PDA

نسخه کامل مشاهده نسخه کامل : کربن و ترکیبات آلی



officer
15-07-2010, 13:03
شیمی آلی

تاریخچه
واژه غلط انداز " آلی " باقیمانده از روزگاری است که ترکیبهای شیمیایی را ، بسته به این که از چه محلی منشاء گرفته باشند، به دو طبقه غیر آلی و آلی تقسیم می‌کردند. ترکیبهای غیر آلی ، ترکیبهایی بودند که از مواد معدنی بدست می‌آمدند. ترکیبات آلی ، ترکیبهایی بودند که از منابع گیاهی یا حیوانی ، یعنی از مواد تولید شده به وسیله ارگانیسمهای زنده بدست می‌آمدند.
در حقیقت تا حدود سال 1950، بسیاری از شیمیدانها تصور می‌کردند که ترکیبات آلی باید در ارگانیسم های زنده بوجود آیند و در نتیجه ، هرگز نمی‌توان آنها را از مواد غیر آلی تهیه کرد. ترکیبهایی که از منابع آلی بدست می آمدند، یک چیز مشترک داشتند: همه آنها دارای عنصر کربن بودند. حتی بعد از آن که روشن شد این ترکیبها الزاما نباید از منابع زنده به دست آیند، بلکه می‌توان آنها را در آزمایشگاه نیز تهیه کرد.
بهتر آن دیدند که برای توصیف آنها و ترکیبهایی مانند آنها ، همچنان از واژه آلی استفاده کنند. تقسیم ترکیبها به غیر آلی و آلی تا به امروز همچنان محفوظ مانده است.

زیست توده
چگونه و در کجا می‌توانیم منبع دیگری از مواد اولیه آلی پیدا کنیم؛ بی شک باید به جایی روی آوریم که مبدا اولیه سوختهای فسیلی است، یعنی زیست توده biomass ، ولی این بار بطور مستقیم و بدون دخالت هزاران سال. زیست توده ، تجدید شدنی است، براحتی مورد استفاده قرار می‌گیرد و می‌تواند تا موقعی که بر روی این سیاره زندگی می‌کنیم، تداوم داشته باشد.
در ضمن عقیده بر این است که نفت خیلی گرانبهاتر از آن است که سوزانده شود.

ویژگی ترکیبات کربن
براستی چه ویژگی خاصی در ترکیبهای کربن وجود دارد که لازم است آنها را از ترکیبهای یکصد و چند عنصر دیگر جدول تناوبی جدا کنیم؟ دست کم ، بخشی از پاسخ چنین است: ترکیبهای بسیار زیادی از کربن وجود دارد و مولکول آنها می‌تواند بسیار بزرگ و بسیار پیچیده باشد. شمار ترکیبهای کربن‌دار ، چندین برابر ترکیبهایی است که کربن ندارند. این ترکیبهای آلی را به خانواده هایی تقسیم می‌کنند که معمولا در ترکیبهای غیرآلی ، همانندی برایشان وجود ندارد.
بعضی از مولکولهای شناخته شده آلی ، هزاران اتم دارند و آرایش اتمها در مولکولهای نسبتا کوچک ممکن است بسیار پیچیده باشد. یکی از دشواریهای اساسی شیمی آلی ، یافتن چگونگی آرایش اتمها در مولکولها ، یعنی تعیین ساختار این ترکیبهاست.

واکنشها در شیمی آلی
راههای زیادی برای خرد کردن مولکولهای پیچیده یا نوآرایی آنها بمنظور تشکیل مولکولهای تازه وجود دارد. راههای زیادی برای افزودن اتمهای دیگر به این مولکولها یا جانشین کردن اتمهای تازه به جای اتمهای پیشین وجود دارد. بخشی ار شیمی آلی صرف دانستن این مطلب می‌شود که این واکنشها چه واکنشهایی هستند، چگونه انجام می‌شوند و چگونه می‌توان از آنها در سنتز ترکیبهای مورد نیاز استفاده کرد.


گستره اتصال اتمهای کربن در ترکیبات کربن
اتمهای کربن می‌توانند به یکدیگر متصل شوند. گستره اتصال آنها به هم ، به اندازه‌ای است که برای اتمهای هیچ یک از عناصر دیگر ممکن نیست. اتمهای کربن می‌توانند زنجیرهایی به طول هزارها اتم ، یا حلقه‌هایی با ابعاد گوناگون تشکیل دهند. این زنجیرها ممکن است شاخه‌دار و دارای پیوندهای عرضی باشند. به اتمهای کربن در این زنجیرها و حلقه ها ، اتمهای دیگری بویژه هیدروژن ، همچنین فلوئور ، کلر ، برم ، ید ، اکسیژن ، نیتروژن ، گوگرد ، فسفر و سایر اتمها متصل می‌شوند. سلولز ، کلروفیل و اکسی توسین مثالهایی از این دستند.
هر آرایش متفاوتی از اتمها با یک ترکیب معین تطبیق می‌کند و هر ترکیب دارای مجموعه ای از ویژگیهای شیمیایی و فیزیکی مخصوص به خود است. شگفت‌انگیز نیست که امروزه بیش از ده میلیون ترکیب کربن می‌شناسیم و این که بر این تعداد ، همه ساله نیم میلیون افزوده می‌شود. همچنین شگفت انگیز نیست که مطالعه و بررسی شیمی آنها به تخصصی ویژه نیاز دارد.

تکنولوژی و شیمی آلی
شیمی آلی ، زمینه‌ای است که از دیدگاه تکنولوژی اهمیتی فوق‌العاده دارد. شیمی آلی شیمی رنگ و دارو ، کاغذ و مرکب ، رنگینه ها و پلاستیکها ، بنزین و لاستیک چرخ است. شیمی آلی ، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.

زیست شناسی و شیمی آلی
شیمی آلی در زیست شناسی و پزشکی نقش اساسی برعهده دارد. گذشته از آن ، ارگانیسم های زنده ، بیشتر از ترکیبهای آلی ساخته شده اند. مولکولهای "زیست شناسی مولکولی" همان مولکولهای آلی هستند. زیست شناسی در سطح مولکولی ، همان شیمی آلی است.

عصر کربن
اگر بگوییم که در عصر کربن زندگی می کنیم، دور از حقیقت نیست. هر روز ، روزنامه‌ها توجه ما را به ترکیبهای کربن جلب می‌کنند: کلسترولو چربیهای سیرنشده چند عاملی ، هورمونهای رشد و استروئیدها ، حشره کشها و فرومونها ، عوامل سرطانزا و عوامل شیمی‌درمانی ، DNA و ژنها. بر سر نفت ، جنگها در گرفته است.
دو فاجعه اسف‌انگیز ما را تهدید می‌کنند، هر دو از تجمع ترکیبهای کربن در اتمسفر ناشی می‌شوند: از بین رفتن لایه اوزون که بیشتر ناشی از کلرو فلوئورو کربن‌هاست و اثر گلخانه‌ای از متان ، کلروفلوئوروکربن‌ها و بیش از همه ، دی‌اکسید کربن سرچشمه می‌گیرد. شاید کنایه بر همین مطلب است که نشریه علوم ، برای سال 1990، بعنوان مولکول سال ، الماس را که یکی از شکلهای آلوتروپی کربن است، برگزیده.
خبر دیگر ، کشف آلوتروپ جدید کربن C60 (باک منیستر فولرن) است که چنین هیجانی در جهان شیمی از زمان " ککوله " تاکنون دیده نشده بود.

gochi30
15-07-2010, 13:05
واقعا عنصر پر کاربردیه تو تمام علوم رد پای از اونو میشه دید

officer
15-07-2010, 13:13
کربن عنصری شیمیائی در جدول تناوبی است ، با نشان C و عدد اتمی 6. کربن عنصری غیر فلزی و فراوان ، چهارظرفیتی ودارای سه صورت مختلف( آلوتروپی ) می باشد:
الماس ( سخت ترین کانی شناخته شده)
گرافیت( یکی از نرم ترین مواد)
Covalend bound sp1 orbitals are of chemical interest only
فولریت ( فولرینز، مولکولهایی در حد بیلیونیوم متر هستند که در شکل ساده آن ، 60 اتم کربن یک لایه گرافیتی با ساختمان 3 بعدی منحنی ، شبیه به روروئک (روروئکی که قسمت جلوی آن مانند چوب اسکی خم شده) ، تشکیل می دهند .

دوده چراغ از سطوح کوچک گرافیت تشکیل شده . این سطوح بصورت تصادفی توزیع شده، به همین دلیل کل ساختمان آن ایزوتروپیک است .
چنین کربنی ایزوتروپیک و مانند شیشه محکم است. لایه های گرافیت آن مانند کتاب مرتب نشده اند ، بلکه مانند کاغذ خرد شده می باشند.

الیاف کربن شبیه کربن شیشه ای می باشند . تحت مراقبتهای خاص ( کشیدن الیاف آلی و کربنی کردن) می توان لایه های صاف کربن را در جهت الیاف مرتب کرد . هیچ لایه کربنی در جهت عمود بر محور الیاف قرار نمی گیرد . نتیجه الیافی با استحکام بیشتر از فولاد می باشد .

کربن در تمامی جانداران وجود داشته و پایه شیمی آلی را تشکیل می دهد.همچنین این غیر فلز ویژگی جالبی دارد که می تواند با خودش و انواع زیادی از عناصر دیگر پیوند برقرار کند( تشکیل دهنده بیش از ده میلیون ترکیب ).در صورت ترکیب با اکسیژن تولید دی اکسید کربن می کند که برای رشد گیاهان ، حیاتی می باشد.در صورت ترکیب با هیدروژن ترکیبات مختلفی بنام هیدرو کربنها را بوجود می آورد که به شکل سوختهای فسیلی، در صنعت بسیار بنیادی هستند. وقتی هم با اکسیژن و هم با هیدروژن ترکیب گردد ،گروه زیادی از ترکیبات را از جمله اسیدهای چرب را می سازند که برای حیات و استر ، که طعم دهنده بسیاری از میوه ها است ، ضروری است.ایزوتوپ C-14 به طور متداول در سن یابی رادیواکتیو کاربرد دارد.

ویژگیهای قابل توجه
کربن به دلایل زیادی قابل توجه است. اشکال مختلف آن شامل یکی از نرم ترین ( گرافیت ) و یکی از سخت ترین ( الماس) موادر شناخته شده توسط انسان می باشد. بعلاوه کربن میل زیادی به پیوند با اتمهای کوچک دیگر از جمله اتمهای دیگر کربن ، داشته و اندازه بسیار کوچک آن امکان پیوندهای متعدد را بوجود می آورد. این خصوصیات باعث شکل گیری ده میلیون ترکیبات کربنی شده است .ترکیبات کربن زیر بنای حیات را در زمین می سازند و چرخه کربن – نیتروژن قسمتی از انرژی تولید شده توسط خورشید و ستارگان دیگر را تامین می کند.
کربن در اثر انفجار بزرگ( Big Bang) حاصل نشده ، چون این عنصر برای تولید نیاز به یک برخورد سه مرحله ای ذرات آلفا ( هسته اتم هلیم) دارد. جهان در ابتدا گسترش یافت و به چنان به سرعت سرد شد که امکان تولید آن غیر ممکن بود. به هر حال ، کربن درون ستارگانی که در رده افقی نمودار H-R قرار دارند ، یعنی جائی که ستارگان هسته هلیم را با فرایند سه گانه آلفا به کربن تبدیل می کنند ، تولید شد.

کاربردهـــــــــا
کربن بخش بسیار مهمی در تمامی موجودات زنده است و تا آنجا که می دانیم بدون این عنصر زندگی وجود نخواهد داشت( به برتر پنداری کربن مراجعه کنید).عمده ترین کاربرد اقتصادی کربن ، فرم هیدروکربنها می باشد که قابل توجه ترین آنها سوختهای فسیلی ، گاز متان و نفت خام است.نفت خام در صنایع پتروشیمی برای تولید محصولات زیادی از جمله مهمترین آنها بنزین ، گازوئیل و نفت سفید بکار می رود که از طریق فرآیند تقطیر در پالایشگاهها بدست می آیند. از نفت خام مواد اولیه بسیاری از مواد مصنوعی ، که بسیاری از آنها در مجموع پلاستیک نامیده می شوند ، شکل می گیرد.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]




سایر کاربردها :
ایزوتوپ C-14 که در 27 فوریه 1930 کشف شد در سن یابی کربن پرتوزا مورد استفاده است.
گرافیت در ترکیب با خاک رس بعنوان مغز مداد بکار می رود.
الماس جهت تزئین ونیز در مته ها و سایر کاربردهایی که سختی آن مورد استفاده است کاربرد د ارد.
برای تولید فولاد، به آهن کربن اضافه می کنند.
کربن در میله کنترل در رآکتورهای اتمی بکار می رود.
گرافیت به شکل پودر و سفت شده بعنوان ذغال چوب برای پخت غذا ،در آثار هنری و موارد دیگر مورد استفاده قرار می گیرد.
قرصهای ذغال چوب در پزشکی که به صورت قرص یا پودر وجود دارند برای جذب سم از دستگاه گوارشی مورد استفاده اند.
خصوصیات ساختمانی و شیمیایی فولرن به شکل ریزتیوب کربن ، کاربردهای بالقوه امیدوار کننده ای در رشته در حال شکل گیری نانوتکنولوژی ذارد.

تاریخچـــــه
کربن ( واژه لاتین carbo به معنی ذغال چوب) در دوران ماقبل تاریخ کشف شد و برای مردم باستان که آنرا از سوختن مواد آلی در اکسیژن ضعیف تولید می کردند ، آشنا بود.( تولید ذغال چوب).مدت طولانی است که الماس بعنوان ماده ای زیبا و کمیاب به حساب می آید. فولرن ،آخرین آلوتروپ شناخته شده کربن در دهه 80 بعنوان محصولات جانبی آزمایشات پرتو مولکولی کشف شدند.

اشکال مختلف، ( آلوتروپها)
تاکنون چهار شکل مختلف از کربن شناخته شده است: غیر متبلور(آمورف) ، گرافیت ، الماس و فولرن .
کربن در نوع غیر بلورین آن اساسا گرافیت است اما بصورت ساختارهای بزرگ بلورین وجود ندارد.این شکل کربن ، بیشتر بصورت پودر است که بخش اصلی موادی مثل ذغال چوب و سیاهی چراغ ( دوده ) را تشکیل می دهد.
در فشار معمولی کربن به شکل گرافیت در می آید که در آن هر اتم با سه اتم دیگر بصورت حلقه های شش وجهی- درست مثل هدروکربنهای مطر - به هم متصل شده اند. هردو گونه شناخته شده از گرافیت ، آلفا (شش ضلعی ) و بتا ( منشور شش وجهی که سطوح آن لوزی است) خصوصیات فیزیکی مشابه دارند تنها تفاوت آنها در ساختار بلوری آنها می باشد.گرافیتهای طبیعی شامل بیش از 30% نوع بتا هستند در حالیکه گرافیتهای مصنوعی تنها حاوی نوع آلفا می باشند.نوع آلفا از طریق پردازش مکانیکی می تواند به بتا تبدیل شود و نوع بتا نیز براثر حرارت بالای 1000 درجه سانتیگراد دوباره بصورت آلفا بر می گردد.
گرافیت به سبب پراکندگی ابر pi هادی الکتریسیته است. این ماده نرم بوده و ورقه های آن که اغلب بوسیله اتمهای دیگر تفکیک شده اند ، تنها بوسیله نیروهای وان در والس به هم چسبیده اند به گونه ایکه به راحتی یکدیگر را کنار می زنند.

officer
15-07-2010, 13:19
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


تقسیم‌بندی هیدروکربنها
بسته به ساختمان ، هیدروکربنها به دو دسته اصلی آلیفاتیک و آروماتیک تقسیم می‌شوند. هیدروکربنهای آلیفاتیک خود به گروههای وسیع‌تری تقسیم می‌شوند: آلکانها ، آلکنها ، آلکینها و ترکیبات حلقوی مشابه (سیکلوآلکانها و غیره).

آلکانها
ساده ترین عضو خانواده آلکانها و در واقع ، یکی از ساده ترین ترکیبات آلی ، متان CH4 است. تمام آنچه که در مورد CH4 وجود دارد، می‌توان با اختلافات کمی در مورد سایر آلکانها نیز بکاربرد.

ساختمان متان
در متان ، هر یک از چهار اتم هیدروژن بوسیله یک پیوند کووالانسی به اتم کربن متصلند که این عمل ، با به اشتراک یک زوج الکترون انجام می‌شود. هنگامی که کربن به چهار اتم دیگر متصل شود، اوربیتالهای پیوندی (اوربیتالهای SP3 که از همپوشانی یک اوربیتال S و سه اوربیتال P تشکیل می‌شوند) به گوشه های یک چهار وجهی هدایت می‌شوند.
این آرایش چهار وجهی ، آرایشی است که اجازه می‌دهد اوربیتالها تا حد امکان از یکدیگر فاصله بگیرند. برای اینکه هر کدام از این اوبیتالها بتوانند به نحو موثری با اوربیتال کروی 5 اتم هیدروژن همپوشانی نمایند و بنابراین قویترین پیوند را بوجود آورند، هسته هر کدام از هیدروژنها ، بایستی در گوشه این چهار وجهی قرار بگیرد.
منبع متان
متان ، محصولی متلاشی شدن ناهوازی (بدون هوا) گیاهان یعنی شکستن بعضی از مولکولهای خیلی پیچجیده می باشد. همچنین تشکیل دهنده قسمت اعظم (حدود 79%) گاز طبیعی است. متان ، گاز آتشگیر خطرناک معادن زغال سنگ و به صورت جبابهای گاز از سطح مرداب‌ها خارج می‌شود.

