آشنايی با نظريه معروف دکتر حسابی
ذرات تا بینهايت ادامه دارند ...
خلاصه اي از تئوري معروف او:
دكتر حسابي يكبار تابستان براي مدت كوتاهي به ايران بازگشت و در خانه اي متعلق به آقاي جماراني تابستان را سپري مي كرد و در همين ايام در حين مطالعات به اين فكر افتادند كه »علت وجود خاصيتهاي ذرات اصلي بايد در اين باشد كه اين ذرات بي نهايت گسترده اند و هر ذره اي در تمام فضا پخش است و نيز هر ذره اي بر ذرات ديگر تاثير مي گذارد«. به اين ترتيب به فكر آزمايشي افتاد كه اين نظريه را اثبات و يا نفي كند . او با خود فكر كرد اگر اين تئوري صحيح باشد بايد چگالي يك ذره مادي به تدريج با فاصله از آن كم شود و نه اينكه يك مرتبه به صفر برسد و نبايد ذره مادي شعاع معيني داشته باشد. پس در اينصورت نور اگر از نزديكي جسمي عبور كند بايد منحرف شود و پس از اينكه محاسبات مربوط به قسمت تئوري اين نظريه را به پايان رسانيد پس از بازگشت به امريكا به راهنمايي پرفسور انيشتين در دانشگاه پرنيستون به تحقيقات در اين زمينه پرداخت. پرفسور انيشتين قسمت نظري تئوري را مطالعه كرد و دكتر حسابي را به ادامه كار تشويق كرد. دكتر حسابي به راهنمايي پرفسور انيشتين به تكميل نظريه پرداخت سپس يك سال ديگر در دانشگاه شيكاگو به كار پرداخت و آزمايشهايي در اين زمينه انجام داد. وي با داشتن يك انتر فرومتر دقيق توانست فاصله نوري را در عبور از مجاورت يك ميله اندازه بگيرد و چون نتيجه مثبت بود آكادمي علوم آمريكا نظريه دكتر حسابي را به چاپ رسانيد. برخي همكاران از نامأنوس بودن و جديد بودن اين فكر متعجب شدند و برخي از اين نظريه استقبال كردند.
شرح آزمايشهاي انجام شده و نتيجه آن:
در اثبات اين نظريه اگر در آزمايش, نور باريك ليزر از مجاورت يك ميله وزين چگال عبور داده شود, سرعت نور كم مي شود. در نتيجه پرتو ليزر منحرف ميگردد. هرگاه پرتو ليزر بطور مناسبي از ميان دو جسم سنگين كه در فاصله اي از هم قرار دارند عبور داده شود انحراف آن هنگام عبور از مجاورت جسم اول و سپس از مجاورت جسم دوم به خوبي معلوم ميشود و اين انحراف قابل عكسبرداري است. اين آزمايش گسترده بودن ذره را نشان مي دهد. بر طبق اين آزمايش انحراف زياد پرتو ليزر فقط در اثر پراش نبوده بلكه مربوط به جسم است. بر حسب اين نظريه هر ذره, مثلاً الكترون, كوارك يا گلويون نقطه شكل نيست بلكه بي نهايت گسترده است و در مركز آن چگالي بسيار زياد بوده و هر چه از مركز فاصله بيشتر شود آن چگالي بتدريج كم مي شود. بنابراين يك پرتو نور از يك فضاي چگالي عبور كرده و شكست پيدا ميكند و انحراف مي يابد.
اختلاف تئوري بي نهايت بودن ذرات با تئوريهاي قبلي:
در تئوريهاي قبلي هر ذره قسمت كوچكي از فضا را در بر دارد يعني داراي شعاع معيني است و خارج از آن اين ذره وجود ندارد ولي در اين تئوري ذره تا بي نهايت گسترده است و قسمتي از آن در همه جا وجود دارد. در تئوريهاي جاري نيروي بين دو ذره از تبادل ذرات ديگر ناشي مي شود و اين نيرو مانند توپي در ورزش بين دو بازيكن رد و بدل مي شود و اين همان ارتباطي است كه يبن آنها حاكم است و در تئوريهاي جاري تبادل ذرات ديگري اين ارتباط ميان دو ذره را ايجاد ميكند. مثلاً نوترون كه بين دو ذره مبادله مي شود, اما در تئوري دكتر حسابي ارتباط بين دو ذره همان ارتباط گسترده ايست كه در همه جا بعلت موجوديت آنها در تمام فضا بين آنها وجود دارد.
