به دور ستاره ای واحد شکل گرفته اند.
سیاره همدم در مقایسه با کوتوله قهوه ای در فاصله ای نزدیک به دور ستاره مادر HD 3651 در گردش بوده ، به طوری که HD 3651B هزار و پانصد بار از این فاصله دور تر است.
parssky.com
این شبها حوالی نیمه شب آسمان شبهای پائیزی پذیرای صور فلکی زمستانی است. جبار با دستی پر به سراغ رصدگران می آید.
این شبها صورت فلکی های فصل پائیز بر آسمان شب حکمرانی می کنند. تنها کافی است تا نیمه شب صبر کنید تا طلوع با شکوه صورت فلکی هائی نظیر جبار را مشاهده کنید. دیگر خبری از دجاجه و شلیاق نیست. آنها کوله بار خود را بسته اند و جای خود را به شکارچی آسمان شبهای زمستانی داده اند. همه ما هنگامی که صحبتی از صورت فلکی جبار می شود ناخداگاه به یاد مشهور ترین جرم غیر ستاره ای آسمان شبهای زمستانی می افتیم. بله. سحابی جبار. هدفی که تا به حال بارها به شکار تلسکوپهای فضائی نظیر هابل در آمده است. زادگاهی بسیار عظیم که ستارگان زیادی در قلب آن شکل می گیرند. در میان رصدگران دنیا با نامهائی نظیر " موج آسمان " و " تونل شب " نیز شناخته می شود. اگر در این شبهای پائیزی خواب از سرتان پرید می توانید حوالی نیمه شب حتی با چشم غیر مسلح به نظاره آن بنشینید. حق نیست که در مورد سحابی جبار حرفی به میان بیاید و صحبتی در مورد سحابی کله اسبی نشود. سحابی تاریکی که در تصاویر مختلفی که از آن گرفته شده است به شکل یک سر اسب دیده می شود. از مشاهده آن هیچ گاه سیر نمی شوید. در سمت چپ آن می توانید سحابی زیبای " مرد دونده " را نیز پیدا کنید. نمائی را که در بالا می بینید حاصل کار آقای " رابرت گندلر " است که با استفاده از فیلتر های سحابی مخصوص عکاسی توانسته چنین منظره ای را به نمایش بکشد.
parssky.com
این ماهواره که در طول موج فرو سرخ به بررسی آسمان می پردازد با ارزشی برابر سیصد میلیون دلار در سال 2009 میلادی به مدار زمین پرتاب خواهد شد.
سازمان فضایی ناسا به تازگی با آغاز پروژه ساخت ماهواره " کاوشگر نقشه بردار فرو سرخ میدان دید باز " یا همان ماهواره " Wise" موافقت نموده است.این ماهواره تمامی آسمان را در طول موج فرو سرخ مورد بررسی قرار خواهد داد. متخصصین سازمان فضایی ناسا هم اکنون مشغول طراحی و ساخت تلسکوپی هستند که به جستجوی اجرام ستاره مانند در نزدیکی ما و همچنین کهکشان های درخشان دور دست خواهد پرداخت.
دکتر ادوارد رایت کارشناس اصلی پروژه از دانشگاه ایالتی کالیفرنیا در این باره می گوید:بررسی آسمان در طیف فرو سرخ همیشه ما را با پدیده هایی غیر منتظره مواجه می نماید.
مراحل اولیه ساخت این ماهواره بیش از 8 سال به طول انجامیده و پیش بینی می شود برای تکمیل آن به 300 میلیون دلار بودجه نیاز باشد.بر طبق برنامه ریزی ها ، ماهواره Wise در سال 2009 میلادی به فضا پرتاب خواهد شد و پس از قرار گیری در مدار ویژه خود به دور زمین، در طی هفت ماه ماموریت به جمع آوری داده های گوناگون خواهد پرداخت.
گستردگی این ماموریت به دان حد است که می توان تمامی اجرام کاتالوگ های مختلف را بررسی نمود.مانند کوتوله های قهوه ای و یا ستارگان کم سویی دیگری که از ستاره پروکسیما قنطروس هم به زمین نزدیک ترند.کوتوله های قهوه ای گوی های داغی هستند که برای سوزاندن هیدروژن جرم کافی ندارند.همچنین به علت فقدان گرمای کافی ،در مرکز آنها هم جوشی هسته ای هم صورت نمی گیرد. دمای سطحی یک کوتوله قهوه ای فقط چند هزار درجه است که آن هم با گذشت زمان کاهش می یابد و به دمای سیاره نزدیک می شود. در نهایت درخشندگی بسیار اندک، آشکار سازی آنها را بسیار دشوار می کند.اما از آنجا که کوتوله های قهوه ای به خاطر گرمای شان در طیف فرو سرخ به تابش می پردازند ، تلسکوپ Wise قادر به مشاهده آنها خواهد بود.