آلکنها
آلکنها ، دسته وسیعی از هیدروکربنها را شامل می‌شوند که به هیدروکربنهای غیر اشباع (Unsaturated) موسومند. تعداد هیدروژنهای این ترکیبات ، کمتر از آلکانهای هم کربن می‌باشد. آلکنها ممکن است یک یا چند پیوند دو گانه مجزا و دور از هم و یا مزدوج داشته باشند

ساختمان پیوند دو گانه کربن- کربن در آلکنها
اتیلن ، کوچکترن عضو خانواده آلکنها و به فرمول C2H4 می‌باشد که دو اتم هیدروژن کمتر از آلکانهم‌کربن (اتان) دارد. بررسی ساختمان اتیلن به طریقه کوانتوم مکانیکی نشان داده است که کربن ، برای اینکه در ساختمان اتیلن شرکت نماید، لازم است که با استفاده از اوربیتالهای 2S و دو اوربیتال 2P خود ، سه اوربیتال هیبریدی یکسان بوجود آورد که این اوربیتالهای هیبریدی در یک سطح قرار می‌گیرند بنحوی که اتم کربن در مرکز یک مثلث قرار گرفته و زوایای بین اوربیتالهای هیبریدی 120 درجه تخمین زده شده است.
هرگاه ما چهار اتم هیدروژن و دو اتم کربن SP2 را در کنار هم مرتب کنیم، شکلی ایجاد می‌شود که در آن ، هر اتم کربن ، در سه پیوند سیگما شرکت دارد. برای رسیدن به کربن به حالت اکتت ، لازم است که سومین اوربیتال 2P اتمهای کربن همپوشانی کرده، پیوند ایجاد کنند. این پیوند که از همپوشانی اوربیتالهای P کرین ایجاد می‌شود، از نظر شکل و انرژی با پیوند سیگما متفاوت می شود و به پیوند π موسوم است که از دو قسمت تشکیل شده است.
یک ابر الکترونی در بالای سطح مولکول و ابر الکترونی دیگر در پایین سطح قرار می‌گیرد. وقتی این ساختمان میتواند ایجاد شود که تمام اتمهای شرکت کننده در ساختمان اتیلن ، در یک سطح قرار بگیرند. پس مولکول اتیلن لازم است یک مولکول مسطح باشد. مسطح بودن مولکول اتیلن بوسیله روشهای طیف‌سنجی و پراش الکترونی مورد تائید قرار گرفته است.

آلکینها
هرگاه ترکیب آلی ، حاوی پیوند سه‌گانه کربن به کربن باشد، آلکین نامیده می‌شود. استیلن با فرمول C2H2 کوچکترین عضو این خانواده می‌باشد و به همین دلیل ، آلکنها را ترکیبات استیلنی یا استیلن‌های استخلاف دار می‌گویند. برای اینکه دو اتم و دو اتم هیدروژن به هم وصل شوند و مولکول کاملی تولید نمایند، لازم است که کربنها با هیبرید SP و از طریق پیوند سه‌گانه (یک پیوند سیگما و دو تا پیوند π) به یکدیگر وصل شوند: H−C≡C−H

تقسیم بندی استیلنها

استیلن‌های حقیقی یا انتهایی (terminal acetylenes):
به ترکیباتی از این گروه اطلاق می‌شود که حداقل یک اتم هیدروژن متصل به کربن SP در آنها وجود داشته باشد. مثلا پروپن (متیل استیلن) ، یک استیلن حقیقی است. به همین ترتیب فنیل استیلن و ترسیوبوتیل استیلن از استیلن های حقیقی می‌باشند.
استیلن های داخلی (Internal acetylenes):
هرگاه پیوند سه‌گانه کربن به کربن در جایی از مولکول قرار گرفته باشد که کربنهای با هیبرید SP به استخلاف متصل باشند، استیلن را داخلی می‌نامند. مثل دی‌متیل استیلن ، دی فنیل استیلن، دی ترسیوبوتیل استیلن.

ساختمان استیلن
اتین یا استیلن ، کوچکترین عضو خانواده بزرگ آلکینها می‌باشد. به طریق کوانتوم مکانیکی ، اگر بخواهیم با دو اتم کربن و دو اتم هیدروژن ، مولکولی را ایجاد کینم، لازم است که کربنها با یک پیوند سه‌گانه به یکدیگر متصل شوند. برای ایجاد چنین مولکولی ، اتمهای کربن باید هیبرید SP داشته باشند. یکی از این اوربیتالهای هیبریدی به کربن و دیگری به هیدروژن متصل و اوربیتالهای Py و Pz نیز دو پیوند π را ایجاد کنند.
با شناختی که از دو پیوند دوگانه کربن به کربن و کربن به هیدروژن آلکنها داریم، انتظار داریم که طول پیوند سه‌گانه کربن- کربن و کربن- هیدروژن در استیلنها کوتاه باشد. طول پیوند سه گانه کربن- کربن 1,20انگستروم و کربن به هیدروژن 1,06 انگستروم اندازه گیری شده است.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

officer
15-07-2010, 14:27
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


ریشه لغوی
کلمه آلدئید (Aldehyde) از دو واژه الکل (Alcohal) و هیدروژن‌گیری (dehydrogenation) گرفته شده است. هرگاه از الکل نوع اول هیدروژن‌گیری شود، در آن صورت ، ماده ای تولید می‌گردد که آلدئید نامیده می‌شود.

نامگذاری آلدئیدها
در نامگذاری قدیمی ، نام آلدئید از نام اسید آلی مربوطه آن گرفته می‌شد. مثلا آلدئید فرمیک از اسید فرمیک ، آلدئید استیک را از اسید استیک و آلدئید پروپیونیک از اسید پروپیونیک بوجود آمده است. در نامگذاری جدیدی برای نامگذاری آلدئیدها ، ابتدا طولانی‌ترین زنجیر حاوی عامل آلدئیدی را انتخاب می‌شود و سپس شماره گذاری اتمهای کربن از جهتی که گروه آلدئیدی قرار گرفته است، انجام می‌گیرد. برای نامگذاری ، ابتدا شماره و نام شاخه‌های فرعی را نوشته ، در پایان ، اسم هیدروکربن را بطور کامل ذکر و پسوند آل (al) بر آخر آن افزوده می‌شود.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



تهیه آلدئیدها از اکسید گردن الکلهای نوع اول
با استفاده از برخی اکسید کننده‌های ملایم مثل دی‌اکسیدمنگنز ، واکنشگر CrO3/H+/CH3COCH3) Jones) یا واکنشگر CrO3/HCl/Pyridine) Sarett) یا واکنشگر (CrO3/2pyridine/CH2Cl2) و کرومیل کلرید Cr2Cl2 ، الکل های نوع اول و دوم بصورت محدود اکسید می‌شوند.
الکل های نوع اول به آلدئید و نوع دوم به کتون هم کربن خود تبدیل می‌گردند.

تهیه آلدئیدها و کتونها با استفاده از ترکیبات آلی فلزی
گاهی اوقات از ترکیبات آلی فلزی برای سنتز آلدئیدها و کتونها استفاده می‌شود. در سالهای اخیر ، برای سنتز ترکیبات کربونیل‌دار از R2Cd یا RZnX یا R2Zn استفاده زیاد شده است. قدرت هسته خواهی ملایم و محدود این واکنشگرها این امکان را فراهم می‌کند که از کلرواسیدها ، کتونهای مربوطه سنتز شود.

تهیه آلدئیدها از اورگانومنیزین‌ها
از فعل و انفعال اورگانومنیزین‌ها با نیتریل‌ها و آمیدها نیز می‌توان آلدئید و کتون تهیه نمود. البته برای تهیه آلدئید باید آمید به شکل فرم آمید باشد.

سنتز آلدئیدها از واکنش آلکوکسی هیدریدلیتیم آلومینیوم با آمیدها و کلرواسیدها
احیای کلرواسیدها و آمیدها به کمک هیدریدیهای مناسب از قبیل تری‌آلکوکسی هیدرید لیتیم آلومینیوم به تشکیل آلدئید مربوطه منجر می‌گردد. توجه به این نکته ضرورت دارد که احیای کلرواسیدها بوسیله تری‌ترسیو بوتوکسی لیتیم آلومینیوم در دمای پایین در حدود 78- درجه سانتی‌گراد و در حلالهای مناسب مانند دی‌گلایم MeO-CH2-CH2-O-CH2-CH2-OMe انجام می‌شود.
برای تبدیل آمیدها به آلدئیدهای مربوط ، از دی‌آلکوکسی هیدرید لیتیم آلومینیوم نیز می‌توان استفاده کرد.

تهیه آلدئیدها از طریق هیدروفرمیه کردن آلکنها
آلکنها در حضور کاتالیزور تریس‌تری فنیل فسفین رودیم کلراید با هیدروژن و منوکسید کربن ترکیب و به تشکیل آلدئید منجر می‌شود. با توجه به اینکه در این واکنش به یکی از کربنهای پیوند دوگانه ، هیدروژن و به کربن دیگر ، عامل آلدئیدی (-CHO) متصل می‌شود، لذا این واکنش را هیدروفرمیله شدن می‌گویند. در حضور کاتالیزور ذکر شده فقط یک نوع آلدئید تولید می‌شود. هر گاه از اکتا کربونیل دی‌کبالت به عنوان کاتالیزور استفاده شود، دو نوع ایزومر تولید می‌شود.

تهیه آلدئیدها از نیتریل‌ها
در دمای پایین ، نیتریل‌ها با هیدریدلیتیم آلومینیوم ترکیب می‌شوند و کمپلکس حد واسط را تشکیل می‌دهند. این کمپلکس در حضور محلول اسید هیدرولیز می‌شود و آلدئید مربوطه را تولید می‌کند.

سنتز آلدئیدهای آروماتیک با استفاده از واکنش کاترمن
یکی از روشهای تهیه آلدئیدهای آروماتیک این است که در حضور یک اسید لوئیس مناسب مثل کلروآلومینیوم یا کلرید روی ، سیانید هیدروژن و کلرید هیدروژن با ترکیبات آروماتیک واکنش داده شوند.

سنتز آلدئیدهای آروماتیک با استفاده از دی‌متیل فرم‌آمید فسفریل کلراید
از اختلاط اکسی تری‌کلرو فسفر با فرم‌آمید ، کمپلکس تشکیل می‌شود که به دی‌متیل فرم‌آمید فسفریل کلراید موسوم است و می‌تواند در واکنشهای جانشینی الکترونخواهی آروماتیک شرکت نماید. با این روش حتما آلدئیدهای هتروسیکل‌هایی مانند تیوفن و فوران نیز سنتز شده‌اند.
سنتز آلدئیدهای آروماتیک از فنل ها و کلروفرم در حضور هیدروکسید سدیم

خواص شیمیایی آلدئیدها و کتون ها
آلدئیدها و کتون‌ها در چند نوع فعل و انفعال شرکت می‌کنند که اهم آنها به قرار زیر است:
حمله الکترونخواهی اسیدهای لوئیس روی اکسیژن گروه کربونیل ، موجب افزایش دانسیته بار مثبت کربن گروه کربونیل می‌شود که در نهایت ، موجب افزایش خصلت اسیدی پروتونهای کربنهای آلفای کربونیل می‌گردد. صحت این نکته بوسیله روشهای افزاری تایید شده است. به عنوان مثال ، محلولی از استن و سوپراسید (SbCl5 , FSO3H ) در دی‌اکسید سولفور مایع و در60- درجه سانتی‌گراد بوسیله n.m.r مطالعه و مشاهده شده است که جذب پروتونهای استن در میدانهای ضعیف‌تری صورت می‌گیرد.
حمله هسته‌خواهی بر کربن گروه کربونیل ، دومین دسته وسیع از واکنشهای آلدئیدها و کتونها را تشکیل می‌دهد. به عنوان مثال ، از افزایش آب بر آلدئیدها و کتونها ، دیول دو قلو (gemdiol) ایجاد می‌شود و درصد تشکیل آن به ساختمان ماده و به پایداری محصول حاصل بستگی دارد. به عنوان مثال ، مقدار دیول دو قلوی حاصل از استون در دمای 20 درجه سانتی‌گراد خیلی کم و قابل اغماض می‌باشد، درصورتی که آلدئید فرمیک و تری‌کلرو استالدئید بخوبی و بطور کامل به دیول دوقلو مربوط به تبدیل می‌شوند.

officer
15-07-2010, 21:59
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


یک کتون یک گروه عاملی است که با یک گروه کربونیل که با دو اتم کربن دیگر پیوند دارد ؛ شناخته می‌شود. یک کتون را می‌توان با فرمول زیر بیان کرد.
R۱(CO)R۲

اتم کربن که با دو اتم کربن پیوند دارد آن را از گروه‌های عاملی کربوکسیلیک اسیدها ، آلدهیدها، استرها، آمیدها و دیگر ترکیب‌های اکسیژندار جدا می‌کند. پیوند دوگانهٔ گروه کربونیل نیز کتون‌ها را از الکل ها و اترها باز می‌شناساند.
به کربنی که به کربن گروه کربونیل چسبیده کربن آلفا و به هیدروژنی که به این کربن چسبیده هیدروژن آلفا گویند. در حضور یک کاتالیزور اسیدی کتون به keto-enol tautomerism مربوط می‌شود. واکنش با یک پایه قوی انول متناظر را نتیجه میدهد
استون، ساده ترین کتون

چند کتون زبانزد
استون
بوتانون
استيل استون
ترکیبات کربونیل فلزات واسطه اغلب به عنوان ماده اولیه برای سنتز سایر ترکیبات استفاده می‌شوند. گروه کربونیل CO (مونو کسید کربن) می‌تواند توسط انواع مختلف لیگاندها جانشین شود و این جانشینی اغلب سبب می‌شود که گروه کربونیل باقیمانده مولکول را در برابر اکسایش و یا تجزیه گرمایی پایدار کند. لیگاندهای CO را می‌توان به عنوان ردیاب ساختار الکترونی و مولکولی یک ترکیب استفاده کرد و این بخاطر شیوه‌های ارتعاشی C - O در ناحیه IR است که از روی بررسی فرکانس و شدت ارتعاش بدست می‌آید.

تاریخچه
ترکیبات کربونیل جز مواد آلی فلزی هستند و اولین ترکیب آلی فلزی در سال 1827 توسط زایس داروساز دانمارکی سنتز شد. اما اولین ترکیب کربونیل فلزی در سال 1890 بطور تصادفی توسط موند کشف شد. این ترکیب تتراکربونیل کروم بود. از آن تاریخ تا به امروز انواع مختلفی از کربونیلهای فلزی با کاربردهای گوناگون کشف یا سنتز شده‌اند.

سنتز کربونیلهای فلزی
فلزاتی مانند مس ، طلا ، پلاتین ، پالادیوم ، تیتانیوم و … ،‌ معمولا کربونیلهای ساده فلزی تشکیل نمی‌دهند. این عناصر فقط در صورتی که فلز با سایر لیگاندها کوردینانس شده باشند، کمپلکسهای کربونیل تشکیل می‌دهند یا اینکه فقط کمپلکسهای آنیونی ایجاد می‌کنند.
سنتز کربونیلهای ساده فلزی خنثی (تک هسته‌ای)
برای سنتز کربونیلهای ساده دو روش سنتز وجود دارد.

واکنش مستیم فلز با مونو کسید کربن
نیکل و آهن تنها فلزاتی هستند که تحت شرایط ملایم بطور مستقیم با CO ترکیب می‌شوند و برای بقیه فلزات باید از روش دوم استفاده کرد.

کربونیل‌دار کردن کاهشی
در این روش نمک فلز را بوسیله یک کاهنده (مانند H2 یا یک فلز واکنش‌پذیر) در مجاورت مونو کسید کربن احیا می‌کنند. در برخی موارد مونو کسید کربن خود به عنوان عامل کاهنده عمل می‌کند.

سنتز آنیونهای کربونیلی
تعداد آنیونهای کربونیلهای فلزی نسبت به کربونیلهای خنثی بیشتر است و برخی از فلزات مانند نوبلیوم فقط کربونیل آنیونی مثل Nb(CO)6 شناخته شده است. آنیونهای کربونیل فلزی و مشتقات آنها در شیمی آلی - فلزی اهمیت فراوانی دارند و به روشهای زیر سنتز می‌شوند.
واکنش کربونیل فلز با یک باز مانند آمین یا هیدروکسید.

کاهش بوسیله عوامل کاهنده.
جابجایی CO از یک کربونیل فلز بوسیله یک گروه آنیونی.

کاتیونهای کربونیلی
تعداد کاتیونهای کربونیل فلزی به گستردگی آنیونهای کربونیل فلزی نیست. در آنیون کربونیل فلزی بار منفی می‌تواند از طریق تشکیل پیوند برگشتی از فلز به گروه مونو کسید کربن انتقال یابد که این امر موجب تقویت پیوند فلز با مونو کسید کربن می‌شود. در صورتی که با حذف الکترون از کربونیل فلز و تشکیل کاتیون پیوند برگشتی بین فلز و مونو کسید کربن کاهش یافته و موجب تضعیف پیوند می‌شود. کاتیون کربونیل فلز را معمولا به روش تسهیم نامتناسب کربونیل مادر تهیه می‌کنند.

سنتز کربونیلهای چند هسته‌ای
کربونیلهای چند هسته‌ای دارای 2 یا چند اتم فلز هستند که مستقیما یا از طریق کربونیلهایی که به عنوان پل عمل می‌کنند، به هم مربوطند. کربونیلهای چند هسته‌ای پیچیده‌تر معمولا به صورت خوشه اتمهای فلزی هستند. روش تهیه این کربونیلها به فلز مورد نظر بستگی دارد. به عنوان مثال نور کافت Fe(CO)5 در اسید استیک گلاسیال بازده بهتری نسبت به Fe2 (CO)3می‌دهد. برای تهیه Fe3(CO)12 می‌توان محلول آنیون (Hfe(CO)4)را بوسیله MnO2 اکسید کرد.

