jafarsydi
13-07-2014, 18:21
آموزش رندر تحت شبکه Distributed Rendering
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] wYICgiGBwlHBcVITEiJSorLi4uHB8zODMsNygtLisBCgoKDg0O GxAQGywkHyQtLSwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC wsLCwsLCwsLCwsLCw3LCwsLCwsN//AABEIAMoA+gMBIgACEQEDEQH/xAAcAAACAwEBAQEAAAAAAAAAAAAFBgIDBAEABwj/xABMEAABAgMFAwcIBggFBAIDAAABAhEAAyEEEiIxQQUTUQYjMm FxgZEUQlKhscHS8BczU3Ki0QcWJGKSo7LhQ1RjgvEVc5PCNOIl NUT/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBQT/xAArEQACAgEBBwQDAQEBAQAAAAAAAQIRAyEEBRQxQVKREhMyUS JCcRVhoVP/2gAMAwEAAhEDEQA/APsRlznOJDPSjMl8si5aIJk2hi8yW7Uwmh4niGfSE+08obColZ takBbqA3E0UVqHHrjVO5Y7PUhKRaUhnruZhFX6IbCz0j0cJmfK D8Mx9/H3LyNaJc68HWkpcki7poke8k8acNsfOP1gsH+dOv8AhTdfyghs 7lhYJWdpCqM+5mAl61LVyg4XL2vwx+/j7l5HePQr/SBs/wC3/BM+GPfSBs77f8Ez4YOEz9kvDFxGLuXkaI9Cv9IGzvt/wTPhjw/SBs77f+XM+GDhM6/SXhj9/F3LyNEehX/X/Z/2/wDLmfDHvpA2d9v+CZ8MJbLnf6S8MPfxdy8jRHoVvpB2d9v+CZ8 Me+kDZ3+Y/BM+GHwmfsl4YcRi7l5GmPQr/SBs77f8Ez4Y99IGz/t/5cz4YXC5+yXhh7+LuXkaI9Cv9IGzvt/wTPhj30gbO+3/AATPhh8Jn7JeGHv4u5eRoj0K30gbO+3/AATPhjv0gbO+3/BM+GDhM/ZLww9/F3LyNEehX+kDZ/2/8uZ8Me+kDZ/2/wCCZ8MLhc3Y/DD38fcvI0R6Fb6QNnfb/gmfDHfpA2d/mPwTPhh8Jn7JeGHv4u5eRoj0K30g7O/zH4Jnwx36QNn/AG/8uZ8MHC51+kvDD38XcvI0R6Ff6QNn/b/y5nwxz6Qdnf5j8Ez4YOEz9kvDD38XcvI0x6Fb6Qdnf5j8Ez4Y9 9IOzvt/wTPhg4TP2S8MPfxdy8jTHoV/pA2d9v8AgmfDEpfLywKLJnEngJc0mlfR4QuGzL9H4Ye/j7l5GaPQAHLCyEAhayC7czNq2bYYHzP0k7NSSDPUCCQeZnZj/ZErZ8rdKL8MpZItXYo2LYsgJQd5PKriNXCaOAklBYC8WbjF0vY kleEzJp1ILAd7o6hBHZq5YTKcpJKUghVxioigDpfRQ6WndGmda JRuhNxJUSAwS6iNAwBcPpxism05vU0pdSY4cdcgVN5PIP8AiTf FOfHoxmtHJyS2NU5iR169SKQXs8gkoWJpWlqMSUqfXpEHtrlGt Ut2fh+5mSB54Id6Mz1ghtWdfsxvBjf6i9J5IWVQdJmkdw9qIkr kZZhrN8U/DDDIlJBqkLfCytzmHLAJSMTJU4zplSIzZyDdUhMsUcXbmIakEB yKjKleyNXvHauk2Z8Lg7ULS+SVmTVRmN1EHxZERmcmrIzvNYas fDodUMnk5lMJxUSC+O6TidtFDUgeEWJWglghJ1YIS5Gfo9kZvb dqbtzfkrhsNfFC1+psj/U8R8MWJ5GWZhWZ4p+GGSakU5u7XMoAOmt0erjA20TUjpT7l5YC XUlNS4CBUXiSDSuWRrGi2/aV+78i4XD2oHHkZZtTM8U/DEDyNs/GYB95Pw0hkUHERCCc/U3vhPeG19Mj8gtlwdqAH6n2dmeZ4p+GKf1Os/8AqeI+GGa6fkf3jyQ3GIjtu09Zsb2bD2oXZfIuz67zxT8MS/UuzcZn8Sfhhh8Y7ozRp/obV/8ARk8Lh7ULSuRtn03naVJ9l2Jo5H2cZGZ4p+GD4Sflnjtw6euM 5bdtcuc35KWy4O1C0rkdZ/8AU8R8MSl8jLPrvPFPvTDGAfn56o7Xrilt2097E9lw9qF79SrN xmfxJ+GIq5G2bQzf4kt/TDID1RApPdFPeO1dMj8i4XD2oXkcjbONVv2p+GIzOR1nd+c8R8 MMlw/LRy6fn/mM1tu1Xbm/JXDYe1C4nkZZ3H1viPhiz9S7Nxm/xJ+GGGPCNFvDaV+7FwuHtQuq5G2YazX+8n4YinkbZ3qV+KfhrD GtJzHz8vHt32+qJlvDa3p7j8gtlw9qF6ZyPs51XT95PwxQOTUm WoKSmcoh8jLPcQoB4ZlynDHJw7DgX1fhHkyUgij1dimTXqLS4l bZtNU5sfD4u1Ayz7FlpCSlc5LAMCpDp6qJPqMI+09loE6aAVUW seboo/ux9Qm3SzS0pq9Epfsdqd3DhQ/Pdr/Xzv8AuL/qMezYc03OUm9aDIlGKS5E/wDqM2VLC0lIBuktKkuSlAZRNzEQAwJrTOAkjl0cDGWmr0TKwuK kkSXB6Ipn3QZLbgE6XT6gPfC9tGUyRuZEtWIXk3ZSXSEnVQ4tH JyTfra/6z0KP4o2q/SGtLtNACf+3io5CBumNaVavAViP0jzKc6jP/TIDEFy8mlQGYaaMHCqFq+wkg+aoqs4EsNroWNa+yKAucyeZkBL im9szrwm6Q50xZcRDWqFyGE/pLW55wYXLgSnKrrEp5rM3lC9Qly8c+kRVBvUZH0GSKUfcuH4Aa aENC9enurmrOFNRV+yc2LgZJejgNnrHkrnMHkWe76O8suI5BWb sMWVK1hsQyD9JE1TkzXNRiKFElmass0ctnk56ol9IcwEETEgs7 tKADFgARJcZmFwzp+Lm7OCBVV+y4U3OiXLA3cNav1x5U6cw5mz sXZO8swJNMTu7AMKcYi2OhhmfpMmkEmc4BIbm3za826ydjxara RUvl/UArlHznuymCtC+5cqzq3eXgDMm2jFzdnCq497ZWAboZs903eLk axxZnYeYs4TVkbyzOThdda1F0cKHKLEMJ/SUtn3urAc2+bAkbug1o9Imn9I8wm6JqcnfA3YDuqnu4dbLe8tA vPKszuQpYXZWOKqQHZ2w8e+JibNy3EgirI3lmz1VneqLo/2nrhNjGMfpEmM+91AAaW9TmrmqMKln74gP0jTHbfJpq8ts2pzT niaeMAPKJ2N5dnd8St5ZWVjqkaVI04U1eBXPcPJkGjhG8s7pF4 1LF2NB3QlfUGH0/pLmM+8zy+rf/dzdKcHqw646j9Jaz/igZPRGpIpzVch4wuvaG+rsxrjVfsrTMQomrB1XTThEiufeHMWd mBSN5ZsGI4jrnxihH16ZLtI/wD6f5Uv8oqu2v7f+XK+GCIIJLV9ccfjSMZSl0KoDqtFrH+Of/HL+GIi12r7c/8Ajl/DBcpeKLXIwLuDHdVdr5zUzpm0UrCkDjbbT9v/AC5fwwtbV5fzZE1cpUxyjOksE4Aug3batnnAq2WrakpKTNQUBw Mc+UL5umgJVTIkgQO31qVMJUiSqaWF4rsyiklLJBq6iKdKukVq uYmMI/SJMLc4K6jdt2OZQrUaNm7a2SOX01SwkTRU3R9W5OTgbpiH64Gb JlKIWJ9nlJThKcMpReo812YPXrgj5NKvAiXLBGoQkENQMQHFIy llp0WoaWFDyltP2h/hl/BFSuVdprjy/dl9voRjXLigSXCuunjT3xMZybKcVQ0SdqzyFXp6kkCgEqUXPAk gMOusQTta0k0nfgl/DWMgNaxLeeEW5voRSNS9p2n7Y/wSvhjn/VLT9sf/ABy/hjOqYMo6ghiG73NPXBGUnzBpGo7StLE778Ev4YXbZPUZiyS5Kl Elk1L9Qgus0PYfZAS09NX3j7Y6m7ncpGGfkgvLQ9nP3f8A1BgK IPbPqgDSn9IipMhI0rHMzSSm/wCs3h8UB1ocFJyIINQ7ENC9tCwS5NxS505yboUVgXQ1RRKjXD4 GHWdZklqVildiSaEA9oB9sTGTHJHz42uzVBmTynMjeA3iE6PLa pdn746qfZnS8+eTXFvSyRmRWU7khJ4UrWHy17PwL3YSJlxQQbq