نانو تيوپ هاي كربني و روشهاي ساخت آن ها
نانو تيوپهاي كربني:
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
نانو تيوب كربني بهترين گزينه است كه تقريبا به طور اتفاقي توسط يك محقق ژاپني در سال 1991كشف شد.نانو تيوبها صفحاتي از اتمهاي كربن هستند كه درون قسمتي غلطك مانند حركت مي كنند ودر ظاهر شبيه توريهاي سيمي هستند كه بر روي يك سمت آنها پوششي قرار گرفته باشد.اين نانو تيوبها فوق العاده محكم هستند.
آنها 10 برابر از فولاد محكمتر ند در حاليكه وزنشان يك ششم وزن فولاد است. اين امتياز باعث شده است كه آنها اولين انتخاب براي ساختن پلها، هواپيماها وحتي سفينه هاي فضايي باشند. تنها مشكل اين است كه بزرگترين نانو تيوبي كه در آزمايشگاه ساخته مي شود تنها چند ميلينتر است. اما اين مسئله باعث شده كه درمورد ماشينهاي كوچك ، نانو تيوب ها ي كربني ايده آل باشند. يكي از مشكلاتي كه بر كيفيت ابزار MEMSتاثير منفي مي گذارد ساييدگي قسمتهاي بسيار كوچك آنهاست كه در هر ثانيه هزاران بار اتفاق مي افتد. اما در ياتاقانهاي ساخته شده از نانو تيوبها تقريبا هيچ گونه اصطحكاكي وجود ندارد.وامتيازمهم اين است كه نانو تيوبها در هر دو حالت رسانا ونارسانا وجود دارند واين ويژگي موجب استفاده آنها در وسايل مختلف الكتريكي شده است.
روشهاي توليد نانو تيوب كربني:
در سال 1991 توسط پژوهشگر ژاپني به نام سوميو ايجيما كه متخصص ميكروسكوپ آزمايشگاه NECبود ،آزمايشي به وقوع پيوست كه تا به حال سهم به سرتئي در توسعه نانو تكنولوژي داشته است. وي كه به دستكاري وتغيير روش هاي ارائه شده توسط محققين موسسه ي فيزيك هسته اي ماكس پلانگ جهت توليد فولرين مشغول بود، دو الكترد گرافيت را به جاي اتصال در فاصله كمي از يكديگر قرار داد وبين آنها قوس الكتريكي برقرار كرد. اين آزمايش سبب شد كه وي به طور كاملا اتفاقي نانو تيوب هاي كربني را كشف كند. اهميت روز افزون اين مواد در صنعت به دليل خواص مكانيكي والكتريكي جالب ومتنوع آنها ست .پيش بيني مي شود كه اين مواد بتوانند در بسياري از ساختار هاي نانو متري آينده به كار روند. دو نوع ساختار متفاوت نانو تيوب كربن وجود دارد،كه از بقيه اشكال آن تا حدودي متمايز است:
1- نانو لوله تك جداره Single Wall
2- نانو لوله چند جداره Multi Wall
اين دو مورد وخصوصا نوع تك جداره آن صرفا به دليل سادگي توجه پژوهشگران بيشتري را به خود جلب كرده است.نانو لوله تك جداره از يك ورقه ي گرافيت پيچيده به صورت استوانه به وجود آمده كه دو سر آن به حالت كروي مسدود است.تفاوت نوع چند جداره به وجود آمده كه درون هم قرار دارند. در ميان انواع روشهاي توليد نانو تيوب كربني تك جداره ،سه روش از اهميت وارزش بالاتري بر خوردار دارند. اين روشها عبارتند از :
1- قوس الكتريكي Arc Discharge
2- رسوب گذاري بخار شيميايي :
(Chemical Vapor Deposition or CVD)
3- تبخير ليزري (Laser Vaporization)
کرمهای ضدآفتاب نانویی چگونه کار ميکنند
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
صنايع آرايشي از اكسيدهاي غيرآلي، نظير اكسيد روي و تيتانيم، استفاده ميكنند، اما استفاده از اين اكسيدها به علت خاصيت سفيدكنندگي روي پوست محدود است. سفيدي به طور مستقيم با پخش نور رابطه دارد. به طور كلي با كاهش اندازة ذرات، شاهد افزايش جذب نور ماوراء بنفش توسط ذرات (به علت عبور كمترِ اشعهها از بين ذرات) و كاهش پديدة سفيدي (به علت كاهش پديدة پخش نور) هستيم. بهتازگي روشهاي گوناگون براي توليد نانوذرات، توسعه يافته و بر صنعت کرمهاي ضدآفتاب اثر گذاشتهاند....... کرمهای ضدآفتاب نانویی چگونه کار ميکنند :
صنايع آرايشي از اكسيدهاي غيرآلي، نظير اكسيد روي و تيتانيم، استفاده ميكنند، اما استفاده از اين اكسيدها به علت خاصيت سفيدكنندگي روي پوست محدود است. سفيدي به طور مستقيم با پخش نور رابطه دارد. به طور كلي با كاهش اندازة ذرات، شاهد افزايش جذب نور ماوراء بنفش توسط ذرات (به علت عبور كمترِ اشعهها از بين ذرات) و كاهش پديدة سفيدي (به علت كاهش پديدة پخش نور( هستيم. بهتازگي روشهاي گوناگون براي توليد نانوذرات، توسعه يافته و بر صنعت کرمهاي ضدآفتاب اثر گذاشتهاند.