کربونیلهای استخلافی
بازهای لوئیس خنثی یا الکترون دهنده‌های آنیونی دو الکترونی (با رعایت قاعده عدد اتمی موثر) می‌توانند جانشین لیگاند مونو کسید کربن شوند. کربونیلهای استخلافی را می‌توان با روش‌های جانشینی مستقیم ، اکسایش بوسیله هالوژن (کربونیل اسیدهای فلزی) و واکنش بین هالید فلز و مونو کسید کربن بدست آورد. کاهش برای شکستن پیوند فلز و مونو کسید کربن با روشهای فتو شیمیایی انجام می‌شود. اما اکثرا این واکنشها به صورت گرمایی انجام می‌شوند. این واکنشها معمولا بعد از جانشین شدن دو یا سه گروه کربونیل متوقف می‌شوند. زیرا کربونیلهای باقیمانده از نظر توانایی تشکیل پیوند برگشتی به حد اشباع می‌رسند.

خواص و ساختار کربونیلهای فلزی
غیر از کربونیلهای تک هسته‌ای آهن و تتراکربونیل نیکل بقیه کربونیلها جامد هستند. کربونیلهای تک هسته‌ای بی‌رنگ هستند. اما با افزایش تعداد هسته‌ها رنگی می‌شوند. ساختار ترکیبات کربونیل تک هسته‌ای برای M(CO)6 که M= وانادیوم ، کروم ، مولیبدن ، تنگستن است، تقارن Oh (هشت وجهی) و برای M(CO)sub>5 که M=آهن ، اسمیوم و Ru است، تقارن D3h (هرم مربع القاعده یا دو هرمی مثلثی) و برای TdNi(CO)4 (چهار وجهی است).

در کربونیلهای چند هسته‌ای ممکن است پیوند فلز - فلز و یا پلهای کربونیل همراه با پیوند فلز - فلز وجود داشته باشد. گروههای کربونیل ممکن است به صورت انتهایی باشند و به هر اتم فلز یک گروه کربونیل متصل شده باشد و یا اینکه گروههای کربونیل مانند پل بین دو اتم فلز قرار گرفته باشند. با بزرگتر شدن اندازه اتم فلز ، احتمال تشکیل پل کمتر می‌شود. کربونیلهای چند هسته‌ای پیچیده‌تر به صورت ترکیبات خوشه‌ای هستند. در ترکیبات کربونیل فلز علاوه بر گروه خطی M – C – O که متداولترین واحد ساختاری در این ترکیبات بشمار می‌روند، چهار آرایش دیگر هم برای گروه CO نسبت به دو یا چند اتم فلز شناخته شده است.
پل کربونیل متقارن که فاصله اتم کربن نسبت به هر دو فلز یکسان و محور CO بر محور M - M عمود است.
پل کربونیل نامتقارن که فاصله اتم کربن نسبت به یکی از فلزات بیشتر از دیگری است.
گروه کربونیل بطور متقارن با سه اتم فلز تشکیل پل می‌دهد و دارای تقارن C3V است.
گروه کربونیل با سه اتم فلز تشکیل پل می‌دهد اما نسبت به حالت قبل تقارن کمتری دارد.

گروه کربونیل
در کتون ها و آلدئیدها ، گروه کربونیل از یک پیوند δ و یک پیوند π تشکیل شده است که به‌علت عدم پخش یکنواخت بار در طول پیوند ، قطبی می‌باشد. انرژی پیوند کربونیل در آلدئیدها ، 176 کیلوکالری بر مول و در کتون‌ها 180 کیلوکالری بر مول می‌باشد. برای نامگذاری کتونها از پسوند اون (one) استفاده می‌شود.
شماره گذاری اتمهای کربن از طرفی انجام می‌گیرد که گروه کربونیل ، شماره کمتری داشته باشد و پس از ذکر شماره عامل کربونیل ، اسم هیدروکربن را ذکر کرده ، پسوند اون بر آن افزوده می‌شود. اگر ترکیب ، گروه اسیدی هم داشته باشد، اولویت شماره گذاری با گروه اسیدی خواهد بود. در این صورت ، عامل کربونیل به نام OXO مشخص می‌شود.

کتون‌های موجود در طبیعت
کتون‌های موجود در طبیعت ، بوی مطبوع دارند، آلدئیدها و کتون‌ها مواد شیمیایی بسیار ارزشمندی هستند و در صنعت به‌عنوان حلال یا مواد اولیه مصرف می‌شوند و بعضی‌ها مانند تستسترون به‌عنوان هورمون دارای اثرات دارویی و بیولوژیکی می‌باشند.
برخی مانند بی‌اسیل در آماده‌سازی و خوش طعم کردن کره مصنوعی ، مارگارین (Margarine) ، مورد استفاده قرار می‌گیرد. 3- متیل سیکلوپنتا دکانون (مشک آهوی ختن) که از غدد نوعی آهو بدست می‌آید، بسیار معطر می‌باشد. یکی دیگر از مواد زیر روه کربونیل ، کافور می‌باشد که یک کتون است.

تهیه کتونها از اکسید کردن الکلها
با استفاده از برخی اکسید کننده‌های ملایم مثل دی‌اکسید منگنز ، واکنشگر Jones و... ، الکلهای نوع دوم بصورت حدود اکسید می‌شوند و به کتون هم کربن خود تبدیل می‌گردند.

تهیه آلدئیدها و کتونها با استفاده از ترکیبات آلی فلزی
گاهی اوقات از ترکیبات آلی فلزی برای سنتز آلدئیدها و کتونها استفاده می‌شود. در سالهای اخیر برای سنتز ترکیبات کربونیل‌دار از R2Cd یا RZnX یا R2Zn استفاده زیادی شده است. قدرت هسته خواهی ملایم و محدود این واکنشگرها ، این امکان را فراهم می‌کند که از کلرواسیدها ، کتونهای مربوطه سنتز شوند. واکنش ترکیبات آلی فلزی با اسیدهای کربوکسیلیک هم به کتون منجر می‌شود.

سنتز آلدئیدها و کتونها از طریق اکسیداسیون آلکیل بنزن‌ها
یکی از روشهای مهم و تجارتی تهیه فنل ، اکسیداسیون ایزوپروپیل بنزن با اکسیژن و هدرولیز هیدروپروکسید حاصل می‌باشد. در این واکنش ، استون هم تولید می‌شود.

سنتز آلدئیدها و کتونها با آب دادن آلکینها
آلکینها را می‌توان به کمک واکنشگرهای مناسب به آلدئید یا کتون تبدیل نمود. مثلا از افزایش آب بر آلکینها در حضور کاتالیزور سولفات جیوه و محلول آبکی اسید سولفوریک ، کتون بدست می‌آید.

تهیه کتونها از طریق واکنش نوآرایی α- دیول‌ها (نوآرایی پنتاکولیک)
وقتی α- دیول‌ها در محیط اسیدی یا قلیایی قرار بگیرند، با مکانیسم خاصی ، آب از دست می‌دهند و یکی از گروهها از کربنی به کربن دیگر مهاجرت می‌کند و کتون تولید می‌شود. یک چنین بازآرایی به بازآرایی Wagner-Meerwein موسوم است.

اکسید شد همراه با شکسته شدن ، اکسید و احیای خودبخودی کتونها
از اکسید شدن الکلها بوسیله اسید کننده‌های مناسب مانند اسید کرومیک ، آلدئید یا کتون بدست می‌آید. اگر واکنش اکسید شدن بوسیله اکسید کننده‌های مناسب ادامه یابد، در این صورت اسید کربوکسیلیک تولید می‌شود. اکسید شدن کتونها بوسیله پراسیدها نیز موجب شکسته شدن پیوند گروه کربونیل یا کربن مجاور می‌‌شود که یکی از روشهای بسیار مهم تهیه استرها و لاکتونها از کتونها می‌باشد و به واکنش ««Baeyer-Viniger»» موسوم است. با استفاده از گروههای مختلف معلوم شده است که گروه مهاجر بصورت آنیونی و با حفظ آرایش ، مهاجرت می‌نماید.

واکنش هالوفرم
یکی از واکنشهایی که هم کتون را اکسید می کند و هم موجب شکسته شدن پیوند گروه کربونیل با کربن مجاور می شود، واکنش هالوفرم می‌باشد که معمولا در مورد کتونهای متیل‌دار انجام می‌گیرد. این واکنش با ید نیز به سهولت انجام پذیر می‌باشد و یدوفرم زرد رنگ آزاد می‌گردد. این واکنشها در محیط قلیایی انجام می‌شوند.

officer
15-07-2010, 22:11
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


ایمین یک گروه عاملی یا ترکیب شیمیایی است که یک پیوند دوگانه کربن-نیتروژن دارد. یک آمین می‌تواند از راه افزایش هسته‌دوستی یک کتون یا آلدهید با آمونیاک یا یک آمین که به تشکیل یک همی‌آمینال -C(OH)(NHR)- می‌انجامد، فرآوری شود. این همی‌آمینال با از دست دادن آب به ایمین تبدیل می‌شود

تهيه و ارزيابي کارايي ترانسفکشن نانوذرات مبتني بر پلي اتيلن ايمين (PEI) پوشانده شده با زنجير پپتيدي هيستيدين-ليزين به عنوان وکتورهاي غير ويروسي مورد استفاده در ژن درماني
مهمترين هدف ژن‌درماني انتقال ماده ژنتيکي به سلولها است که به منظور تغيير دلخواه فعاليت سلولهاي مورد نظر مي‌باشد. حاملهاي ويروسي، کارايي Transfection درحد بسيار عالي از خود نشان داده‌اند که اين کارايي بالا، هم در مرحله انتقال (delivery) و هم در مرحله بيان (expression) بوده است. به هين دليل در 75 درصد از پروتوکلهاي باليني اخير در ژن درماني، از حاملهاي ويروسي استفاده شده است. با اين وجود استفاده از اين حاملها به دليل مشکلاتي از حمله ايمونوژنيسيته بالا، احتمال انکوژن بودن آنها و محدوديت در اندازه DNA قابل حمل توسط آنها با محدوديت مواجه است. به دليل مشکلات اشاره شده در مورد حاملهاي ويروسي، توجه به حاملهاي غيرويروسي به خصوص پلي‌اتيلن ايمين جلب شده است. هدف از انجام تحقيق حاضر، طراحي نانوذراتي به عنوان وکتور غيرويروسي بر مبناي پلي‌اتيلن ايمين است به نحوي که موجب تقويت مکانيسم‌هاي انتقال‌دهنده شود و حتي‌الامکان اثرات نامطلوب و ناخواسته ديگري از قبيل افزايش سميت را نداشته باشد. به اين منظور وکتوري طراحي مي‌شود که با استفاده از اثرات توالي پپتيدي غني از هيستيدين – ليزين بتوان علاوه بر کاهش مقدار PEL (کاهش سميت)، ميزان transfection بالاتري نيز به دست آورد.

سنتز و تعيين ساختار کمپلکس هاي CuL(PPh3)X : X=Cl, Br, I با ليگاندهاي جديد بيس (4- تري فلوئورو متوکسي بنزآلدهيد) اتيلن دي ايمين، بيس) 4- دي متيل آمينوبنزآلدهيد (اتيلن دي ايمين و بيس (2- کلروبنزآلدهيد) اتيلن دي ايمين
در اين تحقيق ليگاند هاي بازشيف بيس(4- تري فلوئورو متوکسي بنزآلدهيد) اتيلن دي ايمين (tb2en)، بيس) 4- دي متيل آمينوبنزآلدهيد (اتيلن دي ايمين (db2en) و بيس (2- کلروبنزآلدهيد) اتيلن دي ايمين (cb2en) از واکنش تراکمي بين اتيلن دي آمين و آلدهيد هاي 4- تري فلوئورو متوکسي بنزآلدهيد، 4- دي متيل آمينوبنزآلدهيد و 2- کلروبنزآلدهيد در حلال کلروفرم سنتز و در حلال اتانول بلور هاي مناسبي از آن ها تهيه شد. سپس با روش هاي طيف سنجيIR، UV-Vis، MS،1H-NMR وX-ray Crystal Single مورد شناسايي و بررسي قرار گرفت. ساختار بلوري ليگاند هاي tb2en و cb2en با استفاده از آناليز پرتو X تک بلور به صورت Syn و ليگاند db2en به صورت Gauche تعيين شدند.
کمپلکس هاي مس (I) ليگاند هاي باز شيف فوق (L = cb2en and db2en) با فرمول عمومي [CuLX(PPh3)] (X = Cl, Br and I) به روش واکنش مستقيم ليگاند باز شيف با نمک هاي مس (I) در حلال کلروفرم و استونيتريل سنتز و به روش نفوذ اتري بلور هاي مناسبي از آن ها تهيه شد و با روش هاي طيف سنجيIR ، UV-Vis،1H-NMR و X-ray Crystal Single مورد شناسايي و بررسي قرار گرفت. ساختار بلوري کمپلکس هاي ذکر شده چهار وجهي واپيچيده شده را نشان مي دهد که در آن ليگاند هاي باز شيف به صورت ترانس - ترانس به مس کوئوردينه شده است. همچنين فعاليت فوتوشيميايي برخي از ليگاند ها و کمپلکس هاي فوق مورد بررسي قرار گرفت. براي بررسي فوتوشيمي، محلول هاي ميلي مولار از اين ترکيبات در حلال کلروفرم در مدت زمان هاي مختلف تحت تابش نور UV-Vis (لامپ جيوه پرفشار 400 وات) قرار گرفت. نتايج نشان داد که چرخش حول پيوند C = N اين ترکيبات صورت مي گيرد. در بعضي از اين ترکيبات نور UV-Vis توانايي ايجاد چرخش حول پيوند C = N را نشان نداد که ممکن است به دليل ممانعت فضايي اطراف پيوند C = N باشد. همچنين كاتاليست‌هاي سيليكاسولفوريك اسيد و InCl3 در تهيه اكسازولين‌ها و بيس-اكسازولين‌ها تحت تابش امواج فراصوت استفاده شدند. در اين مورد نيز نتايج حاكي از افزايش بازده و كاهش زمان واكنش‌ها تحت تابش امواج فراصوت مي‌باشد.

officer
15-07-2010, 22:21
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



کربوکسیلیک اسیدها دسته ای از ترکیب های آلی هستند که یک یا چند گروه عاملی کربوکسیل«COOH-» در آن ها یافت می شود.متانوییک اسید HCOOH ساده ترین و اتانوییک اسیدCH3COOH آشناترین آن هاست.کربوکسیلیک اسیدهای سبک (حداکثر تا چهار اتم کربن)به خوبی در آب حل می شودولی با افزایش طول زنجیره کربنی از انحلال پذیری آن ها در آب کم می شودبه طوری که بسیاری از آن ها در عمل در آب نا محلولند.کربوکسیلیک اسیدها اسید های ضعیفی هستند و بر اثر حل شدن در آب تعدادی از مولکول های آن ها پروتون اسیدی خود را به مولکول های آب می دهندو به سرعت به حالت تعادل می رسند.
این اسیدها یک،دو یا چند عاملی هستند که به اسید های آلی چند عاملی پلی الکترولیک می گویند.

چند نمونه کربوکسیلیک اسید
فرمیک اسید (جوهر مورچه)
استیک اسید (سرکه)
پروپانوئیک اسید
بوتانوئیک اسید
دی اتانوئیک اسید (اگزالیک اسید)
سوکسینیک اسید
آبیتیک اسید

نام گذاری به روش کهن
در این روش از نامی که از دیر باز برای آن به کارمی رفته بهره می جویند. مانند :استیک اسید.
این روش امروزه با وجود شمار فراوان ترکیب های آلی کم کاربرد تر شده ولی هنوز در کاربردهای تجاری از همین روش بهره می گیرند.

نام گذاری به روش آیوپاک
برای نام گذاریاسید های تک عاملی به ته نام آلکان پسوند «اوئیک» افزوده شده و سپس نام اسید آورده می شود. مانند: «متانوئیک اسید»
برای نام گذاری اسیدهای دو عاملی افزون بر افزودن «اوئیک اسید» به ته نام آلکان پیشوند «دی» نیز به آغاز نام اسید افزوده می شود. مانند :«دی بوتانوئیک اسید»

روش های فرآوری
اکسید کردن آلدهیدها یا الکلها .
ازن کافت آلکن ها.
تخمیر که به ویژه در فرآوری استیک اسید به فراوانی به کار گرفته می شود.
...