QyrrJqRTSFYeVhryJKRU3TMFWDXqHJNdfOq9I1UiGgSq0WbEN7 aSC7je9JXpHm2Yrrxbri1SrM6SZ89/SM0sA4w/VOauf75lQu0B6yHYi9vE4QEgFGbOEi7Wr9dY6rylg4lEYiE3w/mi8zuwoO/sg9QUBjNsv2k4gOw3qek/S+rbpMqlW646bVZyr66e4c3jMocrqRzbu79VRBNa7VirIeuPeJ YD0ODsLmhc8axF7U4wySKtL3gcOAL1CDVgBphPXFCBky1WUuN5 aLr0G9yN6ijzX+6le+OmfZgqk+0XtVb05E0H1TlsSj94avBNS7 XirIcki/vEscVUp7ej/AHrFo8ocOmSR9nfyyxUL18MJbV03QAcLsxD720AA4AZvRrQnmt Bm3dFu/s7/AF84Fg6jNd60A5t6Z14wXK7SQo8wXOJYmBlusUSQWqcm7oomC1 Es0nIMi+HTXNnfE3qo0JOwBnlNmYNNnDK6ne/V1DEtKaibww6tpEVWizM2+n5C9znSqSw5rQUrqe2CRNrZwZBfN W8S00uCydC5AUwaiTpSOk2sFLiTQBgZgwgksVM2ZrWKAc0zCDQ kdlPZGuVtSaMlqPbX+qB0xQFVKCQS3ac29RiUu2S2otOT/d61Uw5PVuOUeZy+jWgzL27M1CVer2GBG1P0hIkTVylygChnxqC iSkKa6JZAzap00hT39sZOJGlN8XmUOTqrxwtpHTMtV9JO4DXby t49wOOleUWIFcWhGkbJPqQ2HF7YkbVAkrWqRcZYVLUpTkgpKDe lp0Lv2x1XIyRL51NrnLKSld0qTiIINdcwIq2XLF8FLNU0DaHqr n64JWlGEnIcYxlla0NFBGR6xNGfz+cesqkl7pfjx9ca0ycj7o8 960aFQT1CMtttQkylLIvBJCmydlDViw7jBJVIFbQUd0sggKZbE kAPdUzk5CN8fMiXIHjlxJLYUjNyVrajNlKetT3d0QPLmUz3ONL 6nzavNs2tHp10jLJs9uW11EkpBOHeoDOwfEoO91sz0TEphtQKg TICnUCreJbNjLBdn8ylet6xu6RlqbVcspQLMnrJWpu7m3Ovqzj n67SmJupzoL54s6sFKVo8Y5y7Q1UyWDsjeZGgKjietBn5tGitS rVjrIJcuveBlY6hJdqmmXYxhqmKzevltKyCUl3BxK7KOisE7V0 1fePtgbYErUg7xMsEEsEm8wYF3LsT+UEbV01fePtjo7tr1yRjm 5IJ2RTJHYP6RA+dalhasQoSzh+wU98b5HRHYP6RAjaMxKZhCi1 AW7o5mZpTl/WemHxRcnaa9bp7j+cWDah1SPEiBcy0I0UPVHFTAer56zGaZVDP s20CZVmD1qICWzZKJ67pVMRcWpihQBz1cF8hGnYiqKD5HSunV2 RcgtPV95/GsCbE0A9p8lpEqWuZftBCUlV3epAJCc+gda5Qtm1WUsDNtGrq3 hoKMlty54x9RWmvVTOBPKnZtoXujZglhfvgqKXJusWSQ+SuyCO VXTFKHVCGq0WSuKef3d6K1OMndaE3262zjsydZHDTZ5UxJVvKv QBNZXUS/XBq07P2gm8VzJaaEuZi3IyKQHc0IRQe14yk2ynOS6Xjd3k6gDO ojgWAr6JjdOyKBkyfZK4rRUlk77okmiid01M6PHVT7LlvZ+XS3 mfBLCVozuePVBVa7biO+lZl17ydixNdB6zho3DOIkW1RYTEE1w Bc4tXNutrtX6PbD0EDvLLKxZdoZ8Kd90BeoX3NWHCOS59kJDzb QlgMW8ck1owlUbt1gyryplc9LUSar3k7nSVjotnePogR5Mq2mt 6WoM129MZNXLhxUuO7hE2h0B/KLI3TnjJkb76su5rumJADUFXfSPKnWM5zLRkH53p1NCN1QAU90 FzZ7exF+Wcio72YCtlOXY0csdMtMoiVW0KDzJQYBhvJzIF5Qc1 IDkKPd2w00wplFv5TSZ6AlYWmoVgmEFJY67suzt3iMMm12V6zL QOPOk7w5n/AAqUZPc8b5arZdHPSyC3nzudatOLuFUaieEbbMbVfS8yWWu+fO 5tILnqBzXXiDC0ig1YCTaLKyXmz3OfO0l005mugpEzaLG9Zk8g M43v1lK/4WHVHc+UfRv+pWWjlLKy5pWKhIYXahnha21NnmepcibLTKN24p RmoEu6kAmgCUsp1ZdsKM76Dca6grZW3LPZ3KVLmFQAxrJCQA+H mw7mnd2QRPKqVOO6DpCzcBSVXjeDXhhwlz15CMBNsZI3ktLsyd 5PddDiY1LOfER1E21hR56UWzJmTmQAiopldAc8NYHCL1YKTQwb J2SmQVFK5iipnvrCsnyoOMFUGAGwJswFQnrTVriEmcslnKqKdQ AwjvHVDAkDMFwcmH5x5pp+rU1i9CcwUzgPtxSNwoLOEIJLFiaA ULFjV8jBK0Gh/KMFskPUm6lAJUqtAW4VORyioBIV9mbcs8hwhUwhVSpalKqKBIA ljiS/ZGC0W2yqUtZM9ypRuiawcqNRzVACbze+HNSJIYb7iWKJg6iejQ ZB20bSBG6ta5i0S5qCL0wJVfmgqSCcFaCgKWDNlnGykubRk10A ip9kJbeT/vbzNuiltzpn39UdFpsbHHPAfCne0SLwYvudBXrg3abNbUlIJlu xwX5qu1RunXKp82Mqza8R30rMub83G68gdXUwDNFJp8iQlyeEo ylCSta0hRqsvW6KDClhlpBK1Jxrr5x9sZ9i73dK3pSS6mulRZJ SCOlWLrV01/ePtjobs+czPP8AFBezUQKcP6RAjbWzVzVhaQ+EAhw9CTr2wcsq eaHd/SIzz9I5mZL1yf8A1noj8UJNukKSWUkhnzHzxi9CkaqSO8D/AIg1tNVCTUAGnr4dUVckZaTtOzgvcmKAb78spzb0j6ohch8i/k7dBWxBcA0IPHh2iNE2a04n7p9TQ98t9jy5KAuWGqHoOzPPM+o QgWhLrfq98CWtFMNz1nP3xoKn0PqjDNm4U9YEaZcyg/OMWkNMCcqrGmZMsyVvdWZqFXaFjLehbikQuco9j2OyGUCZpvhR vFajldASAlIpUnvhm5TTC9mVwnpH8SVCCMqcWFTkPZG0ZUiXGz 5hv7Fi5uY7nBfXQO14kjROKo6olNtdiyAmM3TJVU+izaZvre6o +ibZE2ZJWmUu7MN1iVKAooEglNagEQo2xFulKTvJ0oXgSlF6eU teu3qBnJw1Pm9UaqSkZuLQK8vseLm5o/dvqwYtS1WHH1RpsW3LPKF1AIScRUq8olRoW4NdSPyi8rtt1R8o QRe6b2l5hv5PdchR7KR5VptgVWfLJujC9oZIcseiweterqh0hW zqOUqFAXRj1TiF2uqiK8Mhp2RRtW1WcqlqmJXeMtJF1aheBWvD QUiRnWspraJag4YnykmbWnmup+l/tftsTMtgVSfKDAUHlLSxeLFrrBy57IPTraCwZLttjYc3MHHGrm +ugxVp3vpFku2WJw6ZvViW8yp/h9HXJ9abET7XcSRaEEFmL2l5vUcLq1Vp0XiaJlsUqloligq9oa XmWGFgc10rifWCkALNpsRD3VnLzlYKEsKVLgcI6mbYSaomEgBh fXzmrO2Fy6dcn6o3JtNrKUgWhIyYPaXXhNVYXNK16oslz7YSWt SAzOp7RzbDiEsG6dOL6w0IFibYWFJmjqvLwUNGar04ZGJptdjB PNzCdBfU8zC4Ls4c9sF7HZ7fODInIoApr1oS4YpBN4B2zrXE8N NnTNRJlpmqeYAbxCiRnRiasAwiJzSKjGxU2HYbJab4TvcLVCiG d6Ygxf3dcONkkJQhKEvdQGF6p7/XEUKJ4mLAsiPPJ2zWKortaQxjHtJSRZrQVgqTcqAWpXI9/qjTaZhp2iFS3T7SFzrk9CUXlVPlDp/cBSlv3cPY8aY1ZMnQG8psQNEzCGOO8rNhgAI04vrGux7Zs0mYJ kuXMvpKmSVLIYum8qlcJKm7n1jQq02txz0vJWD9qoMLqIu55B8 6GImbbMX7UjMi9etLkhRdKTdepwU7I2aXUzPbY2/ZrQpJWFBg15N8ZlyGOZAY56tRnOBU2w4ju5gL9G8vAL2ZLVYdV WgotVtSoPOlkkE3P2ggDiRdavRrXD1RWq02xj+0pIc4ntLzDvB rdcgmlMxAkkqQPUNcl9yZC9zeu3lVJOd1PHqaNdqGNX3j7YXDO tZYGfLzq3lFKlRzSwevcmGW1k31/ePtjo7tVTkzHNqkG9nh5Xd7hGS3kBJbQg+6NezQDLHd/SIx7STza+pJPhX3Rys0bnL+s9MH+KAtvN5J4sfZAvZdoMu12SZ ombKcvoJrn1PFu8oX4EQJtcyiSCoMT7j+cKCoOZ+gOWkwLsqxq GP8KgT7BHzVHSFYb7RMvyVZstBNVrVmm955Pqz6qOlrXUHriYv 1FyVGi1Lu7tgahjrk2fhF1gm9IfOdNYF7WU0tB4E+14u2atpqh p8nj1jSJcATJ8qU80hXozZR4ec3vjTKUWEZuVKx5LMPAoNOpaY vlKDDPWKrQLLgo8WgmnkpZLamUbTfvICkpuru0Kyo0atTAp4J7 N21Z5CpO9UpKheICUlThRAqchUQJO9AfLUx8suQNhslkm2iXLm qUDLABWogBcxKSQAxLAnWPmwRZjlZpt3RQ3pcksfP0DZZvBrfL Jta98hUtSLSqWQJgWpyVJe8kcX7uqB0mbNU27mpGBLpXvDdocQ ZJDmvXTLKNoqtDJ6mRUqQ1bJNd8Q507sOMsWL0atn3RLc2a8P2 Wa2jCab5vH96mgpG1abSmhtCGoAo70mY5BF43Hr0q6pD8Y4tVo BH7TJoEuDviEOSzYGJzU+cUmSZEWazs5ssx6P9ayOLYq1YVbMn qi8Js7/APxptGuhpuOpzxUHm04PnQeli0FKWtMogC8KTiZg4rwOQzmuoG rROWu0Xm8qkDIKpNaX9zAwoy6aq4wnEdmSaizgP5NM0ckTQBQl hjrVvmkaNn7LkTS+5KQACxUupdi7qyd4vsk2bu1Fc1CgEAC5vA ouxvKvpGnfWNnJwhS5hJUaJz7T+UKTpDSthXkZsuXLStctJClO DUmgWoDPsEZtr7bWmbMRu1Ku0SAhWLCDVQNK8BprGW3BRs0rdr SkmYWCwohQurPmA5Z1gZ+0c5+0yAkDEoCdzeEdDBpTo++JUPVq ynKtEE5PKRQbmlXdSJa+4AXmrXWjavTRZOUClzEIMpQKiAObVk WdRJV3ikA1eU0e0SQakJaaxADlSsGlGf0lNrHlmey3tUoJFCrn 3Sbv1aTcdnwUcQ/aiT6mOdpSXS/HhCXthEjezlLs8wqvKci+xDdMG8373CDGxkrF/eLQXIYICg1C5N5I6vXAzaiJy9+ETApDqF0CaV0L3EsnMM2bMDp BCKTaHJ2CULsahSVMH+6vZ0vl4vTNsYI5mYAc8XsdfbnAQWWYC Bu1hRywmvYGhg2Jybny7RJVNlbxIUFFAuTXQnEq8hJLi6CW1hy X/RJnrROsF2kmf2lQzyGS4zhdjvEGTNbViaahnXwbPQw1cv8AZkq dNlzLOiXKTcF4oQEpWok3SN3hKsJBrpqGMKqp1oSAN/NQlIupCJhAA4BKTQHr74mPIbqzyE2WhMiaK0L5vUedlTSHa1qx r+8fbCrsfb0hEuei0ImzpigDJmKUVGVMBNSCoBiSkuHNDxhstZ xrz6R9sdTdvylf0YZ6pUGNnLwACuX9IjsyS7g6uPGKLCopFNQk +q7/AOsabxd45WW3kl/WeiHxQlzR2+MBrb0O/j1GDVsW0xaW6Kle1hAm1BwrD16cfyMKC+wY0bO5ST1SkI3kwsh CboROUCGAIcEJFH8IsmQL2dbyiTLQyiqouDMC8SCXoMx1xrlz1 vVDDVyIlKmaSaaRo2pJeV2KidkIvjscN2B/Ufl45bZjyVHgxinZ84kywzOE+pvH575ak2TZq5QAmzTs+gT4V9 0Rsi8CT1QStKLyFAhwQRXUQvInuVgm6EkgUHZ3RfQGFhMidosl gnJSLZLWpaHuFO86Cmpg1cHPjAcT0Dz1g8AP7Rt2ZtIY0qOHMK U7tqD35REnL9RxpumYbfsSyITOXIlql4V3Xv5NwUqneIWt0k3b 8iZMASGUgTFV9E3VpA9teyHraNtlzJS0pULykqAoWqNYXhyftA ulE6UKNUEgmuV5NKnqyrDwt/swypdDPb0pWLq0gjDQvRgOBB0gfOsshBQPJSsFILpE03iVF3Im DqGUFGSvom9wNK9zvoc8u0gGvaDC4DTIZs1c6RonTolq1Zg2fY ZUxwbKUm65JE5IBcUSTML9/XF6rFJlrA8lK8muiabzkmpEwdQoMotmb1BdDqrTR+tJFD6o9Z+ URKQCX7ffStITlJuxUqMkhkdCzTasFkImmmbAFZ1bPh3Ru2fbZ ktbJs87HdAvSl1D5k3sNSRR8nrlHJ04rCSmYmWSoFOSr2E0bIU Pnas1YrMtWJ7UkCl87sOig6LF6Bjh1fV41StakXQR21ZLtllJV JVNSJgBZKyQyDUBCk5vrANFlQSf2CY7YRcnscIYqO81NaCLvJl skeUoSaMBLSAoMa0LBn149sWArF/9rQ3nq3aXThchNXLCgud0CVKgbtlMuxSgB+xzCPONydQ1YDnNc y/COTrMly1jmPdN0XJ/o0Uec7VUi5C13h+1S7wdkiWkAsKqzuuKCvGmsdllQdXlSLocKO 7BxMMFakPhpTupBTsNCNitO5e5ZZqQrpHdzCSQMIAUth0lHPhF 82xpVZp9slouTkzJKHvLfn0zUqF1+kbqadZgxyZlrSZhVMC2CS LqUpAAvF8JYv7oSrLNN0oJUErZw+G/dUEqIfMFZr1wdRlsu1WoOkiYmjMQoU4HKmcfX/0bWZ5oV6KHFeOEV7zHy6RLmJUlJm3hdcpK2eupKrrOQGJ0NMo+ gfo35Q2eUoibMKSobtKgBcF0km+6r2aQkMmE0wdDL+kawOgLGV 1mGTpU46hRS/CPhvKC8JpFQCPSbUj3R985U7Ys02ym7PkqJKCE3wFVN0i6aggK NM4+EbRnIWlMxSF3gM3DPeKrpSrxcaZ5QJVzDm9ATPRLdFwLBf E7NnRmz1zj6VajjX94+2PnktN6YhISzkDTNwD6nj6Ha041/ePtjp7s+Tv6MdproGJKeblHilQ8LpHtMWM+UdswHk8snRXtS3f UiLL8cjNJ+5Kvtnph8UIfKArTaJqU2eZMJu3CEruqdKTUg8bwp 1RglTKEqkzZfWsKAPUATnR/mrHysStSkpSQEqTiL11HfpCnad5LZKlhVKDdpSAK+j1jhFRdol qjUi23ei47GEdlbQUVJcqIcZk8YFm1KD5DuHbqOAiEm2qJqrsG XsgoB+QL0paeqMUtJCkANQjgGqR3wQs0wMWyY5QKs9qBALjpkZ jiDl3xk27KoY77/wDIj53MtockLZySWfWunbH0JIyj5RbrO0xYel5XHSsaQQmEFW1 OqyfH3mNOztqJQt0BSlFgMs3/ADhelpF5jlBGVMSgjKhBbveKkqBMa5khSSbyQk53QXAB4HqjXY bSU6U1DjxD6xqtRExF5JyDjrGf9/8AmA8pWWnDq19keeNmvML2HYlmQd6iUHL1dZzqaKJAhd5R3DML eaaMMm/uILyLYQ7Zage0Rn2nY7wvCoMaK7tkPTQCWTajFnun8J7jl81gL Js5oT4ce2DFqsCUh0xiTM4tDUvolma+gON0jrqfVigpIlJIRcs SpqvNITNKFm9QEpXWtD2RgN0k/wBq0/4jfZrOAkvaRLB6Y3SCQCGJS6gpVC4bU0rGqIZ0WVN2mz5pDi8b k53YsBj1L+Aj3kuKmzlksLgKJ7HCGKsdauYl5MkBBNrSCCLo3U lhh++wYMO0mL0bPN1a9+6CCVrElNUgMWunQJIodNIbdAlZSmxI Ips+bd84lE97zG6EsugOJ+wR6bZQCW2fMvNhBRPa7d6Rx1U2Kj Vi66klL2tD+aBLks2uS2ByA4uWyMRmSUG8PKkkMb3NSnJYBgL7 s9Ox+uFbsKCWxClEq0lFnXJwHpBbrN1TAXiXbq4wBs1kU1bJOW bp82bdUGe9RQPRc0araZ7NxiT+1pvB7vNSWAcPW9dd2689Hio2 ZFxf7YLjuealglTZAX3KXw8G6odBZGZZEsG2fNbFW5Ocqw0e/kB7YukySlRUiwTUTQSzInMlNXLXziueuLLPYCtyLSlRSG+rlsA Q9LqiKt6hxjlksiZiribSK3ixlodw6y4C3ZwdMuqE5dAotm2lY Y+SzyniZanvD3ZHxiMiQJqiiZZpstyolRCglLPqTUsAnreNWzt q7tJC+cvEVASi7QAAJDg+qCH/AFOUsEBRT94N6w4jP1P6KVrkzDP2WkzUzitRUkatiYGpOpcu8G