تا جایی که من میدونم:نقل قول:
ویکیپدیانقل قول:
حدس گلدباخ در ریاضیات یکی از قدیمیترین مسائل حل نشده نظریه اعداد است. این حدس میگوید:
هر عدد زوج بزرگتر از ۲ را میتوان به صورت حاصلجمع دو عدد اول نوشت.
Printable View
تا جایی که من میدونم:نقل قول:
ویکیپدیانقل قول:
حدس گلدباخ در ریاضیات یکی از قدیمیترین مسائل حل نشده نظریه اعداد است. این حدس میگوید:
هر عدد زوج بزرگتر از ۲ را میتوان به صورت حاصلجمع دو عدد اول نوشت.
با سلام
حد قدر مطلق xsin 1/x وقتی ایکس به سمت صفر رود
از قضیه فشردگی باید نشان بدهیم
سلامنقل قول:
این جواب تقریبا مال یک ماه پیش هست که آقای jones زحمت جواب دادنشو کشیدن
من همه چیز را فهمیدم به جز اون قسمتی که باید یک نقطه از صفحه را پیدا کنیم!
اگه میشه یکم بیشتر برای پیدا کردن این نقطه توضیح بدید اگه هم زحمتشو کشیدید و بدست آوردنش را دقیقا نشون بدید که چه بهتر
راستی این هم لینک پست کامل آقای jones که سوال من هم توش نقل قول شده:
کد:http://forum.p30world.com/showpost.php?p=4488893&postcount=2421
سلاح بچه ها حداقل 10 روز بود داشتم ریاضی می خوندم آخر با 9.5 انداختم استاد:41:
حالا ترم دیگه باید همنیازش کنیم با ریاضی 2 :41:
نقل قول:نقل قول:اینکه خطی که موازی بردار نرمال دو خط کشیدن الزاما هر دو رو قطع نمیکنهنقل قول:
خب حالا چون صفحه می خوام که بین این دو خط به یک فاصله باشه این صفحه با هر کدوم از خط ها موازی و بنابراین طبق چیزی که jones نوشته بردار نرمال صفحه رو در میاریم
حالا با داشتن یک نقطه بر روی خط L و نرمال صفحه، صفحه ی شامل این خط L و موازی صفحه مورد نظر رو پیدا می کنیم
دوباره با داشتن نقطه ای از H و نر مال صفحه ،صفحه ی شامل این خط H و موازی صفحه مورد نظر رو پیدا میکنیم
فرض کنین این دو صفحه
ax+by+cz=d
ax+by+cz=e
صفحه مورد نظر برابر است با
ax+by+cz=(e+d)/2
نقل قول:این سوال هم مال امتحانت بود؟:20:نقل قول:
نه کاش این بودنقل قول:
یک مثال حل کرده بود در مرود پیوستگی بعد تو امتحان میگفت حدش بگیرید
یک چیزی بود
9.5 انداختمون :41:
لوتی گری خیلی خوندم :2:
دوستان ميشه ثابت كنيد كه راديكال 2 عدد گنگ است ؟
لطفا با تمام جزئيات
ممنون
با اجازه اساتید
برهان خلف : رادیکال 2 گنگ نیست پس گویا است
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
در نتیجه ،a^2 زوج است و از اونجا که هر عدد فردی به توان دو فرد است، a نیز زوج است .
[ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]
در نتیجه b^2 زوج است پس b نیز زوج است .
و این تناقض دارد با 1=(a,b) ،چون دو عدد زوج دارای حداقل یک مقسوم علیه مشترک (2) هستند .