کاربردها
اسید های آلی ماده ی بسیار برجسته و ارزشمند در بدن جانوران است.
چربی ها خود گونه ای از کربوکسیلیک اسیدها هستند.
در بسیاری از خوراکی ها ترش مزه اسید آلی می باشد و همچنین سرکه ، آبلیمو و آبغوره کربوکسیلیک اسید هستند.
پروتئین ها گونه ای از اسید آلی هستند که آمین اسید(اسید آمینه) گفته می شوند.
فرآوری استر که از واکنش اسید آلی با الکل به دست می آید.
ساخت شویندهها مانند صابون.

officer
15-07-2010, 23:26
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


در شیمی به هر ترکیب شیمیایی که یک گروهِ هیدروکسیل (‎-OH‏) متصل به کربن یک آلکیل داشته‌باشد، الکل گویند. فرمول کلی یک الکل سادهٔ عیر حلقه‌ای ‎CnH2n+1‏است. در شیمی الکل‌ها در شمار گروه مهمی از ترکیب‌های شیمیایی هستند و در واکنش‌های گسترده‌ای شرکت می‌کنند و بسیاری از ترکیب‌های شیمیایی از آن‌ها به دست می‌آیند، به طوری در کتاب شیمی آلی موریسن و بوید آمده‌است که اگر به شیمیدانی بگویند او را با ده ترکیب شیمیایی دریک جزیره تنها خواهند گذاشت الکل یکی از آن‌ها خواهدبود.
به طور کلی، زمانی که نام الکل به تنهایی به کار می‌رود، معمولاً منظور اتانول است که همان الکل گرفته‌شده از جو یا عرق یا همان مشروبات الکلی می‌باشد. اتانول مایعی بی‌رنگ و فرار وبا بویی بسیار تند است که از تخمیر شکرها به دست می‌آید. همچنین گاه به هر گونه نوشیدنی که الکل داشته‌باشد، الکل می‌گویند. هزاران سال است که معمولاً الکل به عنوان یکی از عامل‌های اعتیادآور به شمار می‌آید.
الکل‌های دیگر بیشتر با صفت‌های مشخص‌کنندهٔ ویژهٔ خود می‌آیند مانند الکل چوب (که همان متانول است) یا ایزوپروپیل الکل. پسوند «ول» نیز در پایان نام شیمیایی همهٔ الکل‌ها می‌آید

تاریخچه
الکل را نخستین بار ابوبکر محمد بن زکریای رازی پزشک و شیمیدان ایرانی از تقطیر شراب تهیه کرد. وی آنرا الکحل نامید. بعدها یک آمریکایی بنام دکتر واندیک آن را الکل نامید. گرچه تاریخ تهیه شراب در به هزاران سال پیش در ایران نیز می‌رسد اما تا زمان رازی کسی الکل را خالص نکرده بود

ریشه‌شناسی
نظریهٔ غالب بر این است که از آن‌جا که نخستین بار که زکریای رازی الکل را کشف کرد، آن را با نامِ تازیِ «الکحل» خواند و از آن‌جا آن را اعراب «الکحول» نامیده و سرانجام در فارسی الکل نام گرفت ولی از آن‌جا که در عربی «الکحول» نمی‌تواند از «الکحل» مشتق شده‌باشد این احتمال وجود دارد که این واژه از واژهٔ «الغول» که در قرآن آمده‌است گرفته شده‌باشد و ریشه‌ای اروپایی داشته باشد.

ساختار و دسته‌بندی
الکل‌ها بسته به نوع کربن که به گروه OH- پیوند دارد، به سه دسته نوع اول ، نوع دوم یا نوع سوم طبقه‌بندی می‌شوند:



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]




نمایش کلی انواع الکل
الکل نوع اول‎ CR(H)۲-OH.‏
الکل نوع دوم‎ C(R)۲H-OH. ‏
الکل نوع سوم‎C(R)۳-OH. ‏


خواص فیزیکی الکلها

دمای جوش
الکل‌ها در میان هیدروکربن‌های هم وزن خود دمای جوش بالاتری دارند که آن را می‌توان به پیوند هیدروژنی الکل‌ها دانست که سبب می‌شود انرژی بیشتری برای شکستن پیوند بین مولکولی آن‌ها نیاز باشد.

حلالیت
با توجه به این که پیوند بین الکل‌ها مانند آب، پیوند هیدروژنی است به هر اندازه‌ای در آب حل می‌شود. همچنین با توجه به این که الکل‌ها از یک سو بخشی آلی داشته و از سوی دیگر گروه هیدروکسید دارند بسیاری از مواد آلی را نیز حل می‌کنند. محلول ید در محلول آب و الکل را تنتورید می‌گویند و برای گندزدایی به کار می‌روند.

زهرآگینی
الکل‌ها بیشتر بویی تند و زننده دارند و اتانول از دوران پیش از تاریخ به دلیل‌های گوناگون بهداشتی، رژیمی، مذهبی و تفریحی به عنوان نوشیدنی الکلی به کار می‌رفته‌است. هرچند استفادهٔ کم و گهگاه الکل می‌تواند بی‌زیان باشد، اندازه‌های بیشتر آن سبب مستی شده و در مقدارهای بیشتر می‌تواند به اختلالات تنفسی و حتی مرگ نیز بینجامد.
الکل‌های دیگر بیشتر از اتانول سمی‌تر هستند، که این نیز بیشتر به دلیل نیاز به زمان بیشتر برای تغییر در فرایند سوخت و ساز است و حتی گاه در فرآیندهای دگرگشت(متابولیسم) ماده‌هایی سمی می‌سازند. برای نمونه متانول، که همان الکل چوب است، به وسیلهٔ آنزیم‌ها در جگر اکسایش می‌یابد و مادهٔ سمی فرمالدهید تولید می‌کند که می‌تواند سبب کوری یا مرگ شود.
یکی از راه‌های کارا در پیشگیری از سمیت فرمالدهید، فراهم آوردن اتانول در کنار آن است چون آنزیم‌های هیدروژن‌زدایی که از متانول فرمالدهید می‌دهند بر اتانول اثر بیشتری دارند، بدین گونه از پیوند و عمل بر روی متانول پیشگیری می‌کند. در این زمان متانول باقی‌مانده وقت دفع از راه کلیه‌ها را پیدا کرده و فرمالدهید باقی‌مانده نیز به فرمیک اسید‌تبدیل می‌شود.

نامگذاری
در نامگذاری الکل‌ها به روش آیوپاک، تنها در آخر نام آلکان یک «ول» افزوده می‌شود و زمانی که نیاز ذکر شمارهٔ کربنی که عامل الکلی بر روی آن قرار دارد باشیم، عدد بین نام آلکان و پسوند «ول» قرار می‌گیرد. مانند «پروپان-1-ول» برای ‎CH3CH2CH2OH‏ و «پروپان-2-ول» برای ‎CH3CH(OH)CH3‏.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



روش‌های فرآوری صنعتی الکل‌ها
از میان روش‌های صنعتی الکل می‌توان راه‌های زیر را نام برد:
آبدارکردن آلکنهای بدست آمده از کراکینگ نفت.
فرایند السک از آلکن‌ها ، مونوکسید کربن و هیدروژن.
تخمیر کربوهیدرات‌ها.
علاوه بر این سه روش اصلی ، روشهای دیگری نیز با کاربرد محدود وجود دارند. بعنوان مثال ، متانول از هیدروژن‌دار کردن کاتالیزوری مونوکسید کربن بدست می‌آید. مخلوط هیدروژن و مونوکسید کربن با نسبت ضروری ، از واکنش آب با متان ، آلکانهای دیگر ، یا زغال سنگ در دمای بالا بدست می‌آید.

کاربردها
برخی از کاربردهای الکل:
سوخت خودرو
حلال
کاربردهای پزشکی و گندزدایی
...
واکنش‌ها
پروتون‌زدایی

الکل‌ها می‌توانند در حضور بازهای بسیار قوی به سان یک اسید عمل کنند و تشکیل یون الکوکسی دهند. برای نمونه در واکنش سدیم هیدروکسید و اتانول، سدیم جانشین هیدروژنِ مثبت(پروتون) الکل شده و سدیم متوکسی به دست می‌دهد.

هیدروژن‌زدایی
از راه هیدروژن‌زدایی الکل‌ها می‌توان اتر به دست آورد.


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



واکنش‌های هسته‌دوستی
گروه هیدروکسیل الکل یک گروه ترک‌کنندهٔ خوب است و سبب می‌شود که الکل‌ها بتوانند در واکنش‌های هسته‌دوستی شرکت جویند.

استری شدن
الکل با اسید‌های آلی در محیط اسیدی به کندی تشکیل استر می‌دهد.
اکسایش === الکل‌های نوع اول می‌توانند در واکنش‌های اکسایش تبدیل به آلدهید و پس از آن تبدیل به کربوکسیلیک اسید شوند هرچند که الکل های نوع دوم در واکنش های اکسایش تنها تبدیل به کتون می‌شوند ولی الکل‌های نوع سوم در واکنش‌های اکسایش شرکت نمی‌کنند.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



الکل‌های نوع اول می‌توانند بدون واسطه نیز به روش‌های زیر به کربوکسیلیک اسیدها تبدیل شوند:
با حضور پتاسیم پرمنگنات (‎KMnO4‏).
PDC در DMF.
اکسایش جونز
اکسایش هنس
روتنیوم تتراکسید (‎RuO4‏).

یک الکل با دو عامل مجاور می‌تواند در مجاورت سدیم پراکسید(‎NaIOsub>4‏) یا سرب تترااستات (‎Pb(OAc)4‏) پیوند کربنش گسسته‌شده و به دو کربوکسیلیک اسید تبدیل شود.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



الکل‌ها و فنول ها
اگر گروه هیدروکسیل الکل به کربنی که روی یک حلقهٔ آروماتیک است، متصل باشد آنگاه به آن فنول گویند که در دستهٔ دیگری از ترکیب‌ها دسته‌بندی می‌شود و ویژگی‌های متفاوتی از الکل‌ها دارد.

officer
15-07-2010, 23:37
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]





نگاه کلی
آمیدها ، جزو مشتقات عاملی اسیدهای کربوکسیلیک‌ می‌باشند. یعنی بجای گروه هیدروکسیل اسید در RCOOH ، یک گروه NR2 جایگزین شده است که R می‌تواند هیدروژن یا گروه آلکیل باشد. در بین مشتقات اسید کربوکسیلیک ، آمیدها در برابر واکنش‌های نوکلئوفیلی ، کمترین فعالیت را دارند. زیرا گروه‌های عاملی آنها (NR2) ، ترک کننده ضعیفی می‌باشد.
آمیدها از لحاظ دارویی اهمیت زیادی دارند. پنی سیلین که آنتی بیوتیک مهمی می‌باشد، حاوی حلقه B- لاکتام (آمید حلقه‌ای) می‌باشد. حلقه B- لاکتام ، مسئول فعالیت آنتی‌ بیوتیکی این داروها است. امروزه مشتقات مختلفی از پنی سیلین سنتز شده است، مانند سفالوسفورین‌ها که دارای استخلافهای مختلف متصل به گروه آمیدی می‌باشند. این آنتی بیوتیک‌ها در مواردی که پنی سیلین‌ها فعال هستند، از خود فعالیت نشان می‌دهند.

نامگذاری آمیدها
در نامگذاری آیوپاک آمیدها ، e انتهای alkane- با amide- جایگزین شده است. در نامهای متداول ، ic- انتهای نام اسید با پیوند amide- جایگزین می‌شود. در سیستم‌های حلقوی اسید کربوکسیلیک ، انتهای کربوکسی با آمید جایگزین می‌شود. آمیدهای حلقوی ، لاکتام نامیده می‌شوند و نام آیوپاک آنها آزا1 -2سیکلو آلکانون می‌باشد.
استخلافهایی برای نیتروژن بوسیله پیشوند –N یا –N و N ، بسته به تعداد گروه‌ها ، مشخص می‌شود. به این ترتیب آمیدهای نوع اول و دوم و سوم خواهیم داشت.

تهیه آمیدها
واکنش آمونیاک با آمین‌ها یا اسید کلریدها
واکنش بین اسیدهای کربوکسیلیک و آمین‌‌ها
واکنش آمونیاک یا آمین‌‌ها با انیدرید اسیدها
آمیدهای حلقوی یا لاکتامها از واکنش درون مولکولی اسیدهای آمینه مناسب که حلقه‌های پنج و شش ضلعی می‌سازند، تشکیل می‌شود.

واکنش‌های آمیدها
آمیدها را می‌توان بوسیله اسید یا باز به اسید کربوکسیلیک هیدرولیز کرد. در اثر احیا توسط لیتیم آلومینیوم هیدرید ( LiAlH4 ) ، واکنش تا مرحله احیا به آلدئید ادامه می‌یابد و سپس متوقف می‌شود. انیدریدهای حلقوی در اثر واکنش با آمونیاک در حضور اسید ، آمیدهایی را بوجود می آورند که دارای دو گروه عاملی CONH2- و COOH- می‌باشد.
این آمیدها در اثر گرما ، آب از دست داده ، محصولی بوجود می‌آورند که شامل دو مولکول کربونیل متصل به یک نیتروژن است که ایمید نام دارد. آمیدهای نوع اول در حضور مواد آبگیر قوی مثل P2O5 به نیتریلها تبدیل می‌شوند.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


نوآرایی هافمن
آمیدهای نوع اول در حضور باز ، واکنش هالوژناسیون خاصی به نام نوآرایی هافمن را انجام می‌دهند. در این واکنش ، گروه کربونیل از مولکول ، بیرون رانده می‌شود و آمین نوع اول با یک اتم کربن کمتر تشکیل می‌شود. نوآرایی هافمن با حذف پروتون از نیتروژن و تشکیل یون آمیدات آغاز می‌شود. سپس هالوژناسیون نیتروژن انجام می‌شود. آنگاه دومین هیدروژن ، روی نیتروژن توسط باز اضافی کنده شده ، N-هالوآمیدات که خود بخود هالید را حذف می‌کند، تشکیل می‌شود.
گونه حاصل یک اتم نیتروژن بدون بار است که توسط یک شش تایی الکترونی احاطه می‌شود و نایترون نام دارد که بسیار فعال و دارای طول عمر کوتاه است. در نوآرایی هافمن ، آمیل نایترون یک جابجایی آلکیل را تحمل کرده ، ایزوسیانات ایجاد می‌کند. ایزوسیانات به اسید کربامیک هیدرولیز شده ، در اثر تجزیه اسید کربامیک ، یک آمین ایجاد می‌گردد.

officer
16-07-2010, 00:00
اترها ، ترکیباتی با فرمول عمومی R-O-R ، Ar-O-R یا Ar-O-Ar هستند. (Ar ، فنیل یا یک گروه آروماتیک دیگر است).

نام‌گذاری اترها
برای نامیدن اترها ، معمولا دو گروه متصل به اکسیژن را نام می‌بریم و به دنبال آن ، واژه اتر را می‌آوریم. اگر دو گروه یکسان باشند، گفته می‌شود اتر متقارن است ( مانند دی اتیل اتر ، دی ایزوپروپیل اتر ). اگر دو گروه متفاوت باشند، اتر ، نامتقارن است مانند ترسیوبوتیل متیل اتر.

خواص فیزیکی اترها
از آنجا که زاویه پیوند C-O-C در اتر ، 180 درجه است، گشتاورهای دو قطبی دو پویند C-O یکدیگر را خنثی نمی‌کنند؛ در نتیجه ، اترها مقداری گشتاور دو قطبی برآیند دارند. (مثلا 180.1 برای دی اتیل اتر). این قطبیت کم بر دمای جوش اترها تاثیر چندانی ندارد. دماهایی که در حدود دمای جوش آلکانها با وزن مولکولی مشابهند و از دمای جوش الکلهای ایزومری ، بسیار پایین‌ترند، به عنوان مثال ، دمای جوش n- هپتان ( ْ98دجه سانتی‌گراد ) ، متیل n- پنتیل اتر ( 100درجه سانتی‌گراد ) و n- هگزیل الکل ( 157درجه سانتی‌گراد ) را با یکدیگر مقایسه کنید. پیوند هیدروژنی که مولکولهای الکل را با قدرت در کنار یکدیگر نگه می‌دارد، در اترها ممکن نیست؛ چون آنها فقط دارای هیدروژنهایی هستند که به کربن متصل‌اند.
از سوی دیگر ، انحلال‌پذیری اترها و الکلها در آب در یک حدود است. به عنوان مثال ، دی‌اتیل اتر و n-بوتیل الکل ، تقریبا به میزان 8 گرم در 100 گرم آب حل می‌شوند. ما انحلال‌پذیری الکلهای سبک در آب را به پیوند هیدروژنی بین مولکولهای آب و الکهای آب نسبت دادیم. انحلال‌پذیری اترها در آبها را نیز بر همین اساس می‌توان تبیین کرد: از طریق الکترونهای به اشتراک گذاشته نشده اکسیژن ، اتر می تواند با هیدروژن آب ، پیوند هیدروژنی تشکیل دهد.

منابع صنعتی اترها
تعدادی از اترهای متقارن دارنده گروههای آلکیل کوچک در مقیاس بزرگ تولید می‌شوند و به‌عنوان حلال مورد استفاده قرار می‌گیرند. مهمترین آنها ، دی‌اتیل اتر است، یعنی همان حلال آشنایی که در استخراجها و در تهیه واکنشگرهای گرینیار مورد استفاده قرار می‌گیرند. نمونه‌های دیگری از این نوع اترها ، دی‌ایزوپروپیل اتر و دی-n-بوتیل اتر است.
این اترها در اثر واکنش الکلهای مربوطه با اسید سولفوریک حاصل می‌شوند.
از آنجا که از هر جفت الکل ، یک مولکول آب حذف می‌شود، واکنش از نوع آب‌زدایی است. الکلها می‌توانند با نوع دیگری آب‌زدایی ، واکنش حذفی به آلکن تبدیل شوند. آبگیری از الکلها و بدست آوردن اتر به جای آلکن ، با انتخاب شرایط واکنش کنترل می‌شود. به‌عنوان مثال ، اتیلن با گرم کردن اتیل الکل با اسید سوفلوریک غلیظ تا 180 درجه سانتی‌گراد تهیه می‌شود.
دی‌اتیل اتر با گرم کردن مخلوطی از اتیل الکل و اسیدسولفوریک غلیظ تا 140 درجه سانتی‌گراد بدست می‌آید، در حالی‌که الکل دائما به مخلوط اضافه می‌شود تا فزونی مقدار آن حفظ شود. روش آبزدایی ، عموما به تهیه اترهای متقارن محدود است، چون ، همانگونه که انتظار می‌رود، ترکیبی از دو الکل ، معمولا می‌تواند مخلوطی از سه اتر بدهد.

