ورود

نسخه کامل مشاهده نسخه کامل : حل معادله خطی مرتبه دوم با اموزش کامل



hamidrezavictor
29-10-2013, 17:50
با سلام حل معادله خطی مرتبه دوم ...........................( y"+2/x y'+1/x^4 y=1................y1=sin(1/x..............

hts1369
29-10-2013, 18:35
با سلام حل معادله خطی مرتبه دوم ...........................( y"+2/x y'+1/x^4 y=1................y1=sin(1/x..............

ای کاش کمی توضیح داده بودی
منظورت از y1 یکی از جوابهاست و جواب دوم رو میخاهی؟؟

hamidrezavictor
29-10-2013, 20:15
ای کاش کمی توضیح داده بودی
منظورت از y1 یکی از جوابهاست و جواب دوم رو میخاهی؟؟[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] XNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsM AAA7DAcdvqGQAADuCSURBVHhe7Z0v1B63sYfTU9Ce03N6DAsDC wMDDQ0NAz9oGGhmGGhoaGhoGBhoGGgYaGgY2Dv36kZRd/fd1f+Z0T4GPW4sjUbPaPX+dqSVvvkPfyAAAQhAAAIQgAAESgh8 U1KYshCAAAQgAAEIQAAC/0E/MQggAAEIQAACEIBAGQH0UxkvSkMAAhCAAAQgAAH0E2MAAhCAAA QgAAEIlBFAP5XxojQEIAABCEAAAhBAPzEGIAABCEAAAhCAQBkB 9FMZL0pDAAIQgAAEIAAB9BNjAAIQgAAEIAABCJQRQD+V8aI0BC AAAQhAAAIQQD8xBiAAAQhAAAIQgEAZAfRTGS9KQwACEIAABCAA AfQTYwACEIAABCAAAQiUEUA/lfGiNAQgAAEIQAACEEA/MQYgAAEIQAACEIBAGQH0UxkvSkMAAhCAAAQgAAH0E2MAAhCAAA QgAAEIlBFAP5XxojQEIAABCEAAAhBAPzEGIAABCEAAAhCAQBkB 9FMZL0pDAAIQgAAEIAAB9BNjAAIQgAAE3BP4+eefnz9//v79e/c9oQNOCKCfnAQKNyEAAQhA4DGBf/3rX998883f//73tAiiiiEzjgD6aRxbLEMAAhCAwCQCIp7Cn7S9Q1E1ySGaWZ0A +mn1CNM/CEAAAjcgcKifDv/jDWDQxRkE0E8zKNMGBCAAAQgMJXAolf7yl7+E//7TTz8NbR3jNySAfrph0OkyBCAAAYsEWrYrRf307bffvnv3LnQv/sfNviiLnccnbwTQT94ihr8QgAAEFiXQsl1JFFJUS4d/+fXXXxfFRrd0CKCfdLjTKgQgAAEIbAi0bFeSFbpz/fTy5UuAQ6AjAfRTR5iYggAEIACBSgJfvnxp0U+h1d9///3p6emRkKr0jGoQOCKAfmJcQAACEICAPoEff/wx6J7vvvuurzftsqyvP1hbgwD6aY043roXLXtObw2OzkPAEoGw +Un+fPz4sa9f6Ke+PLEWCKCfGAnuCbTsOXXfeToAgVUIjFM54y yPYC8vhPIJYfBZ/sLJCyMgd7GJfuqC0b0RuTRKHlT54/H2KF+To/uxQgcgMIbAuAd5nOURJGIeLrpt5MtBMv2bcKOfRox/ZzblrJT0lBR3EipncuTJdzYocfd+BHIe5AoqXbalV7RbXWW/+d3Imy2ZfvRT9ahes6JMLvtzU4w8rpnEc6ZdnvxMmBSDgBaBnA e5wrdx29IrnMmpkqad0jfbnLpDywwK0FCfhxon/zQUrwPjcXLZJI0dHdcbn+rDzFm6mUBKGg8JeTLjAcK9cQQG/Tw/2pZu9llLObx69WoQloo42vGkwvkRVaz/nIzo891snk8T6eSyOYDOy77Fy3OH03y48eiTJzMeINwbR2DQz/Mjs2aftdThuLnir3/9qxxtNQ5+juVBAcpp2mYZ9JPNuPT0Kk4T8U6oaP1wZ0DMSHlJQ V2eO+xIPzFD9Rz62HJFYMTgl6MQHpkd0VwX3qlj8f32hx9+6GK 8xYhZYi2daqmLfmqh56Nump7ZpJQOdwbIW4675yRfQhmPmTvyx nniniMC3Qf/ZnPnBkX35nqhjo6lX/aoJ5+kd2aJ9SJfamcp/WR2Pbs0Kn3Lp9pik1J6tDNgvefES4+8+Nl3iGINAiN+nuP7oTx WspHIi37ab0iwkHwaESDvw34p/WR2PVt9lDxKKbnLbFeT9KJLvPhZHQgqQuARgb6DP00+HR5o3re 5jmFNZV9w0kLyCf20D/FS+sns89Dx0ao2dQgn/sfnz5+nu6PWI+mlR178rB6HVITAOP0UlyDCgcDhaXp0m57ZZ21 zBfI+c6Y1hMwSUwOi1XD3dtOl4u7GFzAYc8LpUbabRHHcHeXlO clcsZViXnrkxc8Fngi6YI1A++Dfn9wtNh/dptfenDWAo/2B2HYJeDTxafZNfacwrdf5DckKehj9L1++jLX2iWJ5aXOkRC9X bDeHP0n3pe+ZqiufbceSzFAdYWLKF4H2wb/fOfTixYvLdJev44IVY9oeIEXnRzS9zvpdDK2RpeIR0WqxKWmn/ehP90XFf03/0tLihLrR1c3JmXvZFEqGTPheddlRVMxQE4YNTdgk0D74029l5I 3x/LcgFVtezmrRDVx7gHT97976Ivrpl19+CaGVN4nujJYxeDj6zw+ fNN73opMz4zaCyCGuV17msaZxYIaahpqGrBGYPPhTsWVnj5G1o