دکتر پیتر آیزن هارد متخصص پروژه Wise از آزمایشگاه موتور های پیشران ناسا در این باره می افزاید:تعداد زیادی ستاره کوتوله قهوه ای(حتی بیشتر از ستارگان) در اطراف ما وجود دارد ، اما به دلیل کم سو بود نشان، تا کنون موفق به یافتن شمار کمی از آنها شده ایم .
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
رایت و آیزن هارد به تازگی به همراه جمعی دیگر از محققان با استفاده از تلسکوپ فرو سرخ اسپیتزر سازمان فضایی ناسا موفق به شناسایی ستارگان کوتوله قهوه ای شدند. یافته های اخیر تلسکوپ اسپیتزر حاکی از آن است که تعدادی از سیارات فرا خورشیدی به دور ستارگان کوتوله قهوه ای در گردشند. Wiseبا ویژگی های منحصر به فرد خود ، دانش ما را نسبت به این اجرام افزایش خواهد داد.به طوری که می توانیم به در راستای کاوش برای سیارات فرا خورشیدی ،به جستجوی نزدیک ترین کوتوله های قهوه ای به زمین بپردازیم.
علاوه بر این Wise قابلیت جستجوی درخشان ترین کهکشان ها را نیز دارا می باشد.برخی از این کهکشان ها چنان دورند که 11.5 میلیارد سال نوری طول کشیده تا نور شان به زمین برسد.کهکشان های دور و یا کهکشان هایی که در آغاز پیدایش کیهان شکل گرفته اند، بسیار درخشان تر از راه شیری هستند.اما به عقیده دانشمندان ذرات غباری که این کهکشان ها را فرا گرفته اند مانع از تابش نور فرابنفش و یا مرئی می شود.با این وجود کهکشان های مذکور به یاری وجود همان ذرات در طیف فرو رخ بسیار درخشانند،اما از آنجا که تعدادشان اندک است ، پروسه یافتن آنها نیز مشکل خواهد بود.در این بین بار دیگر تلسکوپ Wise برتری خود را نسبت به سایر ابزار های اپتیکی در جستجوی دقیق آسمان برای یافتن این گونه از کهکشان ها نشان خواهد داد.
دکتر آیزن هارد در پایان خاطر نشان کرد : جستجوی چنین کهکشان های وقتی نمی دانید کجا را باید بگردید،بسیار مشکل است.به همین منظور ما ناچاریم تمام آسمان را بررسی نماییم.
ابزار های آشکار ساز این ماهواره پانصد برابر از نمونه نقشه بردار قبلی به نام "ماهواره ستاره شناسی فرو سرخ "(پروژه مشترک ناسا و اروپا) که در سال 1983 به مدار زمین پرتاب شد، حساس تر اند.
هم اکنون آزمایشگاه موتور های پیشران ناسا مدیریت پروژه ماهواره " کاوشگر نقشه بردار فرو سرخ میدان دید باز " را برعهده دارد و ابزار فرو سرخ و مدار گرد این ماهواره نیز به ترتیب توسط آزمایشگاه دینامیک فضایی و موسسه هوا فضا و فناوری بال طراحی و ساخته خواهد شد.پس از تکمیل پروژه هدایت ماموریت بر عهده آزمایشگاه موتور های پیشران ناسا خواهد بود.از دیگر موسساتی که در اجرای این ماموریت نقش دارند می توان به مرکز پرواز های فضایی گادارد ناسا ،مر کز آنالیز و پردازش تصاویر فرو سرخ در موسسه فناوری کالیفرنیا ، آزمایشگاه علوم فضایی برکلی و مرکز آموزش علوم دانشگاه کالیفرنیا اشاره کرد.
برای دستیابی به اطلاعات بیشتر پیرامون ماهواره Wise به آدرس های زیر مراجعه نمایید
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
parssky.com
با سلام .نقل قول:
نوشته شده توسط imhn
ببين دوست من ، من كه خيلي گشتم اما هنوز پيدا نكردم برات بزارم . اگه پيدا كردم چشم .
اينجا گاهي اوقات خيلي بايد انتظار بكشي .
با تشكر