تهیه اترها از طریق سنتز ویلیامسون
در آزمایشگاه ، سنتز اتر به روش ویلیامسون بدلیل تنوع‌پذیری آن ، بسیار مهم است و می‌توان آن را برای سنتز اترهای متقارن و نامتقارن بکار برد. در سنتز ویلیامسون ، یک آلکیل هالید (یا آلکیل هالید استخلاف شده) را با یک سدیم آلکوکسید ترکیب می‌کنند. به‌عنوان مثال:


R-X + Na-O-R1 -----> R-O-R1 + NaX

واکنش عبارت است از جایگزین شدن هسته دوستی یون هالید با یون آلکوکسید. این واکنش شباهت بسیار زیادی به تشکیل الکلها در اثر مجاورت آلکیل هالیدها با محلول آبی هیدروکسید دارد. از آنجا که الکوکسیدها و آلکیل هالیدها ، هر دو از الکلها تهیه می‌شوند، روش ویلیامسون نهایتا سنتز اتر از دو الکل است



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

officer
16-07-2010, 01:07
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



بنزن مایعی است بی‌رنگ و خوشبو که در تولید صنعتی گروهی از مواد مانند پلی استیرن،لاستیک مصنوعی و نایلون استفاده می‌شود.این مایع در تهیهٔ شوینده‌ها و رنگ‌ها نیز به‌ کار می‌رود
بنزن متعلق به خانوادهٔ هیدروکربن‌هاست که هر مولکول آن ۶ اتم کربن و ۶ اتم هیدروژن دارد که یک آرایش حلقوی را به‌وجود می‌آورند. این آرایش حلقهٔ بنزن نامیده می‌شود که در بسیاری از ترکیبات از جمله آسپیرین و مادهٔ منفجرهٔ تی.ان.تی نیز وجود دارد. بنزن سمی و سرطانزا است

تاریخچه
بنزن را مایکل فارادی در سال ۱۸۲۵ میلادی کشف کرد.بنزن در ابتدا از طریق حرارت دادن و قطران زغال‌سنگ و سپس تبدیل بخار آن به مایع به‌دست می‌آمد اما امروزه بنزن را به مقدار زیاد از نفت خام استخراج می‌کنند.
ساختار بنزن توسط فردریش آگوست ککوله شناسایی شد. انواع تقطیر دید کلی در اینجا ، منظور از تقطیر ، در واقع جداسازی فیزیکی برشهای نفتی در پالایشگاه است که اساس آن اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن ، سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. در این مقاله انواع روشهای تقطیر را در برج تقطیر بررسی می‌کنیم. تقطیر تبخیر ناگهانی در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در مبدلهای حرارتی و یا کوره گرم شده‌اند، بطور مداوم به ظرف تقطیر وارد می‌شوند و تحت شرایط ثابت ، مقداری از آنها به صورت ناگهانی تبخیر می‌شوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری می‌شوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست. تقطیر با مایع برگشتی (تقطیر همراه با تصفیه) در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده می‌شود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده می‌شود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار ، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار می‌شود.

نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد می‌باشد.در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، می‌توان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج می‌توانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.

امروزه به علت گرانی سوخت ، سعی می‌شود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی می‌شود. برای همین ، تعداد سینیها را افزایش می‌دهند. در ابتدا مایع برگشتی را 100درصد انتخاب کرده و بعد مرتبا این درصد را کم می‌کنند و به صورت محصول خارج می‌کنند تا به این ترتیب دستگاه تنظیم شود.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]





انواع مایع برگشتی

مایع برگشتی سرد: این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده می‌شود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.

مایع برگشتی گرم: مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار می‌گیرد.

مایع برگشتی داخلی: مجموع تمام مایعهای برگشتی داخل برج را که از سینی‌های بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان می‌باشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.

مایع برگشت دورانی: این نوع مایع برگشتی ، تبخیر نمی‌شود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج می‌کند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمی‌گردد. معمولا این نوع مایع برگشتی در قسمتهای میانی یا درونی برج بکار گرفته می‌شود و مایع برگشتی جانبی هم خوانده می‌شود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است. نسبت مایع برگشتی نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار می‌برند. تقطیر نوبتی این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار می‌گیرد. امروزه تقطیر نوبتی ، صرفا در صنایع دارویی و رنگ و مواد آرایشی و موارد مشابه بکار برده می‌شود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار می‌گیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه می‌باشد.

• تقطیر در مقیاس کم
• ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز
• استفاده نامنظم از دستگاه
• تفکیک چند محصولی
• عملیات تولید متوالی با فرآیندهای مختلف

تقطیر مداوم امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده می‌شود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته می‌شود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده

از تقطیر مداوم در پالایشگاهها مواد زیر تولید می‌شود:
گاز اتان و متان بعنوان سوخت پالایشگاه ، گاز پروپان و بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، سوخت جت سبک و سنگین ، نفت گاز ، خوراک واحدهای هیدروکراکینگ و واحدهای روغن سازی ، نفت کوره و انواع آسفالتها. بنزین برشی از نفت است که بین 70 تا 175 درجه سانتی‌گراد تقطیر می‌شود و محتوی هیدروکربورهای C5 تا C11 یا C12 می‌باشد. بنزین طبیعی که حدود 15% از نفت خام را تشکیل می‌دهد، در موتورهای احتراقی بکار می‌رود.

دید کلی
سوخت‌های مایع را می‌توان از اثر هیدروژن روی زغال و مشتقات آن ، در دما و فشار زیاد بدست آورد. در این حال ، زغال خاکستری در حدود 8 تا 10 درصد وزنی از خود به جای گذارده و نفت خام ، به میزان 75 درصد وزنی زغال مصرف شده است. تاریخچه تولید بنزین گزارش‌های ثبت شده حاکی از آن است که در سال 1923 ، "برجیوس" اولین بار از روش هیدروژناسیون برای تولید بنزین استفاده کرد. در آن سال ، 350000 تن سوخت اتومبیل از این راه تهیه شد. در 1944، حدود 20 کارخانه برای تولید 3.5 میلیون‌تن سوخت مایع بکار مشغول بوده که از این مقدار 2.25 میلیون‌تن بنزین بوده است. امروزه از این روش برای تولید انواع بنزین مخصوصا بنزین هواپیما با خاصیت آرام سوزی مورد استفاده قرار می‌گیرد.
ویژگی‌های بنزین ویژگی ضد ضربه یا آرام سوزی را بوسیله عدد اکتان که عبارت است از درصد ایزواکتان در مخلوطی از ایزواکتان و هپتان نرمال تعیین می‌کند. بدین منظور انفجار ناشی از مخلوطی از ایزواکتان و هپتان نرمال را در موتور استاندارد با هیدروکربور مورد نظر مقایسه می‌کنند. اجسامی با توان ضد انفجاری بیش از اکتان ، عددی بالاتر از 10 را اتخاذ می‌کنند. بر حسب معمول عدد اکتان بنزین اتومبیل در حدود 70 درصد و در مورد هواپیما این مقدار به 130 می‌رسد.

خاصیت آرام سوزی با افزودن ترکیبات مختلفی از قبیل ایزواکتان ، ایزوپنتان ، اتیل بنزین و ایزوپروپیل و برای افزایش بیشتر با تترا اتیل سرب تحقق می‌یابد. ترکیب اخیر از نظر اقتصادی مقرون به صرفه بوده و از واکنش بین PbNa و کلروراتیل حاصل می‌شود. با افزودن 4 میلی لیتر از آن به یک کیلوگرم اسانس ، عدد اکتان بنزین از 70 به 89 می‌رسد.

از آنجا که سرب در موتور رسوب کرده و اشکلاتی را ایجار می‌کند، آنرا با مخلوطی از کلرور یا برموراتیلن مخلوط کرده تا پس از احتراق ، سرب به صورت کلرور یا برمور که جسم فراری است درآمده و همراه گازهای حاصل از احتراق از موتور خارج شود. مزایای بنزین و سوخت‌های مایع نسبت به سوخت های جامد :

• پس از سوختن ، خاکستر بر جا نمی‌گذارند.
• سوخت‌های مایع را می‌توان در محوطه‌ای دور از محل مصرف و به اشکال مختلف انبار کرد.
• سوخت مایع خود به خود آتش نمی‌گیرد و چنانچه فرار نباشد، در اثر ماندن فاسد نمی‌شود.
• سوخت‌های مایع ، وزنشان 30% و حجمشان 50% کمتر از سوخت‌های جامد با همان ارزش حرارتی است.

مشتقات بنزن
مشتقات بنزن را می‌توان از در شمار یک گروه عاملی دانست



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

officer
16-07-2010, 10:24
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



آمینهای آروماتیک ، ترکیباتی هستند که گروه آمین به حلقه آروماتیک یا هترو آروماتیک متصل است. با شناختی که از حلقه آروماتیک و ساختار نیتروژن وجود دارد، به‌سهولت می‌توان پیش‌بینی کرد که حلقه آروماتیک موجب افزایش قدرت اسیدی و کاهش خصلت بازی آمین‌های آروماتیک می‌شود.

روشهای تهیه آمین‌های آروماتیک

روش آزمایشگاهی
روش ساده برای سنتز آمین‌های آروماتیک ، احیای ترکیبات نیترو است. معمولا در آزمایشگاه از اسید کلریدریک و فلزاتی چون روی ، قلع ، یا آلومینیم و حتی ZnCl2برای احیای گروههای نیترو استفاده می‌شود.

روش صنعتی
در صنعت برای احیای مشتقات نیترو و تبدیل آن به آمین مربوطه از آهن قراضه استفاده می‌شود و مقدار کمی اسید بعنوان کاتالیزور به محیط اضافه می‌گردد. مزایای این روش در این است که گذشته از آمین ، اکسید آهن نیز تولید می‌شود. همچنین می‌توان با اندکی تغییر در شرایط کار به مشتقات آریل هیدروکسید آمین ، آزو بنزن ، دی‌فنیل هیدرازین و N– اکسی دی آزوبنزن نیز رسید که به آن ، سنتز Haber گویند.

استفاده از کاتالیزورها
در حضور کاتالیزورهایی مثل نیکل ، پلاتین یا پالادیم نیز می‌توان ترکیبات نیترودار را هیدروژن‌دار کرد و آمین مربوطه را بدست آورد. با این روش آمین‌های آروماتیک در مقیاس تجاری تهیه می‌شود.

واکنشهای حذف – افزایش
اگر هالیدهای آروماتیک تحت تاثیر آمیدورسدیم در آمونیاک مایع قرار داده شوند، ابتدا واکنش حذف انجام می‌گیرد و ترکیب فعالی به نام بنزاین تولید می‌شود که تحت تاثیر آمیدورسدیم قرار گرفته ، آمین مربوطه را تولید می‌نماید. واکنش مشابه با هالیدهای نفتالین به تشکیل دو نوع آمین منجر می‌شود.

واکنشهای جانشینی هسته‌خواهی
روش دیگر تهیه آمین‌های آروماتیک ، انجام واکنشهای جانشینی هسته‌خواهی است. بعنوان مثال از واکنش آنیلین با نمک آنیلینیوم هیدروکسید کلراید آمین‌های نوع بالاتر سنتز می‌شود.

تهیه نیتروزو آمین
هرگاه آمین‌های آروماتیک نوع اول در حضور محلول سرد و آبکی یک اسید معدنی و نیتریت سدیم قرار گیرد، ترکیب N– نیتروزو آمین تشکیل می‌گردد. آمین‌های آروماتیک نوع دوم نیز تحت شرایط ذکر شده بالا ترکیب N – نیتروزوی مربوطه را تولید می‌کنند. آمین‌های آروماتیک سه استخلاف‌دار مانند N و N– دی متیل آنیلین نیز با اسید نیترو واکنش می‌دهند و در نهایت پارا نیتروزو - N و N – دی متیل آنیلین تولید می‌نماید.

نمکهای دی آزونیوم
آمین‌های آروماتیک نوع اول و محلول سرد و آبکی اسیدهای معدنی و نیتریت سدیم با هم واکنش می‌دهند. ابتدا ترکیب N– نیتروزو آمین تشکیل می‌شود که در حضور مازاد اسید معدنی به نمک دی آزونیوم تبدیل می‌گردد. نمکهای دی آزونیوم خیلی فعال هستند بطوریکه در دمای حوالی صفر درجه خود بخود شکسته می‌شوند. از این‌رو لازم است که پس از تولید بلافاصله مصرف شوند.
بطور کلی نمکهای دی آزونیوم آمین‌های آروماتیک در دو دسته مهم از واکنشها شرکت می‌کنند. دسته اول ، واکنشهای جانشینی هستند که در جریان این واکنشها نیتروژن آزاد می‌شود و گروه دیگری بجای آن جانشین می‌گردد. دسته دوم واکنشهای زوج شدن هستند که طی آن ، نمک دی‌آزونیوم از طریق نیتروژن به یک گروه آروماتیک یا هترو آروماتیک متصل می‌شود. هر دو دسته واکنش از نظر سنتزی بسیار با اهمیت هستند.

شناساگر متیلا اورانژ ( هلیانتین)
شناساگر معروف هلیانتین ، از واکنش نمک دی آزونیوم سولفانیلیک اسید با N و N– دی متیل آنیلین بدست می‌آید. این ترکیب دارای گروه عاملی -N=N- است. ترکیبات دارای این گروه عاملی به ترکیبات آزوئیک موسومند. خیلی از این ترکیبات در رنگرزی مورد استفاده قرار می‌گیرند.

استامینوفن
آنیلین یا پاراهیدروکسی آنیلین در محلولهای آبکی و اسیدی با انیدرید استیک ترکیب می‌شوند و مشتق N – آکسیل‌دار تولید می‌کنند. واکنش آکسل‌دار شدن پاراهیدروکسی آنیلین به داروی بسیار مهم استامینوفن منجر می‌شود.

سولفا پیریدین و سولفا تیازول
2- آمینو پیریدین و 2- آمینوتیازول با سولفونیل کلرید واکنش می‌دهد و به ترتیب سولفا پیریدین و سولفا تیازول تولید می‌کند که دارای اثرات دارویی بسیار مهم است.
آروماتیک‌ها ، دسته وسیعی از ترکیبات را تشکیل می‌دهند که شامل بنزن و ترکیباتی باشند که از نظر رفتار شیمیایی مشابه بنزن می‌باشند. برخی از این مواد ، حتی به‌ظاهر شباهتی به بنزن ندارند. برخلاف آلکنها و آلکینها ، بنزن و سایر ترکیبات آروماتیک ، تمایلی برای انجام واکنشهای افزایش از خود نشان نمی‌دهند، ولی در واکنشهای جانشینی شرکت می‌کنند که یکی از صفات شاخص این دسته از مواد می‌باشد.
اگر گروههای عاملی روی حلقه قرار بگیرند، بر واکنش پذیری حلقه اثر خواهند گذاشت. واکنش پذیری عوامل متصل به حلقه نیز بوسیله بخش آروماتیک تحت‌تاثیر قرار می‌گیرد.

خصلت آروماتیکی و قاعده 4n+2 هوکل (Huckel)
افزون بر بنزن و ترکیبات هم خانواده آن مثل نفتالین و آنتراسین و... ، مواد دیگری نیز وجود دارند که به‌ظاهر هیچ شباهتی به بنزن ندارند، ولی رفتاری مشابه بنزن دارند و به‌عبارت ساده‌تر ، آروماتیک هستند. از ویژگیهای این مواد می‌توان به نکات زیر اشاره نمود:
گرمای هیدروژن دار شدن و گرمای سوختن آنها پایین است.
برای انجام واکنشهای افزایشی ، تمایل زیادی نشان نمی‌دهند
در واکنشهای جانشینی الکترونخواهی شرکت می‌کنند.
بررسی‌های تجربی مثل مطالعه خواص فیزیکی و انرژی هیدروژن‌دار شدن سیستمها با تعداد الکترونهای π مختلف به این نتایج منجر شده است که:
مولکولهایی آروماتیک هستند و خصلت آروماتیکی از خود نشان می دهند که تعداد الکترونهای سیستم π آنها ، 2 و 4 و 6و 10و... باشد. این ضرورت ، قاعده هوکل یا 4n+2 نامیده می‌شود. سپس ترکیباتی که برای آنها n=0, 1 , 2 ,… می‌باشد، آروماتیک خواهند بود.
مولکول باید ساختمان مسطح داشته باشد. تمام ترکیباتی که این دو شرط اساسی در آنها رعات شده باشد، زوایای پیوندی در آنها طبیعی ، همپوشانی اوربیتالهای π مناسب و غیر مستقر شدن الکترونها بخوبی میسر باشد، پایداری مولکول بیشتر خواهد بود.

یک مثال
واکنش 3- کلرو سیکلوپروپن با SbCl5 ، ماده پایداری به فرمول C3H3SbCl6 ایجاد می‌کند که در حلالهای دی‌اکسید گوگرد مایع بخوبی حل نشده ، ولی در حلالهای غیرقطبی نامحلول است. مطالعه طیفNMR این ماده ، سه پروتون هم‌ارزش را به نمایش می‌گذارد. این نتایج ، با تشکیل کاتیون سیکلوپروپن که کوچکترین مولکول آروماتیک می‌باشد، مطابقت دارد.

ترکیبهای آروماتیک ، هتروآروماتیک و انرژی رزونانس
نتایج تجربی حاصل از واکنشهای هیدروژن دار شدن هیدروکربنهای جوش خورده دو حلقه‌ای و سه حلقه‌ای و... نشان می‌دهد که هر چه تعداد الکترونهای بیشتری در رزونانس شرکت کرده باشند، انرزژی آزاد شده بیشتر و پایداری نسبی نیز بیشتر خواهد بود.