1-سفيدي
وقتي ماده نوردهي شود، پديدههاي زير ديده ميشوند:
آ) عبور نور که منجر به گذشتن آن از ماده بدون هيچ تأثير متقابلي است؛
ب) نورِ نافذ که منجر به پخش نور ميشود؛
پ) انعکاس نور از سطح، مانند آنچه در آينه رخ ميدهد؛
ت) انعکاس نفوذي که منجر به پخش نور از سطح ميشود.
اثر سفيدي ناشي از پخش نور به وسيلة ذرات است. بنابراين، براي کاهش سفيدي بايد ميزان نور پخششده را کم كرد.
2- پخش نور و اندازة ذرات
شدت نور پخششده به وسيلة يک تکذره، تابعي از اندازة ذره است.مشاهده ميشود، با افزايش اندازة ذرات، نور مرئي به علت برخورد با ذرات پخش ميشود و با برگشت نور به چشم، ذراتْ سفيد ديده ميشوند. بنابراين، براي کاهش تأثير سفيدي، کاهش اندازة دانه راهي است بسيار مؤثر.
. نانوماده نور را بدون انحراف از خود عبور ميدهد، به همين خاطر نسبت به نور شفاف است.
. مواد با ذرات در ابعاد ميكرومتر نور را پراكنده ميكنند. بنابراين، نسبت به نور مات و نيمهشفافاند و سفيد ديده ميشوند.
ميزان پخش نور به اندازه ذره بستگی دارد و مشخص است كه با افزايش اندازة ذرات، ميزان پخششوندگي نور بيشتر ميشود.
3-جذب اشعة ماوراي بنفش و بهترين اندازة ذره
نور ماوراي بنفش (UV) طول موج كمتر و انرژي بيشتری از نور مرئي دارد. قرار گرفتن در مقابل تابش ماوراي بنفش از مهمترين علل آسيب هاي پوستي و سرطان پوست است. به همين خاطر، جذب اين اشعه و ممانعت از رسيدن آن به پوست بدن موضوع تحقيق بسياري از مراكز علمي دنيا براي ساليان طولاني بوده است. جذب UV در مواد غيرآلي نظير TiO2 و ZnOناشي از دو اثر است:
الف ـ جذب فاصلة باند؛ ب ـ پخش نور UV
الف ـ جذب فاصلة باندي
اکسيد روي و اکسيد تيتانيم نيمههادياند و بهشدت نور UV را جذب و نور مرئي را عبور ميدهند. سازوكارِ جذب UV در اين مواد شامل مصرف انرژي فوتون براي تهييج الکترون از نوار ظرفيت به نوار رسانايي است.
فاصلة باندي يا «گپ انرژي» چيست؟
مي دانيم که اتم ها از ترازهاي انرژي تشکيل شده اند و اين ترازهاي انرژيِ حاوي الکترون، در جسم جامد تشکيل نوارهايي را مي دهند که الکترونها در آنها قرار گرفتهاند.