bV01/ePtjEZCilwLyWNU4hl1ZRstXTX94+2Oput/lK/owz9BlsiHsnYx8GPuip6Rr2Om9Z7vEEeKQIyScn1YeuOVmlWSX 9Z6YL8UAuU4+rIFcQ8WI9hhL2zmDc4gk/OecPXK+ylcgBOd4PlkQQSHYawmTtlzSGXMvNkFJSG7LpPVDg09 RS+gCZg9ERSXgvM2YEhyp+wf3jOqzjIZ9cXZI67Gm3kJPFAPik QGlpKUq6pj9tGgtydQBLl60A8MPuiu3SgAr7z+FYxc9S0rQalT QwpoI+abUIE6a6R01f1Q3pCyzk+MKu2ZB3y+1vACLgJmFKEk0p BOx7MCs1H57Yy2WyKJF0E9geGbZ+z1PUAcXf54QSlQkENmYEJS kktRz29UZdoIuqdhdVUdR1HzxgrIshFHEenWcKSyqh37+OfbGS lZpdASXOHAOI2Wa0t0Q41T+UbpdllJyQPB4u3gHVDsTkY7VZAs OkZ9Xy0CpnJor9FPf+QhjvE9UeTMpSE50KgPYOR0sjnJpPUlIH rL+yCtm5M2JDc1vCNVkesJAB7402Uli3GLYPXIVGQ7BsTN5NL/Ecut+uMs+4kGWlKRLDputRjmK5guYJLWBAG2LJUrQOYPU+oUd2 fsuyqvPIlmo0P5vrGm37LsiZa1Is0veBCrgYkFQSwF0mpy76xC yLugsz8Y4tClF/GD1ux+nQAMW//XqKXOUoXnYNW6adLTh2REhdf/x+Kv8Ag4bl3Mhundrn0tNIZaoBIJvcaRptU4T5KkKABUlgsCqT xZw4fRwI190j0ilvZiQCixzUJN6olgEqDZsnogHhqa6RITFoKy LEpC7qxeuUSlSSl3Acquqd3z6qR22bP3Swk2tRLKZRlIAYsWxL BdyfCKxJlhKh5WopvEhJlSnKgqim3uV4u/CsaWugqKESl0NxTdYPvHZF4kq1lqcZ0NO2lKxKexL+Vm8B0t3K Au6JB3mbk07IzqEtj+1LuvhBlSgS63CiN7QOLx4RKVjsuSbtQm 6eNQe4w22o41084+2FEXCa2kLOpIQKaAXVm9/eG21dNf3j7Y6W7VU5GGbkhr2COaTX5YRgKWUocFKHcCW9Ub9iF pKfnQRltaedXoCx8QPeDHLy0skr+2erH8UZdph5SzwS/gQfdCdNmk6jxhztKHSU6EEZnUNCf5N1D1xKa6CaBtoXeNCD1PG BEmY7hJ9nthiEkREgO3z8/lFeoC+wC4lKXybxdyfWYjbCVTbulPiJ9kelpN4fOsXKk1J4Z9p qfdESaGi6WOyKfJkk3jdc6tXxiXzrE0JAAgTA8iQHiSixHz86R BRaM01eUDAJTJhAcHKIpV2RoEgEHrECpc7MHMdsTFoTNrniIrm nrjOufFC5sUBsM88YiJ54xhKiY0ypfGJdIdBSxTgEOSA5McnbQ AyrAsAuwD+MTFjJzIHZABy029ZFCAOqBi7QeMGpOz64UlRihPJ e0rUTdSkOekW9QBPqh2gMVlmkmpOUbpVsUDiYjJ/nugzs/keBVcwk8Ehh3u59kaRsZKTRA7T+Z90L1Kw1oDIlzJtJaXHE0ES m2GamWoAgzAklKRUqOgD048eyDiZBSQX9f5x7aZdSAABU11y/4hpioQrQq0YTNsg876zcgk0drycgG7z3Q87G5O2dcpC5tnlX1J TeASmhKBeZqCr5Qv8ALS6Jkm9OVJVdmVABBDpoSSKvpDlsZSU2 WSxKkiUg3j5wuu9OMXN/jYorWhI5W2NEmaEybNLMtnLiUMVHa+HIZssi8CFpmuv9kkOCb3/x2AvOQKMnhr3wc21stc5QWJykEO7AqqVXnooNV4WpqZSSpPlMx gohIZLgiZQqxNnii8ck4ikqZrSpWH9klM9K2fOjk4XOkM9rTjX 94+3shNKZNB5ZMVk4ASxrQDFpi8RnDhaxjX94+2Onu/5SPPm5IaNiHmkuPlh4RDajhYPFPsP/ANhFmxTzSfnQR3bIog6uR4h//WORmS9yX9Z68fxQPUpy3fC3Oa8ocCR4UhjBY1gDtBbTF9r+IeB JJAzPdEUyiHciPTpx8fZFLGExF0yfiTnrGlE4XSxqX9f9oGh3V 3JHac28fVBFSLracIXpWhSIrUOz5aNAZoybzrGY9saN4YYimeo PqYyWy1ACkXWpUDLXkYPTYWM+ybUFykK6mPaKe6MO1JV1QVxDn 3xVySWd2tJ81TjsUPzBgptAOhxofVlw7IlJJ6A9QJeBq8VrVwj YLBMUcIYHjT21jZK2K7X1P2fmfyihA1M8AUHdF9mSteSSetoNW fZ0tOSAT11Prjeiyk6N2xDSHZi2bs4kYi0F7PsuWNHPXFuz5YH X6vdBOUdBTs/POEBRLkXdAn1f8xJKgDkSfnUxoMsR4JhPUCoFXYOqpHz1RlmIc 665v743lYH5QMmW0An590EYqx6kJssAikYbYRvE9Vfnwic63Oo NAzaFvubyYqoQl2+e2LXMQO5YTTelNLlzEsuizJocJcb0E5cKQ zypx8nkApAJly3SLrDCKC7RuynCFWVZZe00OmYuUZZINwuFBdQ C4TlcfvGUNUiRdShBKlXUpQ5qVXQzniTnDyVSTFFmOfIaoBb2R jGzJN4qMmSSc3loq9S9IPM2fz2xknyWqOj7PzETF0NlEvZdlKS 1nkUc/VS6FuyhpAu0nGr7x9sF1lQBI4H2QItPTV94+2OxunWUjz5+SGb Yyxuk1A7w+Q8Iuty03CHDgpOY4s/thQlz1XekrojU9UeM9QHSV4mJybrlKbfq6hHaEklQdWsUqPGAe 2PrM3cDV+P5RxFpX6avExcLQv0leJgjuyVfIHtC+gGakn5+c4n JDvWgrBhVpX6avExEWhbjErMamG92y7he+voH2SWElL5l1Gozz 9saZ6wxrFqbQtukrxMQRaplMav4jGb3XK/kVxC+jI1c/XE/nMQQTaF+krxPGPeUL9JXieEaf5r7iffX0CJwelIpmSgKwZXaF1 xK8THPKVucatNTCe7JPT1D4hfQO5OTLs4p0Un1io9TwwAPkfXA 02qZ6av4jFyZ66YlaanhErdkrf5B76+gpLs/Egd4eNKZSBmQe8QDTPV6SvExFU9fpK8TD/y33C99fQypZswOoED16xOXOSciPEQqG0LpiVrqY4u0r9NXiYh7 qk18iuIS6DlZ1pc4h/EI0omgecnxEI6LQtukrXUxZv1P0leJiluqVfIniF9DsZ6fST4i K1WgaKHiIS1T1ekrxMQNoXXErTUwPdUq0kNbQvoblTxUXh4iBk 6aOPrgGuer0leJjsq0r9NXieMT/kyT+Q3tCrkbzMxZ+sGFy3qtt+aEJSpBJuqM2WxQ1ElCi2VKh3a DJnq9JXiY4q0L9JXiY1ju2S/Yl50+hLknKnpQrfIRKcgpCVSy4q5wdwrwhhStL1Ic9YhZ3636S vExBM9TdJXiYiW65Sk/y/8ABraElyG8TEsxI8RE7o9IeIhNTaVuMavExeJ6vSV4mFHdUq+Q PaF9DDbJaQksQzHUcIW7ScavvH2xLfq9JXiYC2meu+rErM6njH S3fsTxSetmOXMpdD//2Q==
این روش یک تکنیک هست برای کسانی که چندین کامپیوتر قوی دارند که میخواهند در محاسبات رندر از همه آنها استفاده کنند
تمام کامپیوترها از طریق Lan به هم متصل شده و در نهایت محاسبات رندر روی یک سیسیتم ادغام میشود:
دانلود فیلم آموزشی مقایسه کار با رندر تحت شبکه ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
vray distributed rendering tutorial ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]) ability to use multiple computers working in parallel to render a single image. V-Ray 3.0 adds two new Distributed Rendering options: Transfer Missing Assets and Use Local Machine.