[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]




نامگذاری مشتقات بنزن و ترکیبات آروماتیک جوش خورده
برخی از مشتقات بنزن ، نام مخصوص به خود دارند، مثلا هیدروکسی بنزن را فنل (C6H5OH) ، متوکسی بنزن را آنیزول (C6H5OCH3)، متیل بنزن را تولوئن (C6H5CH3) ، ایزوپروپیل بنزن را کیومن و آمینوبنزن را آنیلین می‌گویند.
برای نامگذاری خیلی از مشتقات بنزن ، نام گروه یا استخلاف به صورت پیشوند بر کلمه بنزن افزوده می‌شود. مثلا فلوئورو بنزن ، ترسیوبوتیل بنزن ، نیتروبنزن ، سیکلوپروپیل بنزن نمونه هایی از این نوع هستند. جهت نامگذاری مشتقات دو استخلافی بنزن. لازم است که محل استخلافها از پیشوند اورتو ، متا یا پارا استفاده شود؛ به عنوان مثال ، اورتو دی‌متیل بنزن ، متا دی‌متیل بنزن ، پارا دی‌متیل بنزن.
در مواردیکه دو استخلاف متفاوت روی حلقه بنزن قرار گرفته باشد و هیچکدام از گروهها نام ویژه ای به مولکول نداده باشند، پس از ذکر موقعیت گروهها با پیشوند اورتو و... ، نام گروهها را ذکر نموده ، در پایان ، کلمه بنزن بر آنها افزوده می‌شود. اگر وجود یک گروه ، نام ویژه ای به مولکول بدهد، در آن صورت مولکول به عنوان مشتق آن ترکیب ویژه محسوب می‌شود.

humankhan
16-07-2010, 10:53
از تاپیک مفیدتون خیلی تشکر می کنم. ببخشید یه سوال داشتم. اینا رو خودتون آماده می کنین یا از منابع دیگه ای استفاده می کنید؟

officer
16-07-2010, 20:31
از تاپیک مفیدتون خیلی تشکر می کنم. ببخشید یه سوال داشتم. اینا رو خودتون آماده می کنین یا از منابع دیگه ای استفاده می کنید؟

سلام ، خواهش میکنم .

از منابع دیگه مقاله هایی رو اشاعه میدم اینجا .

officer
16-07-2010, 20:37
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]




طیف مادون قرمز برای هر ماده ای در محدوده خاصی قرار دارد. ولی در یک مولکول ، استخلافهای موجود ، محدوده طیف را تحت تاثیر قرار می‌دهند. می‌خواهیم تاثیر ارتعاش کششی C=C را بر طیف سنجی مادون قرمز بررسی کنیم.

آلکنهای آلکیل استخلاف شده ساده
فرکانس کششی برای آلکنهای غیر حلقوی ساده ، معمولا بین 1640 و 1670سانتی‌متر به توان 1- ظاهر می‌شود. تعدد گروههای آلکیلی بر روی پیوند دو گانه ، فرکانسهای C=C را افزایش می‌دهد. برای مثال ، آلکنهای تک‌ استخلافی ساده دارای مقادیر حدود 1640سانتی‌متر به توان 1- هستند، آلکنهای 1،1- دو استخلافی در حدود 1650 سانتی متر به توان 1- جذب می‌کنند و آلکنهای سه و چهار استخلافی در نزدیکی 1670 سانتی‌متر به توان 1- جذب می‌دهند.
آلکنهای ترانس – دو استخلافی در فرکانسهای بالاتری (1670 سانتی‌متر به توان 1- ) نسبت به آلکنهای سیس- دو استخلافی (1658 سانتی‌متر به توان 1- ) جذب می‌دهند. متاسفانه گروه C=C دارای شدت نسبتا ضعیف است که قطعا بمراتب ضعیفتر از گروه C=O است. در بسیاری از موارد همچون آلکنهای چهار استخلافی ، پیوند دو گانه ممکن است آنقدر ضعیف باشد که دیده نشود. اگر گروههای متصل بطور متقارن چیده شده باشند، تغییری در گشتاور دو قطبی در حین ارتعاش کششی رخ نداده ، لذا ، هیچ گونه جذب مادون قرمز مشاهده نمی‌گردد.
سیس – آلکنها که کم‌متقارن‌تر از ترانس – آلکنها هستند، عموما شدیدتر از مورد دوم جذب می‌کنند. پیوندهای دو گانه موجود در حلقه‌ها (چون غالبا متقارن هستند) ضعیفتر از آنهایی که در حلقه نیستند، جذب صورت می‌دهند. پیوندهای دو گانه انتهایی در آلکنهای تک استخلافی معمولا جذب قوی‌تری دارند.

اثر مزدوج شدن
مزدوج شدن یک پیوند دو گانه C=C با یک گروه کربونیل یا پیوند دو گانه C=C دیگر ، خصلت پیوند ساده را در پیوند چند گانه بیشتر کرده ( از طریق رزونانس ) و این امر باعث کاهش ثابت نیرو K و بنابراین کاهش فرکانس ارتعاشی می‌گردد. به‌عنوان مثال ، پیوند دوگانه وینیل در استایرن جذبی در 1630 سانتی‌متر به توان 1- می‌دهد. هرگاه چندین پیوند دو گانه وجود داشته باشد، از روی تعداد جذبهای C=C می‌توان به تعداد پیوندهای دو گانه مزدوج پی برد. مثالی در این مورد 1و3- پنتان دی‌اِن است که جذبهای آن را در 1600 و 1650 سانتی‌متر به توان 1- می‌توان یافت.
استثنایی که در این قاعده وجود دارد، بوتا دی‌اِن است که تنها یک نوار نزدیک 1600سانتی‌متر به توان 1- می‌دهد. اگر پیوند دو گانه با یک گروه کربونیل مزدوج شود، شدت جذب آن معمولا قدری توسط خاصیت دو قطبی قوی گروه کربونیل افزایش می‌یابد.

اثر اندازه حلقه در حلقه‌های حاوی پیوندهای دو گانه درونی
فرکانس جذب پیوندهای دو گانه داخلی در ترکیبات حلقوی به اندازه حلقه بسیار حساس است. با کاهش زاویه داخلی و میل آن به مینیمم مقدار ˚90 در سیکلوبوتن ، فرکانس جذب نیز کاهش می‌یابد. فرکانس جذب هنگامی که زاویه به ˚60 در سیکلوپروپن برسد، مجددا افزایش می‌یابد. این افزایش غیرمنتظره فرکانس ، بدین دلیل رخ می‌دهد که ارتعاش C=C در سیکلوپروپن بشدت با ارتعاش پیوند ساده C-C مجاور ادغام می‌شود. هنگامی که پیوندهای C-C بر محور C=C عمود هستند (همان طور که در سیکلوبوتن است) ، نوع ارتعاش آنها بر ارتعاش پیوند C=C عمود است (روی محور دیگر) و دیگر این ارتعاشات ادغام نمی‌گردند.
هنگامی که زاویه بزرگتر از ˚90 (˚120 در مثال فوق) باشد، ارتعاش کششی پیوند ساده C-C به دو جزء تقسیم می‌گردد که یکی از آنها منطبق بر جهت ارتعاش کششی C=C است. در دیاگرام ، اجزاء b و a از بردار کششی C-C نشان داده شده‌اند. چون که جزء a در جهت بردار کششی C=C قرار دارد، پیوندهای C=C و C-C ادغام گشته و باعث بالا رفتن فرکانس جذب می‌گردند. طرح مشابهی نیز برای سیکلوپروپن وجود دارد که دارای زاویه کوچکتر از ˚90 است.

هنگامی که یک یا دو گروه آلکیلی مستقیما به پیوند دو گانه متصل باشند، افزایش قابل ملاحظه ای در فرکانس جذب یک پیوند دو گانه موجود در حلقه مشاهده می‌گردد. این افزایش برای حلقه‌های کوچک ، بویژه سیکلوپروپنها ، بسیار محسوس است. هنگامی که یک گروه آلکیل به پیوند دو گانه متصل گردد، مقدار پایه 1656 سانتی‌متر به توان 1- برای سیکلوپروپن به حدود 1788 سانتی‌متر به توان 1- افزایش می‌یابد؛ با وجود دو گروه آلکیل این مقدار به حدود 1883 سانتی‌متر به توان 1- فزونی می‌یابد.
فهم این نکته پُر اهمیت است که اندازه حلقه باید پیش از بکارگیری قواعد فوق تعیین گردد. برای مثال ، توجه کنید که پیوندهای دو گانه در 1و2- دی آلکیل سیکلوپنتن و 1و2- دی آلکیل سیکلوهگزن ، تقریبا در یک فرکانس جذب می‌دهند.

اثر اندازه حلقه در حلقه های حاوی پیوندیهای دو گانه خارجی
در پیوندهای دو گانه خارجی ، کاهش اندازه حلقه باعث افزایش فرکانس جذب می‌گردد. آلن نمونه بارزی از یک ترکیب دارای پیوند دو گانه خارجی است. حلقه‌های کوچکتر نیاز بیشتری به استفاده از خصلت p در سااخت پیوندهای C-C دارند تا جوابگوی نیاز زوایای کوچک باشند. این مساله باعث از میان برداشته شدن خصلت p از پیوند سیگمای پیوند دو گانه شده ، ولی در عوض به آن خصلت s بیشتری می‌دهد؛ بنابراین قدرت و استحکام پیوند دو گانه افزایش می‌یابد. پس ثابت نیروی K افزایش یافته و فرکانس جذب نیز فزونی می‌گیرد.



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

officer
16-07-2010, 20:46
پس از آب ، نفت فراوان ترين مايع در بخش هاي بالايي پوسته زمين است . نفت يک منبع غني از مواد شيميايي است . حدود 87% هر بشکه نفت براي سوزاندن و 13% براي ساخت بکار مي رود . بي توجهي در مصرف نفت باعث ورود مقادير زيادي Co2 در هوا و آلودگي هوا مي شود .
به زغال سنگ ، نفت خام و گاز طبيعي ، سوخت هاي فسيلي مي گويند . سوخت هاي فسيلي منابعي تجديد ناپذيرند زيرا تشکيل آنها بسيار آهسته است و سرانجام روزي تمام خواهد شد .

پالايش نفت خام
نفتي که از چاه بيرون آورده مي شود نفت خام نام دارد . پس از جداکردن نمک ها و اسيد ها ،هيدروکربن هاي باقي مانده را پالايش مي کنند . عمل پالايش با تقطير جزء به جزء نفت خام انجام مي شود . در آغاز نفت خام را در کوره تا Cْ400 گرم مي کنند سپس آن را با پمپ به پائين برج تقطير که بيش از 30 متر ارتفاع دارد مي فرستند . مولکول هاي کوچکتر و سبکتر و زود جوش تر به سوي بالا ستون تقطير مي روند و مولکول ها يسنگين تر و دير جوش تر به سمت پائين برج مي روند .
برش گازي نفت شامل ترکيبهايي با نقطه جوش پائين است . مولکول هاي اين گازها از ۱ تا ۴ اتم کربن دارند . برش هاي مايع نفت که شامل بنزين ، نفت و روغن هاي سنگين تر هستند شامل مولکول هاي ۵ تا 20 کربن هستند . برش جامد و روغني که حتي در دماهاي بالا بخار نمي شوند مولکول هايي با بيش از 20 اتم کربن هستند .

شيمي آلي
بخشي از علم شيمي است که درباره مواد آلي گفتگو مي کند . ويژگي آشکار ترکيب هاي آلي وجود اتمهاي کربن در همه آنهاست . از اين رو شيمي آلي را شيم يترکيب هاي کربن نيز مي گويند .

هيدروکربن هاي سير شده يا آلکان ها
در يک آلکان ، هر اتم کربن با چهار پيوند به چهار اتم ديگر متصل شده است . اين ، بيش ترين تعداد اتمي است که مي تواند به يک اتم کربن ديگر متصل شود . به اين علت آلکان ها راهيدروکربنهاي سير شده مي گويند . نام اعضاي اين خانواده از دو بخش تشکيل شده است . بخش اول تعداد اتم هاي کربن و بخش دوم لفظ " ان " است. متان نخستين و ساده ترين عضو اين گروه است . متان – اتان – پروپان – بوتان – نپتان - هگزان – هپتان – اوکتان – نونان – دکان – نام آلکان هاي ۱ کربنه تا 10 کربنه است .
آلکان ها مي توانند راست زنجير يا شاخه دار باشند . مولکول هايي که فرم مولکولي يکسان دارند ، اما آرايش اتم ها در آنها متفاوت است . هم پارياايزوم مي نامند . آلکان هايي که چهار يا تعداد بيش تري اتم کربن داشته باشند داراي ايزوم هستند . همه ي آلکان ها ، گازها ، مايع ها يا جامدهايي بي رنگ هستند که با افزايش اعداد کربن به نقطه جوش و گرانوري آنها افزايش مي يابد . همه ي آلکان ها در هوا با شعله زرد – آبي تميزي مي سوزند .

سوختن هيدروکربن ها


انرژي نوراني و گرمايي + آب + گازکربن دي اکسيد = گاز اکسيژن + هيدروژن


معادله بالا ، سوختن کامل يک هيدروکربن را نشان مي دهد . انرژي آزاد شده را مي توان بر حسب KG/mol بيان کرد .
اگر مقدار اکسيژن کافي نباشد ، سوختن ناقص خواهد بود .
در سوختن ناقص ، افزون بر کربن د ياکسيد آب ، مقداري کربن مونوکسيد (Co) نيز تشکيل مي شود و در صورتي که اکسيژن باز هم کمتر شود ، مقداري دوده به عنوان فرآورده هاي مرغي توليد مي شود .

بهبود کيفيت سوخت
در سال ۱۹۱۳ ، شيميدان ها فرآيند کراکينگ را براي شکستن مولکول هاي نفت چراغ به مولکول هاي کوچک تر طراح يمي کردند . در اين فرآيند ، نفت چراغ تا حدود Cْ700 گرم مي شود . برا ينمونه ممکن است يک مولکول با 16 اتم کربن شکسته شود و دو مولکول با ۸ اتم کربن به وجود آيد . در عمل مي توان مولکول هايي را که از ۱ تا 14 يا تعداد بيش تري اتم کربن دارند ، از راه کراکينگ مولکول هاي بزرگ تر بدست آورد . مولکول هاي ۵ تا ۱۲ کربنه براي استفاده در بنزين سودمند هستند . به طور معمول بيش از يک سوم نفت خام کراکينگ مي شود . بازده اين فرآيند را با افزودن کاتاليز گرماي مناسب مانند آلومينيوم اکسيد (AL2O3 ) بالا برده اند . فرايند کراکينگ کاتاليزي از نظر مصرف انرژي کارايي بهتري دارد زيرا به جاي Cْ700 رد دماي Cْ500 انجام مي شود .

عدد اوکتان و روش هاي بالا بردن آن
بنزيني که بيشتر از آلکان هاي راست زنجير مانند هگزان ، هپتان ، و اوکتان تشکيل شده است ، به آساني مي سوزد و موجب کوبش (تق تق کردن ) موتور مي شود . آلکانهاي شاخ دار در موتور خودروها بهتر از آلکان هاي راست زنجير مي شوند . مثلاً ايزواوکتان که يکي از همپارهاي اوکتان است . بسيار خوش سوز مي باشد .
عدد اوکتان ، عددي براي بيان کردن ميزان خوش سوزي يک هيدروکربن است .هرچي عدد اوکتان بزرگتر باشد خواص ضد کوبش بنزين بيشتر است و بنزين مرغوب تر است . يک راه نسبتاً ارزان براي بالا بردن عدد اوکتان افزودن تترا اتيل سرب pb ئ 4(C2H5) به بنزين است .

هيدروکربن هاي سيرنشده
در اين نوع هيدروکربن ها حداقل دو اتم کربن مي توان يافت که به جاي چهار اتم ، تنها با سه يا دو اتم پيوند دارد . آلکن ها و آلکين ها و اتين ساده ترين عضو آلکين هاست .واکنش پذيري هيدروکربن هاي سير نشده ، بيشتر از آلکان ها است .



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


اتن ( اتیلن)

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


اتين (استيلن )
واکنش پذيري هيدروکربن هاي سير نشده ، بيشتر از آلکان ها است .

فرآورده هاي پتروشيميايي
امروزه بسياري از اشياء و مواد متداول ساختني هستند که به وسيله صنايع شيميايي از نفت يا گاز طبيعي به دست مي آيند . اين ترکيب ها را فرآورده هاي پتروشيميايي مي نامند .برخي از اين مواد مثل پاک کننده ، حشره کش ها و مواد دارويي و آرايشي به طور مستقيم استفاده مي شوند و ل يبيشتر اين مواد به عنوان ماده اوليه در توليد ترکيب هاي ديگر به ويژه پلاستيک ها بکار مي روند .

کاربرد اتن در پتروشيمي
يکي از آلکن هاي مهم صنعتي اتن است . واکنش پذيري پيوند ده گانه در اتن بسيار زياد است . از اين رو به آساني مي توان آن را به بسياري از فرآورده ها يسودمند تبديل کرد . براي مثل وقتي که يک مولکول آب با پيوند دوگانه ي يک مولکول اتن واکنش مي دهد اتانول که يک ترکيب سيرشده است و کاربردهاي بسيار زيادي دارد تشکيل مي شود .



[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



همچنين از اتن براي تهيه پلاستيک ، پل يتن (پلي اتيلن ) استفاده مي شود که از آن در ساخت کيسه هاي پلاستيکي و ورقه ها يبسته بندي استفاده مي کنند .
پلي تن يکي از بسپارهاي (پليمرهاي ) مهم صنعتي است.