اما فضاهايي بين اين نوارهاي انرژي وجود دارند که هيچ نوار حاوي الکتروني نمي تواند در آنها جا بگيرد. اين فضاها را «فاصلة باندي» يا «گپ انرژي» مي گويند. در جامدهاي رسانا نوارهاي انرژي مي توانند پر، نيمهپر يا خالي از الکترون ــ که در اصطلاح «نوار رسانايي» ناميده مي شود باشند. همچنين گپ انرژي آنها در مقايسه با نيمههادي ها کوچکتر است. در نيمههادي ها نوارهاي انرژي نيمهپر وجود ندارند و گپ انرژي آنها کمي بزرگتر از رساناهاست. از همين رو، الکترونها در رسانا ها و نيمهرساناها مي توانند با گرفتن مقداري انرژيِ گرمايي ــ براي رساناها کمتر، براي نيمهرساناها بيشتر ــ برانگيختگي گرمايي پيدا كنند و از لايه هاي انرژيِ پُر به لايه هاي انرژيِ خالي بروند. اين عمل در نارساناها به علت بزرگ بودن گپ انرژي امکان ندارد.
ZnO و TiO2 داراي انرژي باند ev3/3 تا ev4/3 مربوط به طول موجهاي تقريباً 365 نانومتر تا 380 نانومتر هستند. نورهاي زير اين طول موجها انرژي کافي براي تحريك الکترونها دارند. به بيان ساده، الكترونهاي اين ذرات انرژي نور UV را جذب ميكنند و از رسيدن اين امواج به پوست مانع ميشوند. پس ZnO و TiO2 داراي خاصيت شديد در جذب UV هستند و اگر به اندازة کافي کوچک باشند، شفافيت خوبي در برابر نور مرئي خواهند داشت.
ب ـ اندازة دانة بهينه براي جذب UV
با ريزتر شدن ذرات، علاوه بر اينكه در مسير نور UV ذرات بيشتري براي جذب فاصلة باند وجود دارند، نور UV بيشتر پخش خواهد شد. بنابراين، عبور اين نور كاهش مي يابد. جذب فاصلة باند به طور کلي تابعي از تعداد اتمهايي است که در مسير نور UV قرار گرفتهاند. بر اساس تحقيقات تجربي، با کاهش اندازة ذرات، به علت کم شدن فاصلة بين آنها براي عبور نور UV، شاهد عبور كمترِ اين اشعه هستيم. در محدودة نور فرابنفش (زير 400 نانومتر) با كاهش اندازة ذرات، عبور نور كمتر خواهد شد. همين پديده است كه متخصصان را به توليد محصولات ضدآفتاب با خاصيت جذب (SPF) بالاتر رهنمون شده است.
SPF چيست؟
کرمهاي ضدآفتاب بر اساس ميزان توانايي آنها در جذب و دفع اشعة UV درجهبندي ميشوند. اين معيار Sun Protection Factor يا SPF نام دارد. درجات SPF، مانند SPF15 يا SPF20 نشانگر آناند که مصرفکنندة آن قبل از اينکه دچار آفتابسوختگي بشود، تا چه حد ميتواند زير نور آفتاب بماند. براي مثال، شما ميتوانيد بدون استفاده از کرم ضد آفتاب ده دقيقه زير نور خورشيد باقي بمانيد و احساس سوختگي نکنيد. هنگامي که از کرم ضد آفتاب استفاده ميکنيد، ميتوانيد زمان 10 دقيقه را ضرب در ميزان SPF کرم کنيد و به مقدار زمان به دست آمده زير آفتاب بمانيد. اگر SPF کرم شما 15 باشد، شما 150 دقيقه يا 2 ساعت و نيم ميتوانيد در آفتاب بمانيد. اگر پس از مدتي مجددا از کرم استفاده کنيد، ميزان محافظت آن بيشتر ميشود اما، در مقدار زمان ايمن آن تاثيري ندارد.
نتايج:
1- ايجاد پديده سفيدي در ضد آفتاب ها ناشي از پديده پخش نوردر محدوده نور مرئي(400-700 نانومتر) است. اين پديده در ضد آفتاب ها با اندازه ذره درشت، بسيار شديدتر است.به عبارت ديگر كاهش شفافيت باعث افزايش پديده سفيدي مي شود.
.2- در محدوده نور UV با توجه به كمتر بودن فاصله بين ذرات در حالت نانومتري شاهد عبور كمتر نور هنگام ريزتر شدن ذرات هستيم.