KT+TA6QZRTBt0X0Uzzk/vXr1/aha3l4OPrjJCIMze5bfEQs89inzeQYOcSXTjvzgh1PtEYp7d6W AIPfeOgJ0CZAi+inuPnp06dPxoegontLjv4TCfXonfIka6UYnf 9/ofkjSOqe4AAEJhNYcoKazHBocwRoQf3E4l3mMxN1g5yMklllyW KPJJeFQ+qYoZYccnQqhwCDP4eSYhkCtKB+YvEu84mST1HCA7C/CC/TwjLF9hLqcrfpnL4zQ83hTCsGCTD4DQYldYkALaifWLzLfOrkI 7XwAMhpmZlV1i4mB8McHoul2GtmKEX4NK1LgMGvy/+ydQK0mn5i8e5y0McCX79+jXJB/p5fceGS8VgsI2fAMEMtPNjo2jkBZifjI4TZaTX9xOJd0SMnmaf wDDw6k7fI2gKF02OxLJwBwwy1wKCiC3UEvv/++zD++QyoDuDoWsxOq+knFu+Knpk3b96EZ+Dp6amo4sKFowQXL JtzOOf3mhlqPnNaNEIgPols0DQSka1c+GN6sunefK98n18Qkwf Pnj2bz85jiyx3HkYtLhyop6DQTx4fK3zuQuDt27dh/Mu9Ul0MYqQvAWanpfJP8XlL73TrO2IWs5Ze2LJY11q6kx4i2mK nvS4zVDtDLDglEO/5Prm0zmnX1nCb2cm0fiq9hkxkU4ioCKk1BuiEXvAMTIBc3QTRq UZHRe8E5Fy6MP5lV4b3vizpP7OTaf1Ueg2ZLNuFiMpC3pLjdUS neAZGUO1lk+j0IokdjwTiSrpH55f3mdnJtH4qOoyHzU91jyvPQ B23ObWIzhzOtGKTAOPfZlyCV0THtH4qOoyHzU91TxrPQB23ObW IzhzOtGKTAOPfZlzQT4dxsfX9XdFhPGx+qnvSmKHquM2pRXTmc KYVmwQY/zbjgn5yoJ/ExfQwnpORJN+Rsfmp7kljhqrjNqcW0ZnDmVZsEmD824wL+smHf hIv4y4o+ar80WD68OFDeNLk2g3LA86gb8xQBoMSXSI6lqODb6M JcIXLaMIt9pmdNvRsrd8F5+TwtBCnk8MM4z0kJxqrZaAsXJdnw HJwiY7l6ODbaAJc4TKacIt9ZicH+knW5s4/xPv8+XMUWHJkSMuAuGFdngHLQSc66tEJp9BxhYhKILjCRQV7Zq PMTg70k7gYP8Q7PFg8Jqg4djxz3KfFeAYqoE2rQnSmoX7UkGwJ CFGQyyLVnbmbA1zhYjnizE4+9FP6Id5+PMU7g+VN0fJos+kbz4 DNuASviI56dOLrmcRC7otU9+dWDnCFi+VwMzv50E8nPyQcm9n4 gPEMNAI8r156B9H2gfwjPEOdxPgJAdk/ELdXSi5K/i+4phHgCpdpqCsa4rfDjX56tAWKYzMrxn1ahWegEeB59dI7iNB PQ8NRZ1x+xePxKLIjp84IteoIRPJfv36ts7BALXkNE+0ufyQba mePL78dbvTToy1QHJvZODvwDDQCPK/eiLex+tCu3cr4+/fvYyy4XnNm6BU/wWtMHveiJGMvisjwHbqRz8yZndzop0dboDg2s/EpbXwGwotRMCJ/kUe90Z+VqsfVB4FT16/G6NQ1Sq1DAi9evAjh4DuVmSNE8RO8xuRxF0ry4WecBNK/yGSr/k0os5Mb/SSO7g/SZPNT+yPa+AzEzfvBzskZXe2uurMQtx5/9913Fc7LbuUoTCuqU6UvgfQVjhRUX7Yn1hQ/wWucG7sgSidYEe4yk6QqSvebUAt8ukDuZaTyLblX8+d29gdpsv mpnXz1M5BmntJHut2lNSxI8ikq/o8fP1Z0Kr55v379uqI6VboTiLsFSEF1Z/vIoOIneNVzYy84aQI7fLgg//v09JTOt4preep8enHuZce0fpKhswkYm5/aA1/9DKQvRnF3WvVCVXtHrFloTD5JdyLhT58+WevdPf1JU1B2tvGuH QutT/DShTMtwo/mEPkpjKvJiin/6t8OLZ6j2zWtn6Tz8YU+TF6Xm5+MbAAcHbYW+9XPQKwo4knyK9 V2Wpy3XDeqn7rkk3QNpAbjG3+31HefGIQzyCWVT/Di8yvz26B+nZs9T2DvswnznWSC2jC3rp82k9dl/CxsAJw/rItavGT4yFpaMW4hJ/8UcLXvHEc/FQ3jaYXjh3hyKNSgRnnr24CN529Vv4qURkr2FcX5TevEr8sEdv XUXUoj5yegl03Xdqzrp83kdTmALgu4jlYX56sRpRVlDT78X07H kaCkO8Pqdo6HyFaHpsvAwMghATmFaJMF7w6Kt74N0qhm5kwvqX jSSj4JgfMEdtwWpvjKygTlLP8kk1cas8v4nRfgPa/lR/oSfvfflShNLHy7e9K7dGdYyxuzCuERUVvM5tAlPAvbbqzFa+aH qCl/CbRW8ulyZk4nGa14MUE500/ibnz5S98SHg2g/ZEHacl0CMpPsrzc3PB+q+pnoLpiy9OeLhTqfrv7qBeb+belsyq EWxy+Sd2hS3jq224MBlFEzOicX+x15K8rni71UwQyJyd3OCqYo Pzpp/Q6z8v47Y88SDsch2C00/gXjyLskuGj+bS6YssEHRcKQ+uK3+4+6kVUeO2ZfxXCLdG5Sd10 Ca/7G1cMumLmw2Ac4ynkLQndnH7Z4X/++IeZUFE8XSq8HNqLlbG+/0lwp9d5Xv7AnH+ksPkxbhRP++ouzuO+ZGhKP4UBYOHb3UdYQlp UTtZo//2rDs1is5LB7sQDO2R/W3ug0w4S9MNwxzfh0Vnn+FKtPursjwT7Hk4OogP9JETSU1hCCE 8wZcZYbMojmi4PdZFTiodzZA6dTD57a9UVMx07KWbh290T93qd DKRIuD1Ga1tIvy2XU3w7dpagH8KMa6ajTy61kNcJBOaPBEmmyq eO+Xdwzfew44M2wpQP/SQ93yy9nbA43wLVF+JehOnmV3N6V/0MVFe89CrnTr1xrV+6N63AHfo4DWb3huLlBzLD9FLMXY696N5T