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] wYICgiGBwlHBcVITEiJSorLi4uHB8zODMsNygtLisBCgoKDg0O GxAQGywkHyQtLSwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC wsLCwsLCwsLCwsLCw3LCwsLCwsN//AABEIAMoA+gMBIgACEQEDEQH/xAAcAAACAwEBAQEAAAAAAAAAAAAFBgIDBAEABwj/xABMEAABAgMFAwcIBggFBAIDAAABAhEAAyEEEiIxQQUTUQYjMm FxgZEUQlKhscHS8BczU3Ki0QcWJGKSo7LhQ1RjgvEVc5PCNOIl NUT/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBQT/xAArEQACAgEBBwQDAQEBAQAAAAAAAQIRAyEEBRQxQVKREhMyUS JCcRVhoVP/2gAMAwEAAhEDEQA/APsRlznOJDPSjMl8si5aIJk2hi8yW7Uwmh4niGfSE+08obColZ takBbqA3E0UVqHHrjVO5Y7PUhKRaUhnruZhFX6IbCz0j0cJmfK D8Mx9/H3LyNaJc68HWkpcki7poke8k8acNsfOP1gsH+dOv8AhTdfyghs 7lhYJWdpCqM+5mAl61LVyg4XL2vwx+/j7l5HePQr/SBs/wC3/BM+GPfSBs77f8Ez4YOEz9kvDFxGLuXkaI9Cv9IGzvt/wTPhjw/SBs77f+XM+GDhM6/SXhj9/F3LyNEehX/X/Z/2/wDLmfDHvpA2d9v+CZ8MJbLnf6S8MPfxdy8jRHoVvpB2d9v+CZ8 Me+kDZ3+Y/BM+GHwmfsl4YcRi7l5GmPQr/SBs77f8Ez4Y99IGz/t/5cz4YXC5+yXhh7+LuXkaI9Cv9IGzvt/wTPhj30gbO+3/AATPhh8Jn7JeGHv4u5eRoj0K30gbO+3/AATPhjv0gbO+3/BM+GDhM/ZLww9/F3LyNEehX+kDZ/2/8uZ8Me+kDZ/2/wCCZ8MLhc3Y/DD38fcvI0R6Fb6QNnfb/gmfDHfpA2d/mPwTPhh8Jn7JeGHv4u5eRoj0K30g7O/zH4Jnwx36QNn/AG/8uZ8MHC51+kvDD38XcvI0R6Ff6QNn/b/y5nwxz6Qdnf5j8Ez4YOEz9kvDD38XcvI0x6Fb6Qdnf5j8Ez4Y9 9IOzvt/wTPhg4TP2S8MPfxdy8jTHoV/pA2d9v8AgmfDEpfLywKLJnEngJc0mlfR4QuGzL9H4Ye/j7l5GaPQAHLCyEAhayC7czNq2bYYHzP0k7NSSDPUCCQeZnZj/ZErZ8rdKL8MpZItXYo2LYsgJQd5PKriNXCaOAklBYC8WbjF0vY kleEzJp1ILAd7o6hBHZq5YTKcpJKUghVxioigDpfRQ6WndGmda JRuhNxJUSAwS6iNAwBcPpxism05vU0pdSY4cdcgVN5PIP8AiTf FOfHoxmtHJyS2NU5iR169SKQXs8gkoWJpWlqMSUqfXpEHtrlGt Ut2fh+5mSB54Id6Mz1ghtWdfsxvBjf6i9J5IWVQdJmkdw9qIkr kZZhrN8U/DDDIlJBqkLfCytzmHLAJSMTJU4zplSIzZyDdUhMsUcXbmIakEB yKjKleyNXvHauk2Z8Lg7ULS+SVmTVRmN1EHxZERmcmrIzvNYas fDodUMnk5lMJxUSC+O6TidtFDUgeEWJWglghJ1YIS5Gfo9kZvb dqbtzfkrhsNfFC1+psj/U8R8MWJ5GWZhWZ4p+GGSakU5u7XMoAOmt0erjA20TUjpT7l5YC XUlNS4CBUXiSDSuWRrGi2/aV+78i4XD2oHHkZZtTM8U/DEDyNs/GYB95Pw0hkUHERCCc/U3vhPeG19Mj8gtlwdqAH6n2dmeZ4p+GKf1Os/8AqeI+GGa6fkf3jyQ3GIjtu09Zsb2bD2oXZfIuz67zxT8MS/UuzcZn8Sfhhh8Y7ozRp/obV/8ARk8Lh7ULSuRtn03naVJ9l2Jo5H2cZGZ4p+GD4Sflnjtw6euM 5bdtcuc35KWy4O1C0rkdZ/8AU8R8MSl8jLPrvPFPvTDGAfn56o7Xrilt2097E9lw9qF79SrN xmfxJ+GIq5G2bQzf4kt/TDID1RApPdFPeO1dMj8i4XD2oXkcjbONVv2p+GIzOR1nd+c8R8 MMlw/LRy6fn/mM1tu1Xbm/JXDYe1C4nkZZ3H1viPhiz9S7Nxm/xJ+GGGPCNFvDaV+7FwuHtQuq5G2YazX+8n4YinkbZ3qV+KfhrD GtJzHz8vHt32+qJlvDa3p7j8gtlw9qF6ZyPs51XT95PwxQOTUm WoKSmcoh8jLPcQoB4ZlynDHJw7DgX1fhHkyUgij1dimTXqLS4l bZtNU5sfD4u1Ayz7FlpCSlc5LAMCpDp6qJPqMI+09loE6aAVUW seboo/ux9Qm3SzS0pq9Epfsdqd3DhQ/Pdr/Xzv8AuL/qMezYc03OUm9aDIlGKS5E/wDqM2VLC0lIBuktKkuSlAZRNzEQAwJrTOAkjl0cDGWmr0TKwuK kkSXB6Ipn3QZLbgE6XT6gPfC9tGUyRuZEtWIXk3ZSXSEnVQ4tH JyTfra/6z0KP4o2q/SGtLtNACf+3io5CBumNaVavAViP0jzKc6jP/TIDEFy8mlQGYaaMHCqFq+wkg+aoqs4EsNroWNa+yKAucyeZkBL im9szrwm6Q50xZcRDWqFyGE/pLW55wYXLgSnKrrEp5rM3lC9Qly8c+kRVBvUZH0GSKUfcuH4Aa aENC9enurmrOFNRV+yc2LgZJejgNnrHkrnMHkWe76O8suI5BWb sMWVK1hsQyD9JE1TkzXNRiKFElmass0ctnk56ol9IcwEETEgs7 tKADFgARJcZmFwzp+Lm7OCBVV+y4U3OiXLA3cNav1x5U6cw5mz sXZO8swJNMTu7AMKcYi2OhhmfpMmkEmc4BIbm3za826ydjxara RUvl/UArlHznuymCtC+5cqzq3eXgDMm2jFzdnCq497ZWAboZs903eLk axxZnYeYs4TVkbyzOThdda1F0cKHKLEMJ/SUtn3urAc2+bAkbug1o9Imn9I8wm6JqcnfA3YDuqnu4dbLe8tA vPKszuQpYXZWOKqQHZ2w8e+JibNy3EgirI3lmz1VneqLo/2nrhNjGMfpEmM+91AAaW9TmrmqMKln74gP0jTHbfJpq8ts2pzT niaeMAPKJ2N5dnd8St5ZWVjqkaVI04U1eBXPcPJkGjhG8s7pF4 1LF2NB3QlfUGH0/pLmM+8zy+rf/dzdKcHqw646j9Jaz/igZPRGpIpzVch4wuvaG+rsxrjVfsrTMQomrB1XTThEiufeHMWd mBSN5ZsGI4jrnxihH16ZLtI/wD6f5Uv8oqu2v7f+XK+GCIIJLV9ccfjSMZSl0KoDqtFrH+Of/HL+GIi12r7c/8Ajl/DBcpeKLXIwLuDHdVdr5zUzpm0UrCkDjbbT9v/AC5fwwtbV5fzZE1cpUxyjOksE4Aug3batnnAq2WrakpKTNQUBw Mc+UL5umgJVTIkgQO31qVMJUiSqaWF4rsyiklLJBq6iKdKukVq uYmMI/SJMLc4K6jdt2OZQrUaNm7a2SOX01SwkTRU3R9W5OTgbpiH64Gb JlKIWJ9nlJThKcMpReo812YPXrgj5NKvAiXLBGoQkENQMQHFIy llp0WoaWFDyltP2h/hl/BFSuVdprjy/dl9voRjXLigSXCuunjT3xMZybKcVQ0SdqzyFXp6kkCgEqUXPAk gMOusQTta0k0nfgl/DWMgNaxLeeEW5voRSNS9p2n7Y/wSvhjn/VLT9sf/ABy/hjOqYMo6ghiG73NPXBGUnzBpGo7StLE778Ev4YXbZPUZiyS5Kl Elk1L9Qgus0PYfZAS09NX3j7Y6m7ncpGGfkgvLQ9nP3f8A1BgK IPbPqgDSn9IipMhI0rHMzSSm/wCs3h8UB1ocFJyIINQ7ENC9tCwS5NxS505yboUVgXQ1RRKjXD4 GHWdZklqVildiSaEA9oB9sTGTHJHz42uzVBmTynMjeA3iE6PLa pdn746qfZnS8+eTXFvSyRmRWU7khJ4UrWHy17PwL3YSJlxQQbq QyrrJqRTSFYeVhryJKRU3TMFWDXqHJNdfOq9I1UiGgSq0WbEN7 