Ramana
24-07-2010, 15:16
آلکین ها

آلکین‌ها هیدروکربن‌هایی هستند که دست کم یک پیوند سه‌گانه بین دو اتم کربن دارند. از آن‌جا که کوچک‌ترین آلکین که نام آیوپاک آن اتین (C2H2) است، پیشتر به نام استیلن شناخته می‌شده است؛ آلکین‌ها به نام استیلن‌ها یا گروه اسیتیلنی نیز نامیده می‌شوند.
نامگذاری آلکین‌ها

روش سنتی

• در نامگذاری معمولی ، آلکین‌ها به عنوان مشتقات استیلنی نامگذاری می‌شوند. معمولاً برای نامگذاری استیلن‌های کوچک از این روش بهره گرفته می‌شود.
روش آیوپاک

روش جامع برای نامگذاری آلکین‌ها روش آیوپاک(IUPAC) است و اصول آن ، مشابه نامگذاری آلکنهاست و با رعایت نکات زیر انجام می‌شود:
• درازترین زنجیری را که پیوند سه گانه در آن قرار دارد، مشخص و کربنهای زنجیر اصلی را از طرفی شماره گذاری می‌کنیم که اولین کربن پیوند سه‌گانه شماره کوچک‌تری را داشته باشد.
• نام گروه‌ها و شماره کربن محل آنها را معین و به ترتیب الفبای انگلیسی مرتب می‌کنیم.
• با ذکر شماره کربن محل پیوند سه‌گانه و تغییر نام آخر زنجیر از ane به yne نامگذاری به پایان می‌رسد.
خواص فیزیکی

خواص فیزیکی آلکینها ، مشابه آلکنهای هم کربن است. آلکین‌ها ، ترکیباتی با قطبیت بیشتر هستند که در حلالهای با قطبیت کمتر مثل تتراکلرید کربن ، بنزن و اترها بخوبی حل می‌شوند، ولی در آب نامحلولند. همانند سایر هیدروکربنها سبکتر از آب هستند. بررسی و مقایسه نقطه ذوب و نقطه جوش این مواد نشان می‌دهد که با افزایش تعداد کربن نقطه جوش افزایش می‌یابد و با شاخه‌دار شدن کاهش می‌یابد.
فرآوری

به طور کلی دو روش زیر برای فرآوری آلکین‌ها به کار می‌رود:
1. تبدیل یک آلکین به آلکینهای دیگر است که با تغییر و بزرگ کردن آلکین‌های کوچک امکان‌پذیر می‌باشد.
2. به وجودآوردن پیوند سه‌گانه کربن-کربن در مولکول می‌باشد که با انجام واکنشهای شیمیایی مناسب انجام پذیر می‌باشد.
تقسیم بندی استیلن‌ها

استیلن‌های حقیقی یا انتهایی (terminal acetylenes)

به ترکیباتی از این گروه اطلاق می‌شود که حداقل یک اتم هیدروژن متصل به کربن sp در آنها وجود داشته باشد. مثلا پروپن (متیل استیلن) یک استیلن حقیقی است. به همین ترتیب ، فنیل استیلن و ترسیوبوتیل استیلن از استیلن‌های حقیقی می‌باشند.
استیلن‌های داخلی (internal acetylenes)

هرگاه پیوند سه گانه کربن به کربن درجایی از مولکول قرار گرفته باشد که کربنهای با هیبرید sp به استخلاف متصل باشند، استیلنی را داخلی می‌نامند، مثل دی‌متیل استیلن ، دی‌فنیل استیلن و دی‌ترسیوبوتیل استیلن.
آلکینها با چند روش نامگذاری می‌شوند:
در نامگذاری معمولی ، آلکینها به عنوان مشتقات استیلنی نامگذاری می‌شوند. معمولا برای نامگذاری استیلن‌های کوچک از این روش استفاده می‌شود. روش جامع برای نامگذاری آلکین‌ها روش (IUPAC) است و اصول آن ، مشابه نامگذاری آلکنهاست و با رعایت نکات زیر انجام می‌شود:
1. طولانی ترین زنجیری را که پیوند سه گانه در آن قرار دارد، مشخص و کربنهای زنجیر اصلی را از طرفی شماره گذاری می‌کنیم که اولین کربن پیوند سه‌گانه شماره کوچکتری را داشته باشد.
2. نام گروهها و شماره کربن محل آنها را معین و به ترتیب الفبای انگلیسی مرتب می‌کنیم.
3. با ذکر شماره کربن محل پیوند سه‌گانه و تغییر نام آخر زنجیر از ane به yne نامگذاری به پایان می‌رسد.
ساختمان استیلن

اتین یا استیلن ، کوچکترین عضو خانوده بزرگ آلکینها (استیلنی‌ها) می‌باشد. به طریق کوانتوم مکانیکی ، اگر بخواهیم با دو اتم هیدروژن ، مولکولی را ایجاد کنیم، لازم است کربن‌ها با یک پیوند سه‌گانه به یکدیگر متصل شوند. برای ایجاد مولکولی اتمهای کربن باید هیبرید sp داشته باشند. یکی از این اوربیتالهای هیبریدی به کربن و دیگری به هیدروژن متصل و اوربیتالهای py و Pz نیز دو پیوند π را ایجاد می‌کنند.
با شناختی که از دو پیوند دوگانه کربن به کربن و کربن به هیدروژن آلکنها داریم، انتظار می‌رود که طول پیوند سه گانه کربن- کربن و کربن- هیدروژن در استیلنی‌ها کوتاهتر باشد. طول پیوند سه گانه کربن- کربن 1,20 آنگستروم و کربن- هیدروژن 1,60 آنگستروم اندازه گیری شده است.
خواص فیزیکی آلکینها

خواص فیزیکی آلکینها ، مشابه آلکنهای هم کربن است. آلکینها ، ترکیباتی با قطبیت کمتر می‌باشند که در حلالهای با قطبیت کمتر مثل تتراکلرید کربن ، بنزن و اترها بخوبی حل می‌شوند، ولی در آب نامحلولند. همانند سایر هیدروکربنها سبکتر از آب هستند. بررسی و مقایسه نقطه ذوب و جوش این مواد نشان می‌دهد که با افزایش تعداد کربن نقطه جوش افزایش می‌یابد و با شاخه‌دار شدن کاهش می‌یابد.
دو روش کلی برای تهیه آلکینها وجود دارد:
1. تبدیل یک آلکین به آلکینهای دیگر است که با تغییر و بزرگ کردن آلکینهای کوچک امکان‌پذیر می‌باشد.
2. ایجاد پیوند سه گانه کربن- کربن در مولکول می‌باشد که با انجام واکنشهای شیمیایی مناسب انجام پذیر می‌باشد.
روشهای صنعتی تهیه استیلن

استیلن ، کوچکترین عضو خانوده استیلنی‌هاست و در صنعت از اهمیت ویژه‌ ای برخوردار است. به عنوان ماده اولیه و پیش ماده در سنتز و تهیه مواد شیمیایی مختلف مورد نیاز می‌باشد. از این رو ، روشهای صنعتی زیادی برای تولید انبوه این ماده ابداع شده است.
• کاربید کلسیم از واکنش آهک و زغال کک و در دمای بالا (با استفاده از کوره های الکتریکی) تهیه می‌شود. حسن این ماده در این است که قابل نگهداری و به سهولت قابل حمل می‌باشد و لذا در هر جا و مکانی تهیه استیلن امکان‌پذیر می‌باشد.

CaO + 3C → C2Ca + H2O→ H-C≡C-H

• از اکسید شدن جزئی و محدود متان در دمای بالا نیز استیلن در اشل صنعتی تولید می‌شود. با این روش صنعتی ، ضمن این که استیلن سنتز می‌شود، گازهای با ارزش هیدروژن و منوکسید کربن نیز تولید می‌شود که اهمیت سنتزی فراوان دارد (به عنوان مثال در سنتز متانول مورد استفاده قرار می‌گیرند).

CH4 + O2 → 2CO + 10H2+ 2H-C≡C-H

• از اکسید شدن متان در دمای حدود 1500 درجه سانتی‌گراد و در مدت زمان بسیار کوتاه 0.1 ثانیه نیز استیلن و هیدرژن تولید می‌گردد.

2CH4 → H-C≡C-H + 3H2

Ramana
25-07-2010, 12:41
شیمی آلی





شیمی آلی بخشی از دانش شیمی است که بررسی هیدروکربن‌ها می‌‌پردازد. به همین دلیل به آن شیمی ترکیبات کربن نیز گفته می‌شود . پسوند «آلی» یادگار روزهایی است که مواد شیمیایی را بسته به این که از چه منبعی به دست می‌آمدند، به دو دسته معدنی و آلی تقسیم می‌کردند.
مواد معدنی آنهایی بودند که از معادن استخراج می‌شدند و مواد آلی آنهایی که از منابع گیاهی یا حیوانی یعنی از موادی که توسط موجودات زنده تولید می‌شدند، به دست می‌آمدند.
در واقع تا پیرامون سال ۱۸۵۰ بسیاری از شیمیدانان معتقد بودند، که خاستگاه مواد آلی باید موجودات زنده باشند و در نتیجه این مواد را هرگز نمی‌توان از مواد معدنی سنتز نمود.
موادی که از منابع آلی به دست می‌آیند، در یک خصوصیت مشترکند: همه آنها دارای عنصر کربن هستند.
حتی پس از آن که مشخص شد این مواد لزوماً نبایستی از منابع زنده به دست آیند و می‌توان آنها را در آزمایشگاه سنتز کرد، باز هم مناسبت داشت تا نام آلی برای توصیف آنها و موادی همانند آنها حفظ شود. این تقسیم‌بندی بین مواد معدنی و آلی تا به امروز حفظ شده است.
امروزه اگر چه هنوز بسیاری از ترکیبات کربن به آسانی از منابع گیاهی و جانوری بدست می‌آیند، ولیکن بسیاری از آنها نیز سنتز می‌شوند. از ترکیبات گاهی از مواد معدنی مانند کربناتها و سیانیدها سنتز می‌شوند ولی غالباً از سایر مواد آلی تهیه می‌گردند.
دو منبع بزرگ مواد آلی که از آنها مواد آلی ساده تأمین می‌شوند، نفت و ذغال سنگ است. (هر دو اینها از مفهوم قدیمی «آلی» بوده و فراورده تجزیه (کافت) گیاهان و جانوران هستند). این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگ‌تر و پیچیده‌تر مصرف می‌شوند.
نفت و زغال سنگ سوختهای فسیلی هستند که در طی هزاران سال بر روی هم انباشته شده وغیر قابل جایگزینی هستند. این مواد — بویژه نفت — جهت رفع نیازهای انرژی که به طور دایم در حال افزایش است، با سرعت خطرناکی مصرف می‌گردند. امروزه کمتر از ۱۰٪ نفت برای ساختن مواد شیمیایی مصرف می‌شود و قسمت اعظم آن برای تولید انرژی سوزانده می‌شود. خوشبختانه منابع دیگری برای ایجاد نیرو از قبیل منبع خورشیدی، گرمای زمین، باد، امواج، جزر و مد و انرژی هسته‌ای وجود دارد.
اما چگونه می‌توان منبع دیگری به جای مواد آلی پیدا نمود؟ البته در نهایت باید به جایی که سوختهای سنگواره‌ای از آنجا ناشی می‌شوند یعنی توده زیستی برگشت نمود، اما این بار به طور مستقیم و بدون دخالت هزاران سال. توده زیستی قابل تجدید است و چنانچه به طور مناسب مصرف شود، تا زمانی که ما بر روی این سیاره بتوانیم وجود داشته باشیم آن هم باقی می‌ماند. در ضمن می‌گویند که نفت با ارزش‌تر از آن است که سوزانده شود.
چه خصوصیتی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز می‌سازد؟ لااقل قسمتی از این جواب به نظر می‌رسد که چنین باشد: تعداد بسیار زیادی از ترکیبات کربن وجود دارند که مولکولهای آنها می‌توانند بسیار بزرگ و پیچیده باشد.
تعداد ترکیباتی که دارای کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. این مواد آلی در خانواده‌های مختلف قرار می‌گیرند، و معمولاً در بین مواد معدنی، همتایی ندارند.
مولکولهای آلی شامل هزاران اتم شناخته شده‌اند، و ترتیب قرار گرفتن اتمها حتی در مولکولهای نسبتاً کوچک بسیار پیچیده است. یکی از مسایل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتمها در مولکولها و یا تعیین ساختمان ترکیبات است.
راه‌های زیادی برای شکستن این مولکولهای پیچیده و یا نوآرایی آنها برای ایجاد مولکولهای جدید وجود دارد؛ روشهای مختلفی برای اضافه نمودن اتمهای جدید به این مولکولها و یا جایگزین نمودن اتمهای جدید به جای اتمهای قدیم وجود دارد. بخش کلان شیمی آلی به پژوهش در مورد این واکنشها اختصاص دارد، یعنی تشخیص این که این واکنشها کدامند، چگونه انجام می‌شوند و چگونه می‌توان از آنها برای سنتز یک ترکیب دلخواه استفاده نمود.
اتمهای کربن می‌توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر بپیوندند. اتمهای کربن می‌توانند زنجیرهایی شامل هزاران اتم و یا حلقه‌هایی با اندازه‌های متفاوت ایجاد نمایند؛ زنجیرها و حلقه‌ها می‌توانند دارای شاخه و پیوندهای عرضی باشند. به اتمهای کربن این زنجیرها و حلقه‌ها، اتمهای دیگری که عمدتاً هیدروژن و همچنین فلویور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتمهای گوناگون میپیوندد.
هر آرایش مختلف از اتمها مربوط به ترکیب متفاوتی است، و هر ترکیب یک رشته ویژگیهای شیمیایی و فیزیکی ویژه خود را دارد. از این رو غیرمنتظره نیست که امروزه بیشتر از ده میلیون ترکیب شناخته شده کربن وجود داشته باشد و هر سال به این تعداد نیم میلیون ترکیب تازه افزوده گردد. تعجب‌آور نیست که بررسی این ترکیبات، رشته ویژه‌ای را در شیمی به خود اختصاص دهد.
شیمی آلی اهمیت فوق‌العاده زیادی در تکنولوژی دارد و در واقع، شیمی رنگدانه‌ها و داروها، کاغذ و جوهر، رنگهای نقاشی و پلاستیکها، بنزین و تایرهای لاستیکی است؛ همچنین، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.
شیمی آلی شالوده زیست‌شناسی و پزشکی است. ساختمان موجودات زنده، به غیر از آب، عمدتاً از مواد آلی ساخته شده‌اند؛ مولکولهای مورد بحث در زیست‌شناسی مولکولی همان مولکولهای آلی هستند. زیست‌شناسی در مقیاس مولکولی همان شیمی آلی است.
شاید دور از انتظار نباشد که بگوییم ما در عصر کربن زندگی می‌کنیم. هر روزه، روزنامه‌ها ذهن ما را متوجه ترکیبات کربن نظیر کلسترول و چربیهای اشباع نشده، هورمونها و استروییدها، حشره‌کشها و فرومونها، عوامل سرطانزا و شیمی درمانی، DNA و ژنها می‌نمایند. به خاطر نفت، جنگها به راه افتاده است.
وقوع دو فاجعه بشریت را تهدید می‌کند و هر دو ناشی از تجمع ترکیبات کربن در جو است؛ یکی نازک شدن لایه ازون که عمدتاً به واسطه وجود کلروفلویورو کربنها است و دیگری پدیده گلخانه که به خاطر حضور متان، کلروفلویور و کربنها و سرآمد همه کربن دی‌اکسید است.
شاید به همین مناسبت بوده است که مجله Science در سال ۱۹۹۰، الماس را که یکی از فرمهای آلوتروپی کربن است به عنوان مولکول سال انتخاب کرده است. و مولکول آلوتروپ تازه‌یاب فولرن باکمینستر کربن ۶۰ (buckminsterfullerene-C۶۰) است که هیجان بسیاری را در دنیای شیمی ایجاد کرده است، هیجانی که از «زمان ککوله تاکنون» دیده نشده است.
در بحث شیمی آلی، آموختن اعداد یونانی و پیشوندهای اعداد یونانی به عنوان یک پیش نیاز مطرح می‌گردد. این اعداد در نام گذاری انواع هیدرو کربن‌ها مصرف دارند.

Ramana
25-07-2010, 13:06
فولرن ها




در سال ۱۹۸۵ رابرت اف ،هارولد دبلیو . کورتو و ریچارد ای، اسمالی ، شکل جدیدی از کربن را کشف کردند که امروز به نام توپ باکی بال معروف است . این کشف نشان داد که ۶۰ ، ۷۰ یا تعداد بیشتری اتم کربن میتوانند با هم بصورت خوشه تجمع کنند و مولکولی قفس مانند بسازند .
فولرنها به شدت الکترون خواه هستند و به آسانی با هسته دوستها واکنش میدهند ، از واکنشهای آنهای میتوان :
۱- واکنش افزایشی :
تشکیل برون وجهی با افزایش هسته دوستها یا رادیکالها ، حلقه زایی ، و ایجاد کمپلکس با فلزات واسطه .
۲- واکنشهای انتقال الکترون :
کاهش شیمیایی فولرنها به راحتی بوسیله واکنش با فلزهای قلیایی و قلیایی خاکی الکتروپوزیتیو یا مولکولهای آلی اکترون دهنده امکان پذیر است،
۳-تشکیل ناجور فولرنها :
جانشین کردن اتمهایی مانند نیتروژن یا بور به جای اتم کربن در اسکلت فولرن
۴-واکنشهای باز شدن حلقه :
تولید یک حفره در اسکلت با شکستن تعداد مشخصی از پیوندها
۵-تشکیل درون وجهیها :
وارد کردن و به تله انداختن اتمها در داخل قفس کروی شکل
نیمرسانایی با مقاومت الکتریکی بسیار بالاست ، اما با وارد کردن فلزات قلیایی ، قلیایی خاکی یا گونه های الکترون دهنده دیگر درون ، انتقال بار حاصل ، مقاومت الکتریکی را به شدت کاهش میدهد که در برخی موارد میتواند منجر به رسانایی فلزی شود .
به این مواد متافولرنها گفته میشود .
نانو لوله های کربنی به دلیل داشتن قطر بسیار کوچک در حدود ۰.۷ نانومتر نخستین نمونه از استوانه های توخالی معروف به سیمهای کوانتومی هستند ، اینها هم به صورت فولرنهای تک لایه هم به صورت فولرنهای چند لایه تو در تو قابل تهیه اند ، در طول دهه گذشته دانشمندان به این نتیجه رسیده اند که نانولوله های کربنی قادرند الکتریسیته را به دو صورت هدایت کنند ، با مقاومت کم ، مانند فلز ، و با مقاومت متغیر ، مانند نیم رسانا .اکنون پژوهشگران دانشگاه برکلی این نظریه را مطرح کرده اند که نانو لوله ها میتوانند در شرایط مناسب ابر رسانا هم باشند ، بلاخره در سال ۱۹۹۹ دانشمندان نانو لوله هایی بسیار کوچک به قطر کمتر از نیم نانومتر و طول ۱۰۰۰ آنگستروم {۳۰۰۰ بار کوتاهتر از دیگر نانولوله ها، جهت اجتناب از نقصهای ساختاری }تولید کردند که پایینتر از ۲۰ درجه کلوین ابر رسانا میشوند.

officer
25-07-2010, 14:15
دید کلی
اثر بر شکل مولکولی ، فراتر از تاثیر بر دمای ذوب و دمای جوش است: نقشی حیاتی در تعیین اثر زیست شناختی دارد. بهترین مثال برای درک این مسئله ، بررسی شیمی دیدن یا در واقع ، یکی از جنبه های شیمی است.