CwbjO7PsT7LgzwQf5j/+8ZyIzOuJ5ns4AXtLE27002YX1Emfz7dAtcBao271M1Bacf+1o 7zopAm/uNyZc6de+hnBGoHY96KU8KocbPZLkqDxMrL2vW6hj5dH/thEMcerXo+DfOEhQsHg1skNxl79zY9OXJXOTPLN9zC/Lyol3eindBPM+fpdy1rPJhEiw0uevc+fP6vEZlCj1c9AfsUUo+ ieRxfnicHwr/uV033fUwE9birUPeEin/CgsYHZcwLxu3qJVJdpof3M+oVDVvQ4PHpy41fb9ndWzFw5CcMm 3RiTs8+sKCILj8zYNTf6STzOF0bVYT7fDuXxa7vGJMeJ9BHIh/vlpUq8fiEEYvN/N2ppk3wK/7p3e84u8pOTDAOKoZ8IVI/bO0xVRvoYr+AUQd/oUvz1kgek0dSS1Yseh8MnNz3y5vyt2wLA0pWTLjNSejnx5XtpU UQsIB3tgyf9JCwyv5WoDnPpB3oeFVWEk7Nt8HJ//f6tbqOH/va3v6WCSVJ64fOlfc5Jto6dBy5fQFc/NicOxH6Ne5GtHrfV/aViKQG52jmESYaBnGtQWj0tHzdUZa6etLTlsW7R47AvnB7M9ui tTBfL+dvpoxfU6HOXGanovbQoIrps57TuTD9lfivRJczydigTn Ext5+mT0JYMZS+ncUYNmqMDLgXlZr98/GpGmMg/pfJrU3Kvn3IOYu4S2ZNH68R+6vCgh3N07wa5fTezcRdU44d4MZ XVaGdV/kWPw2bxS6TtPrFtB9Slcop9P5mlY5nGj5by30uLImKH9jhPnOm nTBCDwlx05IHZK0dSSZTJMxS7pLp54ZMqJ9fk7fVTzkHMlz4U9 WhfGP3UCPAO1eM4b/k0TCaT+JOf+fXTHdimfSx62A+PWd5MMnYAXub1L7VRzttmfn8z t15lFstv13tJ9FNTBC8VVc6mvCYPqipnpvE2ti+ns/SF7/KVaDO1xS9B5L+fnE946UMVjz8rPbI/ZyPF6N41wqF6ICDjM+ak607HTj/lk4O2AXtIoOhxSK98SeeWePSu/Ec7nNOX2HSqzOxyehrZP/7xD9FSjV1L1efJ2RylO7QavbJf3dCQ6gVL5Z7qEyE1dMdxL2iX dnJed+LDf35A8z53HW6eypk7cspc9uWkQHrMWAzcRjyNm4hJSL TEbmbd+EMiH8ZXtJt+FNblO74KH+xXKb0Cb7PZID6/oyeNjiQzXd0n2zYv6puvEeNO80dKS6bfeGHOiRrLnKU7AjFuak H9lKZGtehvTlvI2Wmk5WpmuzmLa5nZ3X3uerOj/MSlzPkls1P7YjmrAOP0U+lxLNXdpGIjgd9++y0OxYrVt/gIXH7x1Oin6+oxddSYXxk9aXSEnOnq4TfLqYTafI2Yln805DIv yc70sCMTy6YW1E8ne25mRkI0Qfw09HIxa6ZjdW3l5JYys7v7Pe nBpRz5NfrpTaO2WWGcsBCQHsdSFyZqTSMQd3+Xfj0Xzxzn2ILz YGX+ol9GfPSkcelAfoEcV9OlgM2LulQP+27TuXRzwN6jl3nZcZ/Tes4snd9f7yUX1E/eQ2LT/5xHK83uytx3chbl4fJ/Kr8Oz1aYuTK7EXnh2IUcCI3hYwmvEeC06qnYLUpByZapMJDq1v 6mdVC9oZxf9DDJnCeoJjy2vVjluLpZCthLKDHyz3/+M5iS+ST/O8Sc1jNfknsBMW4H/WQ8QFbcyzx5a3NNYXiAM/uQ7gCVWhsJtTmWM9Nmx2JzripjCa9jyEabqktBRWnefgLn6A6q 27/8RY8rofKXw5Wpy42bulcOpIQvXQ2F90sBJ1nzTRI9/N9HYb2kLRXnvEaqD7xMB9BPmaDuXizzk73D86Ly2aXVN8Kr6OO +/BbzS8bjPeX4n/xapSXTrAabY0rpTS5fl4KKqqvu273JfdRt7vIXfbNhcZMITF+6 Hl1ZeHLlwOS+xynuPDF5wiRTSLXop1TATeZjsDn0k8Gg+HZpI6 FK936l9wkEEJvv9UoNdqGZvhqO/tmLBPJTd136iJEKAhUpqPgzKZvQK1q8VZVL/ZSpGMTOo4+CL5uYBjx6cv7gZzq8yTyJfLzcG1BqeRoZsw2hn8y G5qaO7T+f3Hyvp8Il/ubJLvLRDpAhH024o/00BZVzEkG8gVhGdUc3VjWV+YueRuFwxerkpSuziQmEo745f0XM dHjDQWaVy70BpZYnMDHeBPrJeIBu597+88lHZ83NRLPfczC09c yJbKgPGM8kUHSjcFwFfv36dab9OxfLfxDS2zM30qGLHJkQhcw9 EplMNhDE/8vPe0stT2BivAn0k/EA4Z4JApkzSy9fJzfXy+172omfhUqS8vzkWOETE5lyD/E9cRX1Oj4IOZedF1mOhd09a5kO7/WTdPn89IHMswkyHagLh69a6Cdf8cJbBQJzvrxLO8YMpRDmhibj EvOHDx9OzMQEgNOTnw5vWRh6v0LRZecVAcz85K3C8rgqmZPD5l Po4M/56QOZZxNkyqxxBOxYRj/ZiQWeGCUQp5X45d3hN88dP4TOnCKN8rqfW3GJ+fzLqbdv34bIl h65OYGoHLYkB1jn32ubpjfGfehQfdl5JrGcaxUyTU0rFuXLuXI 93PaQnhEjF7ZssnqZOy8zZdY0IIoNoZ8U4dO0DwJxko1f3h1+8 9zxQ2j0k4+R8YeX6X2uJ1/VxZ1SIqSMdHB/GeXh/uvz/zj0k9jMXUF1PKMWuVx4rbM/otb+jqmiFGBafS98c2aeTJk1ou/WbKKfrEUEf8wR2M8p+//SdyEgZxYzh+neDknmKUTt0U4dWfy6/IB8PsKihJO8IYhUkk8I5/s5qMWh4myQz4dHNuSnANMUlAzXjZOZM09msUEE7JhFP9mJBZ5Y JHB4aUycPuKdnX0XApieLA6FU59kJISoyfFd+4LyoyWLv6GArJ vY6V26ylOUxrDThXt60nLM3skVsZkzT2ax5UODflo+xHSwiUB6 7nk0dLKc0b4QMPOavyY0VE4InB/sFNWV5AlyjokCLQTmE8ifedBPITrop/mjlBZ9EJAdtelegXSTxyP99OiOiKIO708QLapOYRUC6bLIXiHF mHInj0p0aDSHwOG74mHFOAGOO1cix2H1Mugn9RDggC0CMiPsN4 VshNGhfpIy7cknYXGSXbdFCm/+m8CjgzTj+Rcjji3o+NUn8bwzgTT5dPlBwOhzJbwEAv3kJVL4O YNAXGdJFZLc2bIRRqSvZwTDWxuPDtKUzzbDgDk/3aCuux2/+qxzgFprEChKe48+V8ILUvSTl0jhZ2cCOV9uP9pRi37qHIxVzB 0epBl/bGQ5uG9H+371eenb4fmZ8Vlg+/klQMsFStPeHj9d7M4f/dQdKQZ9EEgX+zfrcfuE06ZLMX3to6t4OYvA4UGacV0vnh/Wy52+X32KVzkvFScfT+R/Rd+LAHYgoEgA/aQIn6Y1CWzuN4i/CjnbmHj30oyc4bYPD9KMKufkaM2KPqVrzV023okPRcdB7YXU5b 6Zim5SBQJmCaCfzIYGx8YSOLzfYGyTWL8BAUleBmERPrU7P9fg EY+QB5I/h9/rbb4M7fLVZ/Bkc6rQRiGtd37mDcYjXRxIAP00EC6mIQCBuxGQ7zfTczIlJRP+ 7+vXr/NRpIvLsusoVgy31Ml3fFHZXK415zdKSQhAoIgA+qkIF4UhAAEI nBEQiRPFTbqc9+nTp3xw6eKyfLUndvbKSVpBPOUjpSQEuhNAP3 VHikEIQODWBKL6+fe//x20lFzeUkTkfB1NDPKxWxFPCkNgBAH00wiq2IQABO5LID22Pui nii/vHkkolNN9BxY9N0YA/WQsILgDAQg4JyBfw8Vd5GGVra5DewlVbarOAWpBAAInBNBPDA8 IQAACnQmIhJLP4kQ8yeFPjYcLpHuhOGCpc5wwB4EGAuinBnhUh QAEIPCYgOz7bsezyUK1G8QCBCDQhQD6qQtGjEAAAhAYSCB+07f 8jfdFZ6DLbjDZbdZFpw4MHqYXJYB+WjSwdAsCEFiIwH1uvK87A x0htdBgd9MV9JObUOEoBCB[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] NjpMJKDoKrnhR3JvIqrSG3t8R2V179FPq0eY/kEAAhCAwBQCslQnAkiW7cL6nSzkiTCStFNF4kqWCOXwi6Copvh OI8UE0E/FyKgAAQhAAAIQKCUQ1NW7d++itEovij7XWCLCZOHvw4cPv/32W2m7lB9EAP00CKyy2aJvgCvejXxVCZs9Y3qc7ZzKo5PmIQCB hEDQVZJqEoUkM1X1F4iS7pLjLTjNYdrgQj9NQz21obon0Jcqav Q2Pda50dSc6qjAqY8QjUFAlYDsgpJM1dPTU7yFOn+ekQ1V8rr4 6dMn1R6s3zj6ac0Yu/gGOH86oOQjAhsVGPZMyOoAn/as+WDTq1sSkM/0wp4qyU61v/jJLCGZKhFnZOIbRxP6qREg1R0QiOlxeSeTCajifW4NAce86WCw 4iIEqghItknmt9LTHGQDFlqqivf/VkI/VaOjIgSmEpijAkVjLX9DyNSw0RgE5hKQ/U/yCIsqevbsmbUXv8WmF/TT3KFNaxAYSUD2TMjUGXahVk+dskAw0kdsQwACmgRklnj79q0s 9KsIrJWmF/ST5jimbQjMJJA5b7569WqmV7QFAQhoEcicE6pfxvYVV5pe0E9a 45Z2IQABCEAAAhDwSgD95DVy+A0BCEAAAhCAgBYB9JMWedqFAA QgAAEIQMArAfST18jhNwQgAAEIQAACWgTQT1rkvbYrx7jJt118 4u41fvgNAQhAAAI9CKCfelBcy8a5QgoXXq70Depa0aM3EIAABC AwgwD6aQZlX22cK6T4PaqvTvXylvRbL5LYgcAIAjyhI6hi85AA +ulGAyNzZjlXSDfXT+fiUq6UksVNuXzwRqOKrkJgLgES5HN509 pDAuinGw2OzKW3eD/lRgeEaevm+umk+yKewr+yuHmjh4quTidAgvwEeeZL8vSgrdkg+ mnNuB4nG//48T/vs9z+cagDwrSFfgoENgxl2kovQ7jRqKKrEOhEIPO3nwT5CW8S5 J0GY5YZ9FMWpjUKZUqf33//PZaM1z3G5EqmkTWI7XvxqPuIy1UjTr+mESBB3o6aBHk7w3wL6K d8Vu5L5kufuIR3cu2RexxVHThkiLisYkklCPwXgcwJigT5ybh5 xJAE+YiHDf00gqpRm5nTk3gvO59OlNPhApbRPvd265DhJvkkZS xsIc9cDelNCHsQqCSQOUGRIK/QTyTIKwflaTX00wiqRm1mTk/R+72KkquzS40YZVHr1mZzvWgUWeKMTCIfC1vIM1dDaklQDwKdC eTPLSTIH6EnQd55UKKfZgK13Fb+9FTxfmO54x19i2sHh/m59M24Y6N1prqEu65pakGggkD+iCVBXqSfSJBXjMacKuSfcigt UiZ/ekI/PSIgCunRu68kn6RWF8hdBpwdT7p0ByPLEygdsSTI90OCBPnMxw T9NJO2clul09Ohu12MKINoa/5w1o4m7fCx40kbb2rfhUCXEdvFiF/iJMhnxg79NJO2cltdZpYuRpRBjGzeDh87nozkje11CHQZsV2M+ GVKgnxm7NBPM2krt9VlZuliRBnEyObt8LHjyUje2F6HQJcR28W Ia6YkyKeFD/00DbV+Q11mli5G9FkM88AOHzueDION4aUIdBmxXYwshfW/O2OHjx1PqsONfqpG569il/HaxYg/dtkex/2bv/76a3alIQWJ1BCsGB1GoMuI7WJkWBf1DdvhY8eT6qign6rR+avY