aSC7je9JXpHm2Yrrxbri1SrM6SZ89/SM0sA4w/VOauf75lQu0B6yHYi9vE4QEgFGbOEi7Wr9dY6rylg4lEYiE3w/mi8zuwoO/sg9QUBjNsv2k4gOw3qek/S+rbpMqlW646bVZyr66e4c3jMocrqRzbu79VRBNa7VirIeuPeJ YD0ODsLmhc8axF7U4wySKtL3gcOAL1CDVgBphPXFCBky1WUuN5 aLr0G9yN6ijzX+6le+OmfZgqk+0XtVb05E0H1TlsSj94avBNS7 XirIcki/vEscVUp7ej/AHrFo8ocOmSR9nfyyxUL18MJbV03QAcLsxD720AA4AZvRrQnmt Bm3dFu/s7/AF84Fg6jNd60A5t6Z14wXK7SQo8wXOJYmBlusUSQWqcm7oomC1 Es0nIMi+HTXNnfE3qo0JOwBnlNmYNNnDK6ne/V1DEtKaibww6tpEVWizM2+n5C9znSqSw5rQUrqe2CRNrZwZBfN W8S00uCydC5AUwaiTpSOk2sFLiTQBgZgwgksVM2ZrWKAc0zCDQ kdlPZGuVtSaMlqPbX+qB0xQFVKCQS3ac29RiUu2S2otOT/d61Uw5PVuOUeZy+jWgzL27M1CVer2GBG1P0hIkTVylygChnxqC iSkKa6JZAzap00hT39sZOJGlN8XmUOTqrxwtpHTMtV9JO4DXby t49wOOleUWIFcWhGkbJPqQ2HF7YkbVAkrWqRcZYVLUpTkgpKDe lp0Lv2x1XIyRL51NrnLKSld0qTiIINdcwIq2XLF8FLNU0DaHqr n64JWlGEnIcYxlla0NFBGR6xNGfz+cesqkl7pfjx9ca0ycj7o8 960aFQT1CMtttQkylLIvBJCmydlDViw7jBJVIFbQUd0sggKZbE kAPdUzk5CN8fMiXIHjlxJLYUjNyVrajNlKetT3d0QPLmUz3ONL 6nzavNs2tHp10jLJs9uW11EkpBOHeoDOwfEoO91sz0TEphtQKg TICnUCreJbNjLBdn8ylet6xu6RlqbVcspQLMnrJWpu7m3Ovqzj n67SmJupzoL54s6sFKVo8Y5y7Q1UyWDsjeZGgKjietBn5tGitS rVjrIJcuveBlY6hJdqmmXYxhqmKzevltKyCUl3BxK7KOisE7V0 1fePtgbYErUg7xMsEEsEm8wYF3LsT+UEbV01fePtjo7tr1yRjm 5IJ2RTJHYP6RA+dalhasQoSzh+wU98b5HRHYP6RAjaMxKZhCi1 AW7o5mZpTl/WemHxRcnaa9bp7j+cWDah1SPEiBcy0I0UPVHFTAer56zGaZVDP s20CZVmD1qICWzZKJ67pVMRcWpihQBz1cF8hGnYiqKD5HSunV2 RcgtPV95/GsCbE0A9p8lpEqWuZftBCUlV3epAJCc+gda5Qtm1WUsDNtGrq3 hoKMlty54x9RWmvVTOBPKnZtoXujZglhfvgqKXJusWSQ+SuyCO VXTFKHVCGq0WSuKef3d6K1OMndaE3262zjsydZHDTZ5UxJVvKv QBNZXUS/XBq07P2gm8VzJaaEuZi3IyKQHc0IRQe14yk2ynOS6Xjd3k6gDO ojgWAr6JjdOyKBkyfZK4rRUlk77okmiid01M6PHVT7LlvZ+XS3 mfBLCVozuePVBVa7biO+lZl17ydixNdB6zho3DOIkW1RYTEE1w Bc4tXNutrtX6PbD0EDvLLKxZdoZ8Kd90BeoX3NWHCOS59kJDzb QlgMW8ck1owlUbt1gyryplc9LUSar3k7nSVjotnePogR5Mq2mt 6WoM129MZNXLhxUuO7hE2h0B/KLI3TnjJkb76su5rumJADUFXfSPKnWM5zLRkH53p1NCN1QAU90 FzZ7exF+Wcio72YCtlOXY0csdMtMoiVW0KDzJQYBhvJzIF5Qc1 IDkKPd2w00wplFv5TSZ6AlYWmoVgmEFJY67suzt3iMMm12V6zL QOPOk7w5n/AAqUZPc8b5arZdHPSyC3nzudatOLuFUaieEbbMbVfS8yWWu+fO 5tILnqBzXXiDC0ig1YCTaLKyXmz3OfO0l005mugpEzaLG9Zk8g M43v1lK/4WHVHc+UfRv+pWWjlLKy5pWKhIYXahnha21NnmepcibLTKN24p RmoEu6kAmgCUsp1ZdsKM76Dca6grZW3LPZ3KVLmFQAxrJCQA+H mw7mnd2QRPKqVOO6DpCzcBSVXjeDXhhwlz15CMBNsZI3ktLsyd 5PddDiY1LOfER1E21hR56UWzJmTmQAiopldAc8NYHCL1YKTQwb J2SmQVFK5iipnvrCsnyoOMFUGAGwJswFQnrTVriEmcslnKqKdQ AwjvHVDAkDMFwcmH5x5pp+rU1i9CcwUzgPtxSNwoLOEIJLFiaA ULFjV8jBK0Gh/KMFskPUm6lAJUqtAW4VORyioBIV9mbcs8hwhUwhVSpalKqKBIA ljiS/ZGC0W2yqUtZM9ypRuiawcqNRzVACbze+HNSJIYb7iWKJg6iejQ ZB20bSBG6ta5i0S5qCL0wJVfmgqSCcFaCgKWDNlnGykubRk10A ip9kJbeT/vbzNuiltzpn39UdFpsbHHPAfCne0SLwYvudBXrg3abNbUlIJlu xwX5qu1RunXKp82Mqza8R30rMub83G68gdXUwDNFJp8iQlyeEo ylCSta0hRqsvW6KDClhlpBK1Jxrr5x9sZ9i73dK3pSS6mulRZJ SCOlWLrV01/ePtjobs+czPP8AFBezUQKcP6RAjbWzVzVhaQ+EAhw9CTr2wcsq eaHd/SIzz9I5mZL1yf8A1noj8UJNukKSWUkhnzHzxi9CkaqSO8D/AIg1tNVCTUAGnr4dUVckZaTtOzgvcmKAb78spzb0j6ohch8i/k7dBWxBcA0IPHh2iNE2a04n7p9TQ98t9jy5KAuWGqHoOzPPM+o QgWhLrfq98CWtFMNz1nP3xoKn0PqjDNm4U9YEaZcyg/OMWkNMCcqrGmZMsyVvdWZqFXaFjLehbikQuco9j2OyGUCZpvhR vFajldASAlIpUnvhm5TTC9mVwnpH8SVCCMqcWFTkPZG0ZUiXGz 5hv7Fi5uY7nBfXQO14kjROKo6olNtdiyAmM3TJVU+izaZvre6o +ibZE2ZJWmUu7MN1iVKAooEglNagEQo2xFulKTvJ0oXgSlF6eU teu3qBnJw1Pm9UaqSkZuLQK8vseLm5o/dvqwYtS1WHH1RpsW3LPKF1AIScRUq8olRoW4NdSPyi8rtt1R8o QRe6b2l5hv5PdchR7KR5VptgVWfLJujC9oZIcseiweterqh0hW zqOUqFAXRj1TiF2uqiK8Mhp2RRtW1WcqlqmJXeMtJF1aheBWvD QUiRnWspraJag4YnykmbWnmup+l/tftsTMtgVSfKDAUHlLSxeLFrrBy57IPTraCwZLttjYc3MHHGrm +ugxVp3vpFku2WJw6ZvViW8yp/h9HXJ9abET7XcSRaEEFmL2l5vUcLq1Vp0XiaJlsUqloligq9oa XmWGFgc10rifWCkALNpsRD3VnLzlYKEsKVLgcI6mbYSaomEgBh fXzmrO2Fy6dcn6o3JtNrKUgWhIyYPaXXhNVYXNK16oslz7YSWt SAzOp7RzbDiEsG6dOL6w0IFibYWFJmjqvLwUNGar04ZGJptdjB PNzCdBfU8zC4Ls4c9sF7HZ7fODInIoApr1oS4YpBN4B2zrXE8N NnTNRJlpmqeYAbxCiRnRiasAwiJzSKjGxU2HYbJab4TvcLVCiG d6Ygxf3dcONkkJQhKEvdQGF6p7/XEUKJ4mLAsiPPJ2zWKortaQxjHtJSRZrQVgqTcqAWpXI9/qjTaZhp2iFS3T7SFzrk9CUXlVPlDp/cBSlv3cPY8aY1ZMnQG8psQNEzCGOO8rNhgAI04vrGux7Zs0mYJ kuXMvpKmSVLIYum8qlcJKm7n1jQq02txz0vJWD9qoMLqIu55B8 6GImbbMX7UjMi9etLkhRdKTdepwU7I2aXUzPbY2/ZrQpJWFBg15N8ZlyGOZAY56tRnOBU2w4ju5gL9G8vAL2ZLVYdV WgotVtSoPOlkkE3P2ggDiRdavRrXD1RWq02xj+0pIc4ntLzDvB rdcgmlMxAkkqQPUNcl9yZC9zeu3lVJOd1PHqaNdqGNX3j7YXDO