ارتباط اين تئوري با تئوري نسبيت انيشتين:
تئوري انيشتين مي گويد: خواص فضا در حضور ماده با خواص آن در نبود ماده فرق دارد, به عبارت رياضي يعني در نبود ماده, فضا تخت است ولي در مجاورت ماده فضا انحنا دارد. اگر بگوييم يك ذره در تمام فضا گسترده است در هر نقطه از فضا چگالي ماده وجود دارد و سرعت نور به آن چگالي بستگي دارد به زبان رياضي به اين چگالي مي توان انحناي فضا گفت
ارتباط فلسفي اين تئوري با فلسفه وحدت وجود:
در اين نگرش همه ذرات جهان بهم مرتبط هستند. زيرا فرض بر اين است كه هر ذره تا بي نهايت گسترده است و همه ذرات جهان در نقاط مختلف جهان با هم وجود دارند.يعني در واقع قسمت كوچكي از تمام جهان در هر نقطه اي وجود دارد
روابط بين اشيا در جهان اتمى
احمدرضا همتى مقدم
اوايل قرن بيستم مصادف با دو انقلاب بزرگ در نظريه هاى فيزيكى بود، يعنى مكانيك نسبيت و مكانيك كوانتوم. با شروع قرن بيستم مشخص شد كه فيزيك كلاسيك نيوتنى و ماكسولى قادر به پاسخگويى به مشكلاتى كه در بررسى اشيا و با اندازه هاى اتمى رخ مى دهد نيست. اما تا دهه 1920 هيچ نظريه اى قادر نبود به خوبى مسائل حوزه اتمى را تبيين كند. در سال ،1927 «هايزنبرگ» تلاش كرد حالت و تكانه يك الكترون را محاسبه كند. «هايزنبرگ» نشان داد انجام آزمايشى كه با آن بتوان حالت و تكانه يك الكترون را محاسبه كرد ناميسر است. از طرف ديگر هر محاسبه اى كه انجام دهيم، به سبب اختلافى كه ابزار محاسبه گر به وجود مى آورد، تقريبى خواهد بود. او استدلال كرد نه تنها عملاً محاسبه كردن امكان پذير نيست، بلكه به لحاظ نظرى نيز انجام محاسبه به طور دقيق ناميسر است. اما قبل از هايزنبرگ دانشمندان ديگرى در رشد و تكامل نظريه او سهيم بودند. يكى از اين دانشمندان «ماكس پلانك» بود. پژوهش هاى وى در خصوص تابش جسم سياه (جسمى كه همه پرتوهاى تابيده شده را جذب مى كند) نشان داد كه تابش انرژى به صورت جريانى متصل گسيل نشده بلكه گسيل آن در بسته هاى جداگانه موسوم به «كوانتوا» است (quanta). او با اين كشف توانست معادله اى را كه در جست وجوى آن بود صورت بندى كند يعنى hV = E كه «V» بسامد نور و «h» ثابت پلانك است كه عددى بسيار كوچك است و پيوسته در فرمول هاى فيزيك قرن بيستم تكرار مى شود.
اينشتين نيز در نظريه نسبيتش كار پلانك را مبنا قرار داد و تبيين نور بر حسب كوانتوم ها را يكى از اصول موضوعه بنيادى نظريه اش قرار داد. او با كشف اثر «فتوالكتريك» به رشد نظريه كوانتوم يارى رساند. اينشتين پى برد كه نور مركب از ذراتى به نام «فوتون» است. هنگامى كه جريانى از فوتون ها گسيل مى شوند تا به يك صفحه فلزى برخورد كنند الكترون هايى كه صفحه فلزى از آنها ساخته شده است كنده شده و آزاد مى شوند. در سال 1925 نيز «دوبروى» اعلام داشت الكترون ها ذره نيستند بلكه منظومه هايى از امواج اند. «شرودينگر» اين نظريه را گسترش داد و اعلام كرد نه فقط الكترون ها، بلكه فوتون ها، اتم ها و تمام مولكول ها را مى توان به منزله امواج دانست. «هايزنبرگ» در اين سال ها وارد صحنه مى شود. وى نشان داد با توجه به نوع معادله اى كه استفاده مى شود فيزيكدان ها مى توانند كوانتوم هاى نور را ذرات يا امواج محسوب كنند. او در تلاش هايش براى تعيين حالت و تكانه يك الكترون به اين نتيجه رسيد كه دشوارى اى كه در چنين محاسبه اى وجود دارد اين است كه الكترون كوچك تر از يك موج نورى است. چون براى مشاهده الكترون بايد از ميكروسكوپ استفاده كرد و هنگام استفاده از ميكروسكوپ از يك چشمه نور هم استفاده خواهيم كرد. چون بنابر اثر فوتوالكتريك اينشتين، فوتون هاى نور در حالت الكترون ها اختلال ايجاد مى كند در نتيجه در محاسبه حالت و تكانه يك الكترون با دو مشكل روبه روييم:
اول آنكه از هر نورى استفاده كنيم در حالت الكترون اختلال ايجاد مى شود و اگر از پرتوهاى گاماى راديوم استفاده كنيم چون آنها هم بسامد بالا دارند و هم موج هايى با طول موج هاى كوتاه تر از نور، در نتيجه در حالت الكترون اختلال ايجاد مى كنند. به اين ترتيب محاسبه حالت و تكانه الكترون عملاً و نظراً غيرممكن است. اين نظريه كوانتوم جديد به سرعت در حوزه عمل نيز موفقيت خود را ثابت كرد هم در شرح پديده هايى مانند پايدارى اتم ها و هم در پيش بينى جزئيات كمى مانند طول موج و شدت نورى كه اتم ها در هنگام تحريك گسيل مى كنند. در مكانيك كلاسيك نيوتنى، حالت يك سيستم در يك زمان خاص كاملاً با داشتن مكان و تكانه هر يك از اجزاى سازنده آن، مشخص مى شود. در نظريه مكانيك كلاسيك، معادلات حركت مى توانند تغيير حالت سيستم را مشخص كنند. لااقل در مورد سيستم منزوى ساده حل اين معادلات حالت سيستم را در همه زمان هاى بعدى مشخص مى كنند. با توجه به حالت اوليه و نيروهاى عمل كننده بر آن، مكانيك كلاسيك نظريه موجبيتى است. رفتار زمان هاى آينده سيستم منحصراً به وسيله حالت فعلى تعيين مى شود. در اين حالت يك مشاهده ايده آل حالت سيستم نه تنها موقعيت و تكانه دقيق هر يك از اجزاى سازنده آن را در يك زمان خاص تعيين مى كند بلكه پيش بينى حالت آينده دقيق آن را نيز ممكن مى سازد. اگرچه مكانيك كوانتوم از همان كميت هاى ديناميكى استفاده مى كند با اين حال براى سيستمى كه در مورد آن اعمال مى شود (مانند الكترون) حالتى را كه در آن همه كميت ها مقدار دقيقى داشته باشند مشخص نمى كند. در عوض حالت يك سيستم منزوى به وسيله يك مفهوم رياضى انتزاعى نشان داده مى شود. به طور نمونه يك تابع موج يا به طور كلى تر يك بردار حالت (بردارى كه از يك nتايى تشكيل شده است كه تعدادى ورودى و تعدادى خروجى دارد). اين بردار فقط نشان مى دهد كه يك اندازه گيرى از هر كميت ديناميكى سيستم با چه احتمالى، مقدارى مشخص را پيدا مى كند و هيچ يك از اين احتمالات نمى تواند معادل با يك يا صفر باشد. به علاوه هيچ تلاشى براى تعيين حالت اوليه سيستم از طريق اندازه گيرى كميت هاى ديناميكى نمى تواند اطلاعاتى بيش از آنچه يك بردار حالت به ما مى دهد فراهم كند. به طور كلى هيچ اندازه گيرى يا حتى تعيين نظرى حالت فعلى سيستم نمى تواند در چارچوب نظرى مقاديرى را كه در اندازه گيرى هاى يك كميت دلخواه ديناميك در زمان هاى بعدى مشاهد مى شوند، تعيين كند.
در اين معنا، نظريه مكانيك كوانتوم «غيرموجبيت گرايانه» است. مكانيك كوانتوم در دهه 1920 بحث هاى داغى را ميان فيزيكدانان ايجاد كرد كه در نهايت به «تفسير كپنهاگى» انجاميد. تفسير كپنهاگى به صورت كلى بيان مى كند كه كامل ترين توصيف يك سيستم در يك زمان معين تنها از نظر احتمالاتى پيش بينى رفتار آتى آن را ممكن مى سازد. اين تفسير كپنهاگى اشاره بر اين دارد كه جهان غيرموجبيتى است. آيا اين سخن به معناى نفى عليت است؟ عليت واژه مبهمى است. اگر عليت به اين معناست كه پديده هاى تكرارپذير قوانين طبيعى را تاييد مى كنند پس مكانيك كوانتوم نفى عليت نيست حتى اگر اين نظريه دلالت بر اين داشته باشد كه جهان نهايتاً غيرموجبيتى است. اگر عليت معادل با موجبيت (نظريه اى موجبيت گرايانه است كه آگاهى معين درباره رويدادهايى معين در زمان و مكان خاصى بدهد) است، پس عليت در چنين جهانى ناتوان است. اما آيا عليت مى تواند در يك جهان غيرموجبيتى وجود داشته باشد؟ اين سئوال و سئوالاتى مشابه بحث هاى دقيق فلسفى را ايجاد كرده است كه تا به امروز محل نزاع فيلسوفان است.
فلسفه علم _ نيكلاس كاپالدى. ترجمه على حقى. 1377.
منبع :
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]