Zbx2MeKPXbbHP/zwQ0D08uXL7EpDChKpIVgxOoxAlxHbxciwLuobtsPHjifVUUE/VaPzV7HLeO1ixB+7bI8l7WQEkRE3sslR8O4EuozYLkYWjgQJ8o 7BRT91hGndVJeZpYsR66Ta/DOCyIgbbSypfSMCXUZsFyMLQydB3jG46KeOMK2b6jKzbIxwydo +6vEN78uXL4pjoku4Ff2n6bsR6DJiuxhZmDwJ8o7BRT91hGndV ObMEu50kz/v3r3bdOnNmzcbI1yyto/6ixcvAqU9wJlDJDPcM12iLQicEOgyYrsYWTtMRhAZcaMl1uinF nrO6maO182FuDGJkoonSQKHzmfadEaqzd33798HLM+fP2+z1FS b0DTho/J0Al1GLAnyy7iRIL9ElFkA/ZQJaoVi8bH5+vXrSX8u7+aU/Iqccot+esRQ8Hb5JWgccxZ8aOwC1W9FIHPEkiBvHBUkyBsBxur op14kHdj5/vvvwwz16dOnc3dFHsnn93E6S/+SiifyT48wZv4SDB00FnwY2kGML0Ygc8SSIG+MOwnyRoDop14A PdmJX158+PAhx++PHz9+9913qXgSCzHzRP7phGHmL0FOFKrLWP Ch2nkq3pAACfI5QSdB3osz+adeJB3YiRuY5C+93OVHek9Sto1b wGLBh17DDDt3IECCfFqULUwOFnxoBI5+agToqbqkncKQjbu/271f4Bloh7CxEL5JLOXc/SQIQtM9shgcSoAE+VC8qXELk4MFHxqBo58aAXqqLtuewpCV97x efi/wDPRCEe1EJpu1TinwSCTJf3/27JlUlCWMXv4Qml4ksTOHAAnyOZxJkPfijH7qRdKBnbjsLT/VvdzlR3pDcn9EVlrg0XFZMWUlPAlNLwLY8UWABPmceJEg78W52 2TdyyHsDCUQkhzy5/wIg3wf4pbP/CoLlzw8IuswbZ4erZnWevXqVS8+SNteJLEzhwAJ8jmcSZD34ox +6kXSh524Q1NO8e/icTgsquOvfhevVIykWfHNKQ/Rnyg34xSW/qXjvjRpEf2kMgxotJoACfJqdPkVSZDns7osiX66RLRUgbhDU84 mWKpj2p2RqT9mxR+JJ/Hxxx9/PFRO8h9PatV1Dv1Ux41aigRIkA+FT4K8L170U1+e1q29fv06/Ky+ffvWuq9+/Iu7vwPb/bbx2BX5p3j47ybzdFKrjgT6qY4btRQJkCAfB58EeXe26KfuSE0 bjI+QJEJMO2rVufABXbp7Se4HTFflRB6d+y46KZbvtYp62CL6y eogwq+HBEiQDxocJMhHgEU/jaBq16b8/IefVbmexa6Xhj2Ld0fIxi9xU25CiP9F1u/k/+b4Hn8khkYB/ZQTC8qYIkCCfEQ4SJCPoCo20U+DwBo1+/nz5/CzKhezGHXRtlsnG5jyt5RJ2imKm6DDRvxBP42gis2hBEiQN+Il Qd4IsKg6+qkIl/vCsngUflY7HgHlHkpJB9LVt3QD0+Wy3aaRp6enUL3jgZmbJtBP JYGlrAkCJMgbw0CCvBFgUXX0UxGuFQrHz8R6HQG1ApSSPoQjG+ Kf/Z3KOcYkWTVa34y2n9NNykCgiAAJ8iJc+8IkyBsBFlVHPxXhWqF w/iWdK/TWZB822xEG+Yh+GgQWs+MIkCBvZEuCvBFgUXX0UxGuFQqXXtK5 Qp+N9SHm2EXijDt6FP1kLOy4k0WABHkWpseFSJA3Asyvjn7KZ7 VIyRGXdC6CZlY34gQ3TjxJV9BPs+JJOz0JkCDvSbPKFgnyTGzo p0xQ6xQbcUnnOnQW6gn6aaFg3qgrJMjVg02CPDME6KdMUOsUG3 FJ5zp0FuoJ+mmhYN6oKyTI1YNNgjwzBOinTFDrFBtxSeeGzv4M knXw+ekJ+slPrPD0TwIkyG8yGhaYoNBPNxmr/9XNeH/IoM5vziAZ1ApmzwksMD0R4hsSIEF+k6AvMEGhn24yVv+rm6MHb jyDZNzhkHcMW2GfR0e50B2KQyCLAAnyLEz+Cy0wQaGf/A/D8h6MHrjxEBdpqNw7avQhMDrKfbzECgR2BEiQ32FQLDBB8fN2h 4G67eOEgTuhiTtGrqTPhKCEFmUNERg9dEmQWwj26ChP6CP6aQJ kc01MGLgTmjCH1ZhDhMBYQHAnl8DooUuCPDcSI8uNjvJI3//fNvppAmRzTYweuPESddbvFGM/OsqKXaPptQlMGLoTmlg7Ru29WyAE6Kf2YeDPwuiBG29gkKPw/NFZxePRUV6FE/0wR2DC0J3QhDmsxhxaIAToJ2Njaoo7owdutC958ikdopEDAqM3 4QIdAoMIjJ6gSJAPClyR2dFRLnKmrjD6qY6b71qjB+5o+77pT/F+wkfgU/pBI3ckMHoCIUFuYVSNjvKEPqKfJkA218TogTvavjmg9hziEEJ7 McGjXAKjJxAS5LmRGFlugQQ5+mnkALFqe+j0JJe3DLVvFaotv+ IKxatXr2x5hjcQuCIwegIZbf+qf/z7f9ZIkKOf7jiUh04fMTfOx3eKYyuecPP27VtFN2gaAhUEhk5Q 4s9o+xVdvluVNRLk6Ke7jdv/7e/Q6SNmZfn4TnFsvXjxIkRZ0oGKbtA0BCoIDJ2gSJBXRKR7lTUS5 Oin7gPDgcGh01PIfLx8+ZKP7xSHwrNnz0KUv3z5ougGTUOggsD QCYoEeUVEuldZI0GOfuo+MBwYbJye5AXu+fPn79+/d9DVu7rYGOK7YqPfJggMHb0kyC3EeI0EOfrJwlia7UPj9BRe4G Qamu037WUTaAxxdjsUhEB/AkNHLwny/gErt7hGghz9VB55/zUap6fG6v75deuBZPK+/fZb4Sn/2zefR4y6BQlD0wk0jl4S5NMjVtxgY4iL2xtTAf00hqttq41jt7 G6bTbzvJMveNOtGH3zecRoXiBpqTeBxtFLgrx3QPrbawxxf4eq LKKfqrA5r9Q4dhurO4fXx/2PHz/GDHbg2fGgpl9//TXYlCb6uIsVCEwk0DjDNFaf2FHrTZEgP48Q+sn6CB7hX+P80lh 