tZYGfLzq3lFKlRzSwevcmGW1k31/ePtjo7tVTkzHNqkG9nh5Xd7hGS3kBJbQg+6NezQDLHd/SIx7STza+pJPhX3Rys0bnL+s9MH+KAtvN5J4sfZAvZdoMu12SZ ombKcvoJrn1PFu8oX4EQJtcyiSCoMT7j+cKCoOZ+gOWkwLsqxq GP8KgT7BHzVHSFYb7RMvyVZstBNVrVmm955Pqz6qOlrXUHriYv 1FyVGi1Lu7tgahjrk2fhF1gm9IfOdNYF7WU0tB4E+14u2atpqh p8nj1jSJcATJ8qU80hXozZR4ec3vjTKUWEZuVKx5LMPAoNOpaY vlKDDPWKrQLLgo8WgmnkpZLamUbTfvICkpuru0Kyo0atTAp4J7 N21Z5CpO9UpKheICUlThRAqchUQJO9AfLUx8suQNhslkm2iXLm qUDLABWogBcxKSQAxLAnWPmwRZjlZpt3RQ3pcksfP0DZZvBrfL Jta98hUtSLSqWQJgWpyVJe8kcX7uqB0mbNU27mpGBLpXvDdocQ ZJDmvXTLKNoqtDJ6mRUqQ1bJNd8Q507sOMsWL0atn3RLc2a8P2 Wa2jCab5vH96mgpG1abSmhtCGoAo70mY5BF43Hr0q6pD8Y4tVo BH7TJoEuDviEOSzYGJzU+cUmSZEWazs5ssx6P9ayOLYq1YVbMn qi8Js7/APxptGuhpuOpzxUHm04PnQeli0FKWtMogC8KTiZg4rwOQzmuoG rROWu0Xm8qkDIKpNaX9zAwoy6aq4wnEdmSaizgP5NM0ckTQBQl hjrVvmkaNn7LkTS+5KQACxUupdi7qyd4vsk2bu1Fc1CgEAC5vA ouxvKvpGnfWNnJwhS5hJUaJz7T+UKTpDSthXkZsuXLStctJClO DUmgWoDPsEZtr7bWmbMRu1Ku0SAhWLCDVQNK8BprGW3BRs0rdr SkmYWCwohQurPmA5Z1gZ+0c5+0yAkDEoCdzeEdDBpTo++JUPVq ynKtEE5PKRQbmlXdSJa+4AXmrXWjavTRZOUClzEIMpQKiAObVk WdRJV3ikA1eU0e0SQakJaaxADlSsGlGf0lNrHlmey3tUoJFCrn 3Sbv1aTcdnwUcQ/aiT6mOdpSXS/HhCXthEjezlLs8wqvKci+xDdMG8373CDGxkrF/eLQXIYICg1C5N5I6vXAzaiJy9+ETApDqF0CaV0L3EsnMM2bMDp BCKTaHJ2CULsahSVMH+6vZ0vl4vTNsYI5mYAc8XsdfbnAQWWYC Bu1hRywmvYGhg2Jybny7RJVNlbxIUFFAuTXQnEq8hJLi6CW1hy X/RJnrROsF2kmf2lQzyGS4zhdjvEGTNbViaahnXwbPQw1cv8AZkq dNlzLOiXKTcF4oQEpWok3SN3hKsJBrpqGMKqp1oSAN/NQlIupCJhAA4BKTQHr74mPIbqzyE2WhMiaK0L5vUedlTSHa1qx r+8fbCrsfb0hEuei0ImzpigDJmKUVGVMBNSCoBiSkuHNDxhstZ xrz6R9sdTdvylf0YZ6pUGNnLwACuX9IjsyS7g6uPGKLCopFNQk +q7/AOsabxd45WW3kl/WeiHxQlzR2+MBrb0O/j1GDVsW0xaW6Kle1hAm1BwrD16cfyMKC+wY0bO5ST1SkI3kwsh CboROUCGAIcEJFH8IsmQL2dbyiTLQyiqouDMC8SCXoMx1xrlz1 vVDDVyIlKmaSaaRo2pJeV2KidkIvjscN2B/Ufl45bZjyVHgxinZ84kywzOE+pvH575ak2TZq5QAmzTs+gT4V9 0Rsi8CT1QStKLyFAhwQRXUQvInuVgm6EkgUHZ3RfQGFhMidosl gnJSLZLWpaHuFO86Cmpg1cHPjAcT0Dz1g8AP7Rt2ZtIY0qOHMK U7tqD35REnL9RxpumYbfsSyITOXIlql4V3Xv5NwUqneIWt0k3b 8iZMASGUgTFV9E3VpA9teyHraNtlzJS0pULykqAoWqNYXhyftA ulE6UKNUEgmuV5NKnqyrDwt/swypdDPb0pWLq0gjDQvRgOBB0gfOsshBQPJSsFILpE03iVF3Im DqGUFGSvom9wNK9zvoc8u0gGvaDC4DTIZs1c6RonTolq1Zg2fY ZUxwbKUm65JE5IBcUSTML9/XF6rFJlrA8lK8muiabzkmpEwdQoMotmb1BdDqrTR+tJFD6o9Z+ URKQCX7ffStITlJuxUqMkhkdCzTasFkImmmbAFZ1bPh3Ru2fbZ ktbJs87HdAvSl1D5k3sNSRR8nrlHJ04rCSmYmWSoFOSr2E0bIU Pnas1YrMtWJ7UkCl87sOig6LF6Bjh1fV41StakXQR21ZLtllJV JVNSJgBZKyQyDUBCk5vrANFlQSf2CY7YRcnscIYqO81NaCLvJl skeUoSaMBLSAoMa0LBn149sWArF/9rQ3nq3aXThchNXLCgud0CVKgbtlMuxSgB+xzCPONydQ1YDnNc y/COTrMly1jmPdN0XJ/o0Uec7VUi5C13h+1S7wdkiWkAsKqzuuKCvGmsdllQdXlSLocKO 7BxMMFakPhpTupBTsNCNitO5e5ZZqQrpHdzCSQMIAUth0lHPhF 82xpVZp9slouTkzJKHvLfn0zUqF1+kbqadZgxyZlrSZhVMC2CS LqUpAAvF8JYv7oSrLNN0oJUErZw+G/dUEqIfMFZr1wdRlsu1WoOkiYmjMQoU4HKmcfX/0bWZ5oV6KHFeOEV7zHy6RLmJUlJm3hdcpK2eupKrrOQGJ0NMo+ gfo35Q2eUoibMKSobtKgBcF0km+6r2aQkMmE0wdDL+kawOgLGV 1mGTpU46hRS/CPhvKC8JpFQCPSbUj3R985U7Ys02ym7PkqJKCE3wFVN0i6aggK NM4+EbRnIWlMxSF3gM3DPeKrpSrxcaZ5QJVzDm9ATPRLdFwLBf E7NnRmz1zj6VajjX94+2PnktN6YhISzkDTNwD6nj6Ha041/ePtjp7s+Tv6MdproGJKeblHilQ8LpHtMWM+UdswHk8snRXtS3f UiLL8cjNJ+5Kvtnph8UIfKArTaJqU2eZMJu3CEruqdKTUg8bwp 1RglTKEqkzZfWsKAPUATnR/mrHysStSkpSQEqTiL11HfpCnad5LZKlhVKDdpSAK+j1jhFRdol qjUi23ei47GEdlbQUVJcqIcZk8YFm1KD5DuHbqOAiEm2qJqrsG XsgoB+QL0paeqMUtJCkANQjgGqR3wQs0wMWyY5QKs9qBALjpkZ jiDl3xk27KoY77/wDIj53MtockLZySWfWunbH0JIyj5RbrO0xYel5XHSsaQQmEFW1 OqyfH3mNOztqJQt0BSlFgMs3/ADhelpF5jlBGVMSgjKhBbveKkqBMa5khSSbyQk53QXAB4HqjXY bSU6U1DjxD6xqtRExF5JyDjrGf9/8AmA8pWWnDq19keeNmvML2HYlmQd6iUHL1dZzqaKJAhd5R3DML eaaMMm/uILyLYQ7Zage0Rn2nY7wvCoMaK7tkPTQCWTajFnun8J7jl81gL Js5oT4ce2DFqsCUh0xiTM4tDUvolma+gON0jrqfVigpIlJIRcs SpqvNITNKFm9QEpXWtD2RgN0k/wBq0/4jfZrOAkvaRLB6Y3SCQCGJS6gpVC4bU0rGqIZ0WVN2mz5pDi8b k53YsBj1L+Aj3kuKmzlksLgKJ7HCGKsdauYl5MkBBNrSCCLo3U lhh++wYMO0mL0bPN1a9+6CCVrElNUgMWunQJIodNIbdAlZSmxI Ips+bd84lE97zG6EsugOJ+wR6bZQCW2fMvNhBRPa7d6Rx1U2Kj Vi66klL2tD+aBLks2uS2ByA4uWyMRmSUG8PKkkMb3NSnJYBgL7 s9Ox+uFbsKCWxClEq0lFnXJwHpBbrN1TAXiXbq4wBs1kU1bJOW bp82bdUGe9RQPRc0araZ7NxiT+1pvB7vNSWAcPW9dd2689Hio2 ZFxf7YLjuealglTZAX3KXw8G6odBZGZZEsG2fNbFW5Ocqw0e/kB7YukySlRUiwTUTQSzInMlNXLXziueuLLPYCtyLSlRSG+rlsA Q9LqiKt6hxjlksiZiribSK3ixlodw6y4C3ZwdMuqE5dAotm2lY Y+SzyniZanvD3ZHxiMiQJqiiZZpstyolRCglLPqTUsAnreNWzt q7tJC+cvEVASi7QAAJDg+qCH/AFOUsEBRT94N6w4jP1P6KVrkzDP2WkzUzitRUkatiYGpOpcu8G