9RI982ZRZKRVPspWyr/9y5lOIkXwF2dcy1iAwgUDjDNNYfUIHXTRBgvwyTOinS0QLFsic Xx5tI8isviC4Hl3aiKe+256CgyKbQow4PLNHxLAxm0DjDNNYfX ZvTbZHgjwnLOinHEqrlcmcXx5tI4jVZZ1oNTTj+5Pueeq4Zpc6 HpNbBGh8PGmhP4HMCepRw43V+/fHm0US5JkRQz9lglqqWDwB5bfffjvpWCz2008/pcXi9MTyUNGwiJsJum942rjB70dRXChsjUDmACZBPiJwJMjzqa Kf8lmtU1JOvwwz1PniUTwidvNpWJzd5C/rQBnfk3BUQfgz9HKbzJ+f8T2mBQjUEMgcwCTIa+Be1SFBfkXoz 3/n9y+f1Tol37x5E2aop6enk17JBSwxBRUPKEpvj0I/FY0JSeNF8TT0cpvMn58i5ykMgWkESJBPQ502RIK8FDv6qZTYCu V/+eWX8BMrqui8PzEFleac0r+frwCuAMthH9BPDoOGy38SIEGuMh pIkJdiRz+VEluhvCQ/Mn9ipaTkqB6Jp8sVwAVgyRLn4WV/ls84zgzuAtGhC0sSIEGuElYS5KXY0U+lxBYpX/QTG5+rWCu+qZyvAHqH9e7du9BlWVDYrLhZPuO4KLjeY4T/6xEgQb5eTNMeLTNBoZ/WHqgPe9c4gvMnONd841bK/XbvCHDzcaKF/jYG10IX8OHOBEiQ50efBHk+q+4l0U/dkfow2PgTmz/B+cDxwMtIab/dO/5T33vruuBqDG4XHzACgRYCRWOYBDkJ8pbBVl0X/VSNznfFounpsKvtFuwTPOljuifMWkfuEBprzPGnL4HGMUyCnAR 53wF5/CM4oQ2aMEigcXqSHrVbMIhl49KjPsZ9UaGAtY7cITTWmONPXwK NY5gEOQnyvgMS/TSBp5smGqenu+mnzSan9Ig59JObQY+jfggwQeXEigR5DqVxZcy 9Oo/rKpZTAkxPOeMhnuMnuMJdcrJbMz0lJWD88uVLjrVpZdqDO81VG oLA8Zv9H4O4ms8dngIS5NXDo0tF9FMXjP6MtE8u7RbsU9vvS02 3PcW/y3Keqb7cITSmgONMdwLtY7jdQvdOdTf4aJMTCfLuqI9V/pxmaMUagfbJpd2CNSaH/kja6VAzyYkGcReUHLBpqi83CY0p5jjTl0D7GG630LdHI6yRIB9 BNd8m+ad8VkuVbJ9c2i14Afrq1atUQolyCscZfP36Nc5fppbw7 hMaL0MIP0sJtI/hdgulPs8vT4J8PvO0RfSTLn+11tsnl3YLap3v1/CLFy8CB1NLeISmX4SxpEOgfQy3W9DpeWGrJMgLgfUsjn7qSdOR rfbJpd2CI1yPXJXt5IGDqSW8mBULe975AwF3BNqnl3YLXqCRIN eKFPpJi7xyu+2TS7sFZQQ9mk+X8OyIFVlhDNF5+fJlj15iAwKz CbRPL+0WZvd5QHskyAdA/dMk+mkoXrvG2yeXdgt26ZR4JhrFmlhJU/olXaEsBKwQaJ9e2i1YYdHgBwnyBnjXVdFP14yWLNE+ubRbWAOs TbFCdNYYXbftRfsAbrewAHwS5EODiH4aiteu8fbJpd2CXTqFnh lEYdClQqgUvzWB9gHcbmGNAJAgHxdH9NM4tqYtt08u7RZMAypx ziAKgy6VEKXs3Qm0D+B2C2vEgAT5uDiin8axNW25fXJpt2AaUI lzBlEYdKmEKGXvTqB9ALdbWCYGBlEYdKki3OinCmgrVGkcvr/88kuwIJfBbXD8/PPP8jG/7FtcAVNeHxph5jVSVsqgS2UdoPS9CbQP4HYLy0TAIAqDLlWEG/1UAW2FKo3D9+npKVh4/fr1Bke4ekmOIFoBU14fGmHmNVJWyqBLZR2g9L0JtA/gdgvLRMAgCoMuVYQb/VQBbYUqmcP3MJkU730TI58+fdrgyLS8AsQ/+mCwywZdWini9GU0gcYBTII8DVAjzBGxNuhSRTfRTxXQVqiSOX wPk0nxcm85nG3PItPyChDRTytFkb5YItA4jZAgRz9NGM7opwmQ LTYRr/g4dy4We/PmTSwZp7ZwjS75p5O5/sOHD7JFTP5MviCv8efH4pDFpzsRyBzAJMhzBkUmzBxTvcoYdKm ia+inCmgrVAkXd8vFSeed+fHHH+NA3//lsO4aD0ZRjE+6LMop/qswD2YnbLGPwjc2WtQjCkNAl0DmNEKCPCdMmTBzTPUqY9Cliq6 hnyqg3aiKZJjiDUob/SSXrG1ABFmwxoNRFOOTLqcCNO6pn7DFPrZ7q438RVGjsGUCJMg 7RocEeUeYqSn00yCw65gVCRU3E8TnUMTTfvEu7osKxdZBcNWTk +lJKMVfAikWskETJGbaLimoqwDy7+YIkCDvGBIS5B1hop8Gwby 72U2C6j44zvXQyRroUESkoIbixbgFAiTIc6JAgjyHUkWZGyUJK uhQpYhAmmi53FlVZNlyYdlZf66fTqb4of1KU1BDG8I4BBQJkCC/hE+C/BJRXQH0Ux03ah0QCCl3+XNP8bTfEBYZbVbxplHKXARhNEPgDgR IkB9GmQR59eBHP1Wjo+KtCXz9+jWdd2SX/eFpDpERq2m3Hi503gABEuSHQSBBXj020U/V6Kh4CwLyUeH+AKePHz8+e/Ysvs5eiichJZPUhG3jtwgJnYRAFQES5I+wkSCvGlD/QT/VcaPWXQikBzht8v/h/+aIpwCLM5nuMmjoJwS0CZAgnxAB9NMEyDThmEB8Zz0UT+/fv8/vW7qEd77Yl2+TkhCAwJ0JkCBXjD76SRE+TfsgcPiBT8U2ebEje 8ylopyn5aPneAkBCNgmQIJcMT7oJ0X4NH1HAl++fLljt+kzBCA wgAAJ8gFQc02in3JJUQ4CEIAABCBgjQAJcq2IoJ+0yNMuBCAAA QhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHg lgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5 PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAA CEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0 CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs 87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQ AACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJ eCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yG jn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhC AAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAAB LQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftI iT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAA hCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEIC AVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfv EYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgA EIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgA AEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+ 0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQg AAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQ g4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ 6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyE AAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABC EBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAug nLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuB CAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAA BCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+ slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28 IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAA AIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD 6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0C wEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQh AAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglg H7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PA bAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACE IAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CK AftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87 UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAA CEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeC aCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn 8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAA AQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQ IoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT 7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhC AAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAV wLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEY OvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEI AABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAE tAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0y NMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAA EIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4 JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+ Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAA QhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEB AiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnL fK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCA AAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABC HglgH7yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+sl r5PAbAhCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQ AACEIAABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAI Q0CKAftIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6S Ys87UIAAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAugnLfK0CwE IQAACEICAVwLoJ6+Rw28IQAACEIAABLQIoJ+0yNMuBCAAAQhAA AJeCaCfvEYOvyEAAQhAAAIQ0CKAftIiT7sQgAAEIAABCHglgH7 yGjn8hgAEIAABCEBAiwD6SYs87UIAAhCAAAQg4JUA+slr5PAbA hCAAAQgAAEtAugnLfK0CwEIQAACEICAVwLoJ6+Rw28IQAACEIA ABLQIoJ+0yNMuBCAAAQhAAAJeCaCfvEYOvyEAAQhAAAIQ0CKAf tIiT7sQgAAEIAABCHglgH7yGjn8hgAEIAABCEBAiwD6SYs87UI AAhCAAAQg4JUA+slr5PAbAhCAAAQgAAEtAv8Dy4yRuVeUrLsAA AAASUVORK5CYII=

این معادله خطی مرتبه دوم غیر همگن با جواب عمومی y=yg + yp که yg همان جواب عمومی معادله همگن و yp عبارت است از y2=V1y1+V2y2
V1 و V2 توابعی هستند که مشتقاتشون طبق فرمول زیر و انتگرال گیری بدست میاد

hamidrezavictor
29-10-2013, 20:16
فرمول اینجا اپلود کردم [ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

hamidrezavictor
29-10-2013, 20:19
y1 هم برای گذاشتن تو فرمول معمولا خودشون میدن

hts1369
30-10-2013, 21:12
بله بلد هستم این نوع معادله رو
بفرمایید ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ](\frac{1}{x}\right)\int&space;\f rac{1}{\sin&space;^2\left(\frac{1}{x}\right)}e^{-\int&space;\frac{2}{x}dx}dx&space;\\&space;y_2=\sin&space;\left(\frac{1}{x }\right)\int&space;\frac{1}{x^2\sin&space;^2\left(\frac{1}{x}\ right)}dx&space;\\&space;\frac{1}{x}=u\Rightarrow&space;\frac{-1}{x^2}dx=du&space;\\&space;y_2=\sin&space;(u)\int&space;\frac{-1}{\sin&space;^2(u)}du=\sin&space;(u)\left(\int&space;-\left(1+\cot&space;^2u\right)du\right)=\sin&space;(u)(\cot&space;u)= \cos&space;u=\cos&space;\left(\frac{1}{x}\right))

hamidrezavictor
30-10-2013, 21:35
بله بلد هستم این نوع معادله رو
بفرمایید ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ](\frac{1}{x}\right)\int&space;\f rac{1}{\sin&space;^2\left(\frac{1}{x}\right)}e^{-\int&space;\frac{2}{x}dx}dx&space;\\&space;y_2=\sin&space;\left(\frac{1}{x }\right)\int&space;\frac{1}{x^2\sin&space;^2\left(\frac{1}{x}\ right)}dx&space;\\&space;\frac{1}{x}=u\Rightarrow&space;\frac{-1}{x^2}dx=du&space;\\&space;y_2=\sin&space;(u)\int&space;\frac{-1}{\sin&space;^2(u)}du=\sin&space;(u)\left(\int&space;-\left(1+\cot&space;^2u\right)du\right)=\sin&space;(u)(\cot&space;u)= \cos&space;u=\cos&space;\left(\frac{1}{x}\right))

ممنونم لطف کردین ... :n01: میشه چندتا جزوه اموزشی معادلات هم معرفی کنین برای یادگیری بهتر ممنون میشم ازتون

hts1369
31-10-2013, 08:22
برا کنکور ارشد کتاب اقای معتقدی و همچنین کتاب اقای کریمی کتابهای خیلی خوبی هستند ولی برا درس و دانشگاه من چیز خاصی نمیدونم
احتمالا کتاب اقای نیکوکار جزو بهترین کتابها هست.