bV01/ePtjEZCilwLyWNU4hl1ZRstXTX94+2Oput/lK/owz9BlsiHsnYx8GPuip6Rr2Om9Z7vEEeKQIyScn1YeuOVmlWSX 9Z6YL8UAuU4+rIFcQ8WI9hhL2zmDc4gk/OecPXK+ylcgBOd4PlkQQSHYawmTtlzSGXMvNkFJSG7LpPVDg09 RS+gCZg9ERSXgvM2YEhyp+wf3jOqzjIZ9cXZI67Gm3kJPFAPik QGlpKUq6pj9tGgtydQBLl60A8MPuiu3SgAr7z+FYxc9S0rQalT QwpoI+abUIE6a6R01f1Q3pCyzk+MKu2ZB3y+1vACLgJmFKEk0p BOx7MCs1H57Yy2WyKJF0E9geGbZ+z1PUAcXf54QSlQkENmYEJS kktRz29UZdoIuqdhdVUdR1HzxgrIshFHEenWcKSyqh37+OfbGS lZpdASXOHAOI2Wa0t0Q41T+UbpdllJyQPB4u3gHVDsTkY7VZAs OkZ9Xy0CpnJor9FPf+QhjvE9UeTMpSE50KgPYOR0sjnJpPUlIH rL+yCtm5M2JDc1vCNVkesJAB7402Uli3GLYPXIVGQ7BsTN5NL/Ecut+uMs+4kGWlKRLDputRjmK5guYJLWBAG2LJUrQOYPU+oUd2 fsuyqvPIlmo0P5vrGm37LsiZa1Is0veBCrgYkFQSwF0mpy76xC yLugsz8Y4tClF/GD1ux+nQAMW//XqKXOUoXnYNW6adLTh2REhdf/x+Kv8Ag4bl3Mhundrn0tNIZaoBIJvcaRptU4T5KkKABUlgsCqT xZw4fRwI190j0ilvZiQCixzUJN6olgEqDZsnogHhqa6RITFoKy LEpC7qxeuUSlSSl3Acquqd3z6qR22bP3Swk2tRLKZRlIAYsWxL BdyfCKxJlhKh5WopvEhJlSnKgqim3uV4u/CsaWugqKESl0NxTdYPvHZF4kq1lqcZ0NO2lKxKexL+Vm8B0t3K Au6JB3mbk07IzqEtj+1LuvhBlSgS63CiN7QOLx4RKVjsuSbtQm 6eNQe4w22o41084+2FEXCa2kLOpIQKaAXVm9/eG21dNf3j7Y6W7VU5GGbkhr2COaTX5YRgKWUocFKHcCW9Ub9iF pKfnQRltaedXoCx8QPeDHLy0skr+2erH8UZdph5SzwS/gQfdCdNmk6jxhztKHSU6EEZnUNCf5N1D1xKa6CaBtoXeNCD1PG BEmY7hJ9nthiEkREgO3z8/lFeoC+wC4lKXybxdyfWYjbCVTbulPiJ9kelpN4fOsXKk1J4Z9p qfdESaGi6WOyKfJkk3jdc6tXxiXzrE0JAAgTA8iQHiSixHz86R BRaM01eUDAJTJhAcHKIpV2RoEgEHrECpc7MHMdsTFoTNrniIrm nrjOufFC5sUBsM88YiJ54xhKiY0ypfGJdIdBSxTgEOSA5McnbQ AyrAsAuwD+MTFjJzIHZABy029ZFCAOqBi7QeMGpOz64UlRihPJ e0rUTdSkOekW9QBPqh2gMVlmkmpOUbpVsUDiYjJ/nugzs/keBVcwk8Ehh3u59kaRsZKTRA7T+Z90L1Kw1oDIlzJtJaXHE0ES m2GamWoAgzAklKRUqOgD048eyDiZBSQX9f5x7aZdSAABU11y/4hpioQrQq0YTNsg876zcgk0drycgG7z3Q87G5O2dcpC5tnlX1J TeASmhKBeZqCr5Qv8ALS6Jkm9OVJVdmVABBDpoSSKvpDlsZSU2 WSxKkiUg3j5wuu9OMXN/jYorWhI5W2NEmaEybNLMtnLiUMVHa+HIZssi8CFpmuv9kkOCb3/x2AvOQKMnhr3wc21stc5QWJykEO7AqqVXnooNV4WpqZSSpPlMx gohIZLgiZQqxNnii8ck4ikqZrSpWH9klM9K2fOjk4XOkM9rTjX 94+3shNKZNB5ZMVk4ASxrQDFpi8RnDhaxjX94+2Onu/5SPPm5IaNiHmkuPlh4RDajhYPFPsP/ANhFmxTzSfnQR3bIog6uR4h//WORmS9yX9Z68fxQPUpy3fC3Oa8ocCR4UhjBY1gDtBbTF9r+IeB JJAzPdEUyiHciPTpx8fZFLGExF0yfiTnrGlE4XSxqX9f9oGh3V 3JHac28fVBFSLracIXpWhSIrUOz5aNAZoybzrGY9saN4YYimeo PqYyWy1ACkXWpUDLXkYPTYWM+ybUFykK6mPaKe6MO1JV1QVxDn 3xVySWd2tJ81TjsUPzBgptAOhxofVlw7IlJJ6A9QJeBq8VrVwj YLBMUcIYHjT21jZK2K7X1P2fmfyihA1M8AUHdF9mSteSSetoNW fZ0tOSAT11Prjeiyk6N2xDSHZi2bs4kYi0F7PsuWNHPXFuz5YH X6vdBOUdBTs/POEBRLkXdAn1f8xJKgDkSfnUxoMsR4JhPUCoFXYOqpHz1RlmIc 665v743lYH5QMmW0An590EYqx6kJssAikYbYRvE9Vfnwic63Oo NAzaFvubyYqoQl2+e2LXMQO5YTTelNLlzEsuizJocJcb0E5cKQ zypx8nkApAJly3SLrDCKC7RuynCFWVZZe00OmYuUZZINwuFBdQ C4TlcfvGUNUiRdShBKlXUpQ5qVXQzniTnDyVSTFFmOfIaoBb2R jGzJN4qMmSSc3loq9S9IPM2fz2xknyWqOj7PzETF0NlEvZdlKS 1nkUc/VS6FuyhpAu0nGr7x9sF1lQBI4H2QItPTV94+2OxunWUjz5+SGb Yyxuk1A7w+Q8Iuty03CHDgpOY4s/thQlz1XekrojU9UeM9QHSV4mJybrlKbfq6hHaEklQdWsUqPGAe 2PrM3cDV+P5RxFpX6avExcLQv0leJgjuyVfIHtC+gGakn5+c4n JDvWgrBhVpX6avExEWhbjErMamG92y7he+voH2SWElL5l1Gozz 9saZ6wxrFqbQtukrxMQRaplMav4jGb3XK/kVxC+jI1c/XE/nMQQTaF+krxPGPeUL9JXieEaf5r7iffX0CJwelIpmSgKwZXaF1 xK8THPKVucatNTCe7JPT1D4hfQO5OTLs4p0Un1io9TwwAPkfXA 02qZ6av4jFyZ66YlaanhErdkrf5B76+gpLs/Egd4eNKZSBmQe8QDTPV6SvExFU9fpK8TD/y33C99fQypZswOoED16xOXOSciPEQqG0LpiVrqY4u0r9NXiYh7 qk18iuIS6DlZ1pc4h/EI0omgecnxEI6LQtukrXUxZv1P0leJiluqVfIniF9DsZ6fST4i K1WgaKHiIS1T1ekrxMQNoXXErTUwPdUq0kNbQvoblTxUXh4iBk 6aOPrgGuer0leJjsq0r9NXieMT/kyT+Q3tCrkbzMxZ+sGFy3qtt+aEJSpBJuqM2WxQ1ElCi2VKh3a DJnq9JXiY4q0L9JXiY1ju2S/Yl50+hLknKnpQrfIRKcgpCVSy4q5wdwrwhhStL1Ic9YhZ3636S vExBM9TdJXiYiW65Sk/y/8ABraElyG8TEsxI8RE7o9IeIhNTaVuMavExeJ6vSV4mFHdUq+Q PaF9DDbJaQksQzHUcIW7ScavvH2xLfq9JXiYC2meu+rErM6njH S3fsTxSetmOXMpdD//2Q==
این روش یک تکنیک هست برای کسانی که چندین کامپیوتر قوی دارند که میخواهند در محاسبات رندر از همه آنها استفاده کنند
تمام کامپیوترها از طریق Lan به هم متصل شده و در نهایت محاسبات رندر روی یک سیسیتم ادغام میشود:
دانلود فیلم آموزشی مقایسه کار با رندر تحت شبکه ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
vray distributed rendering tutorial ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]) ability to use multiple computers working in parallel to render a single image. V-Ray 3.0 adds two new Distributed Rendering options: Transfer Missing Assets and Use Local Machine.