اساس دیدن
دیدن در حقیقت ، آشکارسازی نور است. نور به چشم می‌خورد و مغز خبر می‌شود که چیزی در آنجاست. بازشناخت اینکه چه چیزی در آنجاست _ اندازه ، شکل ، روشنی و فاصله شیئی دیده شده _ مسئله فیزیک چشم و زیست شناسی مغز است. اما تمام این فرایند به یک رخداد اولیه بستگی دارد: نور کاری در چشم انجام می‌دهد، چیزی که تمام فرایند را شروع می‌کند و بدون آن ، دیدن در کار نخواهد بود. آن چیز یک تبدیل ساده شیمیایی است، رخدادی نادر در زیست شناسی، واکنشی آلی که بوسیله آنزیم کاتالیز نمی‌شود. چنان ساده و جالب است که به‌عنوان اساس دیدن در تمام جانداران بکار گرفته شده است.

پروتئین موجود در چشم
در سلولهای میله‌ای شکل رتینای پستانداران ، پروتئین مزدوجی به نام ردوپسین وجود دارد. بخشی از این پروتئین (گروه پروستیتک آن) ، 11- سیس-رتینال است: آلدئیدی سیر نشده که از ویتامین A مشتق می‌شود و آن هم به نوبه خود ، از β- کاروتن ، رنگدانه ای که رنگ زرد هویج را بوجود می‌آورد، ساخته می‌شود. رتینال ، نه فقط به صورت کووالانسی به پروتئین متصل شده، بلکه در یک غلاف چربی‌دوست نیز جای گرفته است.


عملکرد نور در چشم
هنگامی که نور به ردوپسین می‌خورد، فقط یک کار می‌کند و دیگر نقشی ندارد: 11-سیس- رتینال را به 11- ترانس- رتینال تبدیل می‌کند. همین تبدیل ، همین تغییر یک ایزومر هندسی به ایزومر دیگر است که سرآغاز پدیده دیدن است. تکانه‌های عصبی ناشی از جذب نور و وقوع یک سری واکنشهای شیمیایی است که ما را قادر به دیدن می‌کند.


ایزومر سازی در چشم
نور ، انرژی به ردوپسین می‌رساند و این انرژی ، با گشودن پیوندهای دو گانه کربن- کربن ، چرخش لازم برای ایزومرسازی سیس- ترانس را ممکن می‌سازد. این ایزومر سازی ، شکل رتینال را تغییر می‌دهد، خمیدگی مولکول از بین می‌برد و راست می‌شود. با تغییر در بخش رتینال ، تغییری در شکل تمام ردوپسین بوجود می‌آید. بخش پروتئینی ، باید صورتبندی خود را به گونه ای تغییر دهد تا این مهمان دگرگون شده را پذیرا باشد.

گفته می‌شود که این تغییر ، بر نفودپذیری غشاهای معینی اثر می‌گذارد و عبور یونهای 2+Ca که تکانه‌های عصبی را به مغز می‌رسانند، ممکن می‌سازد این فرایند ، به گونه شگفت‌انگیزی کار آمد است: چشم انسان می‌تواند جذب پنج فوتون نور بوسیله پنج سلول میله‌ای شکل را تشخیص دهد. البته چیزی بیش از این رخ می‌دهد: یک سری از واکنشهای کاتالیز شده بوسیله آنزیم ، انرژی لازم برای تبدیل ترانس- رتینال به ایزومر ناپایدارتر سیس را تامین می‌کنند تا تمامی فرایند بتواند از نو تکرار شود.

سخن آخر

آنچه گفته شد، جذب نور بوسیله سلولهای میله‌ای شکل یک پستاندار بود. جانوران بسیار متفاوتی نظیر سخت‌پوستان و حلزونها ، سیستم نوری بسیار متفاوتی دارند. اما ، صرفنظر از تفاوتهای تشریحی ، فرایند دیدن ، همیشه با یک واکنش ساده آنی آغاز می‌شود: تبدیل 11- سیس- رتینال به ایزومر هندسی آن.

officer
25-07-2010, 14:21
زغال فعال شده(Avtivated Carbon) چیست؟
اصطلاح زغال فعال شده نشان دهنده یک سری از مواد جذب کننده سطحی , با جنسی زغالی و شکل کریستالی می باشد که در ساختار داخلی آن روزنه های زیادی وجود دارد.
زغال فعال شده دارای کاربردهای زیادی است, از جمله مصارف آن:
- تصفیه آبها ( آب شرب, آب آکواریومها, آبهای صنعتی), از نظر رنگ و بو و طعم
- رنگزدایی از قند و شکر
- بازیافت طلا
- بهسازی رنگ و طعم در نوشیدنی ها و آب میوه ها
- استفاده در دستگاههایی مثل: تصفیه کننده های هوا, خوش بو کننده ها, تصفیه کننده های صنعتی و ...
- ....

تولید زغال فعال شده
اصول و فنون گوناگونی در ساخت و تولید زغالهای فعال شده وجود دارد که به 3 اصل بستگی دارد:
- نوع ماده اولیه
- مشخصات فیزیکی مورد نظر برای محصول (زغال فعال شده)
- مشخصات جذبی برای کاربردهای مختلف
شیوه های فعالسازی که بیشتر در تولیدات تجاری بکار میرود عبارتند از:
فعال سازی شیمیایی،فعال سازی توسط بخار

فعال سازی شیمیایی:
این شیوه بیشتر برای مواردی است که مواد اولیه آن چوب و یا زغال سنگ نارس(Peat) می باشد. مواد اولیه را با یک عامل آبگیر مانند اسید فسفریک P2O5 یا کلرید زنیک ZnCl2 آغشته می کنند تا ماده ای خمیری حاصل شود. این ماده را در بازه دمایی 500 - 800 درجه سانتیگراد حرارت میدهند تا کربن فعال شود.
زغال فعال شده حاصل را بعد از شستشو خشک و به پودر تبدیل می کنند.
زغال فعال شده بدست آمده توسط این روش , دارای منافذ باز زیادی است و برای جذب مولکول های بزرگ بسیار مناسبند.

فعال سازی توسط بخار:
این روش بیشتر برای موادهای اولیه ای چون چوب نیم سوخته, زغال سنگ و پوست نارگیل که زغالی شده اند به کار می رود. فعال سازی در بازه دمایی 800 – 1100 درجه سانتیگراد و در حضور بخار انجام می شود.
در آغاز مواد زغالی با بخار به گاز تبدیل می شوند که به واکنش water-gaz معروف است:

(C + H2o → CO + H2 – 175.440 KJ/(KgMol

این واکنش گرماگیر است و گرمای مورد نیاز توسط سوختن ناقص CO و H2 بصورت زیر تامین می شود:

(2CO + O2 → 2CO2 + 393.790 KJ/(KgMol
(2H2 + O2 → 2H2O + 396.650 KJ/(KgMol

در ضمن هوا به مقدار مورد نیاز وارد واکنش می شود تا زغال نسوزد.
زغال های فعال شده ی تولید شده توسط این روش معمولا دارای منافذ ریزند و برای جذب مواد از مایعات و گازها مناسبند.

ویژگی های جذبی و فیزیکی
گونه های مختلفی از زغال های فعال شده با ویژگی های مشخص وجود دارند که خصوصیات هر یک از آنها بستگی به مواد اولیه و فنون به کا ر رفته در تولید آنها بستگی دارد. در انتخاب یک گونه زغال فعال شده, برای بهبود بخشیدن به فرایندها, نیاز به شناخت دقیق ویژگی های فیزیکی و جذبی مواد داریم.

ویژگی های جذبی:
(1 سطح: با استفاده از N2 حدود منافذ سطحی زغال فعال شده را اندازه می گیرند.هر چه سطح زغال فعال شده بیشنر باشد, قسمتهای جاذب نیز بیشترند.
2) اندازه منافذ: تعیین اندازه های یک زغال فعال شده میتواند راهی مناسب برای تشخیص خصوصیات آن باشد.که در IUPAC منافذ بر اساس اندازه به صورت زیر دسته بندی شده اند:
Micropores r<1nm
Mesopores r 1-25nm
Micropores r>25
که mesopore ها برای جا به جایی و Micropore ها برای جذب مواد هستند.
3) تخلخل: یکی از راههای اندازه گیری میزان تخلخل در توده ای از زغال فعال شده , استفاده از میزان جذب CCl4 خالص در حالت گازی می باشد.

- ویژگیهای فیزیکی:
1) سختی و مقاومت در برابر حرارت و فشار : زغال های فعال شده دارای سختی های متفاوتی هستند که مربوز به مواد اولیه و شیوه تهیه آنها می باشد. بنا به درجه سختی, هر یک از آنها کاربردهای متفاوتی دارند.
2) چگالی
3) اندازه ذرات: هر چقدرکه اندازه ذرات زغال فعال شده کوچکتر باشد, سرعت جذب بیشتر است.
***زغال فعال شده را به سه شکل دانه ای , پودر و استوانه ای میسازند.***

زغال فعال شده چگونه کار می کند؟
زغال فعال شده مواد اورگانیک را از محیط اطرافش جذب می کند , که عمل انتقال آلاینده از فاز مایع ( آب) به فاز جامد ( کربن) صورت می گیرد.نیروی جاذبه ای باعث تشکیل یک پیوند بین آلاینده و کربن و چسبیدن آنها به هم می شود.
علاوه بر این باکتری هایی به سطح خارجی زغال فعال شده می چسبند و بخشی از آلاینده ها را جذب و مصرف می کنند.
جذب منجر به پخش یک گاز یا ترکیب در شبکه متخلخل زغال فعال شده می گردد , جایی که یک واکنش شیمیایی یا یک ثبات فیزیکی روی می دهد. به عنوان مثال ازن O3
در قسمتی که جذب می شود , قسمتی از زغال فعال شده را اکسید میکند, و 3O به O2 تبدیل می شود و ازن در ساختار کربن اندوخته و گردآوری نمی شود.
جذب در زغال فعال شده دارای 3 مرحله است:
1- تماس ذرات آلاینده محلول در مایع ( آب) با ذرات زغال فعال شده
2- پخش شدن ذرات آلاینده در شبکه متخلخل زغال فعال شده
3- جذب ذرات آلاینده به زغال فعال شده و بوجود آمدن یک پبوند برگشت ناپذیر
***این 3 مرحله همزمان رخ می دهند***

بازیافت زغال فعال شده
به مرور زمان و استفاده از زغال فعال شده , سطح آن از مواد آلاینده اشباع می شود. زغال فعال شده یک محصول گران است و در عین حال میتواند در چرخه بازیافت قرار گیرد و مجددا مورد استفاده قرار گیرد. بازیافت زغال فعال شده , هزینه کمی نسبت به تولید اولیه دارد و دارای قیمت ارزانتری نیز می باشد.

officer
25-07-2010, 14:28
کاربرد پلی یورتانها، پلی اوره ها و پراکنش های پلی یورتانی و سایر ترکیباتی شرکت کننده در واکنشهای آنها پیوسته در حال گسترش است و در این باب مقالات و گزارش های متعدی منتشر می شود. زمینه های کاربردی این ترکیبات نیز به طور پیوسته رو به توسعه است.

این مقاله نگاهی گذرا به فناوری های گذشته و فنون جدید داشته و در ارتباط با چگونگی ساخت ترکیبات پلی یورتان نیز مواردی ارائه می شود.آمیختن پلی یورتانها با پلی اوره امری متداول است و روندی رو به رشد دارد. به منظور بهبودی و اصلاح سامانه های پلی یورتانی و ارتقای خواص آنها به خواص آنها به چند فرایند شیمیایی نو اشاره می شود. همچنین، سامانه های واکنش دهنده تند و کند همراه با موارد کاربرد آنها برای پوششهای ویژه ساختارهای فولادی، کفپوشها و سایر سطوح کار بررسی می شود.

مقدمه
پلی یورتانها دسته ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی بخوبی توان بهره بردای از این ترکیبات را در کاربردهای گوناگون دارند مثالهای متعددی برای کاربردهای فراوان این ترکیبات وجود دارد، از جمله پوششهای شفاف برای پوشش دهنده های تک لایه مخصوص بامها و رنگهای مشخص کردن محل گذر عابرین پیاده و غیره....

مقاومت پلی یورتانها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی های آنها پخت سریع و کامل در دمای محیط است. پلی یورتانها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه های اپوکسی دار در استری ها، رنگهای پایه و پوششهای رابط بکار می روند. در حالی که آلیفاتیک ها ویژه پوشش نهایی هستند. استفاده از پوشش های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آنها از نوع سامان های اپوکسی دار است، نمونه ای از کاربردهای مهم پلی یورتانها محسوب می شوند. مورد دیگر، سامانه های پوشش دهنده کف است که در آنها نیز انواع پوششهای پایه را می توان بکار برد، گاهی پوشش نهائی از نوع یورتان برای لایه نهایی کف نیز کفایت می کند.

کاربرد پلی یورتانها و پلی اوره ها در کفپوشها
انواع فناوری کاربرد پوشش های کف همگی بر دو اصل استوارند. یکی از آنها فناوری فیلم نازک است که یک یا چند پوشش با ضخامت حدود 50 تا 125 میکرون روی سطح کف پوشش داده می شود. درزگیری و غبارزدایی نیز از جمله مراحل مهم در این روش محسوب می شوند که هدف نهایی آنها رسیدن به کفپوشهایی با طرح های زیر و مزین است. رزین های مورد مصرف در پوششهای کف عبارتند از: آلکیدها، اپوکسی ها یا اپوکسی استری بر پایه آب و حلال، مخلوط های معلق، آمیخته های پلی یورتانی بر پایه آب و انواع پلیمرهای آکریلیکی، بهترین حالت برای این نوع کفپوشها آن است که اثر مواد شیمیایی یا آب روی سطح کفپوش براحتی برطرف شود و لکه ای بر جای نماند. پوشش های آلکیدی در مقابل سودسوز آور بسیار ضعیف عمل می کنند.نوع دیگر پوشش دهی فناوری فیلم ضخیم است که در آن حداقل ضخامت پوشش 200 میکرون و حداکثر آن گاهی به ده میلی متر هم می رسد. هدف از این نوع پوشش دهی پر کردن ترکها، حفره ها و تسطیح سطوح شدیداً سایید شده است پوششهای ضخیم هستند. سیمان و مصالح سنگی موردنظر با انواع رزینها مخلوط می شوند اپوکسی ها، پلی یورتانهای آروماتیک (غالباً روغن کوچک و MDIدی فنیل متان 4_ ،4_ دی ایزوسیانات لاتکس SBR و اکریلیکی پر مصرف ترین رزینها هستند. روش کار به شکل پاشش یا ریختن پوشش روی سطح و بدنبال آن ماله کشی دستی یا اعمال به وسیله غلتک است. در برخی از موارد در کفپوش های ضخیم از استرهای غیر اشباع، وینیل استرها و اپوکسی های با میزان صد در صد جامد استفاده می شود.پلی یورتانهای آروماتیک بر پایه MDI برای پوشش دهی کف زیاد بکار می روند، چرا که MDI ایزوسیاناتی نسبتاً ارزان است. جالب است که بدانید مولکول MDI و پلیمر سنتز شده از آن به راحتی پرتو فرابنفش را جذب می کنند، زرد شدن پوشش هایی که در معرض نور خورشید واقع شده اند به همین دلیل همین مسئله است.

پوششهای پلی اوره
در چند سال اخیر فناوری پوششهای پلی اوره گسترش و کاربرد یافته است. از مزایای اصلی این نوع پوششها سخت شدن بسیار سریع آنهاست که نتیجه آن، دسترسی به یک فناوری پرشتاب است....


در سامانه های پلی اوره بر پایه هگزامتیلن دی ایزوسیانات (TMXDI) پوشش پاشیده شده روی بلوک یخ در عرض 20 ثانیه سخت می شوند، ساختار TXMDI در شکل 1 آمده است. پوششهای پلی اوره در پوشش دهی خطوط لوله های انتقال نفت کاربرد دارند و مقدار جریان کاتدی مورد نیاز در حفاظت کاتدی را کم می کنند. در بسیاری از موارد سامانه های پلی اوره همانند پلی یورتانهای دو جزئی هستند. سامانه پوششی در پلی یورتانهای متداول از یک بخش A متشکل از پلی اوره و در صورت نیاز رنگدانه و یک بخش B که غالباً سخت کننده است، تشکیل می شود. همان طور که پیشتر هم گفته شد، سرعت واکنش تشکیل پلی اوره بی نهایت زیاد است، طوری که تجهیزات پاشش ویژه ای مورد نیاز است. زمانی بود که بخش ایزوسیاناتی را مونومر MDI تشکیل می داد. این نوع سامانه های پلی اوره ارزان بوده و خواص خوبی دارند. البته بعدها در اوایل دهه 90 در انگلستان و ایالات متحده سامانه های آلیفاتیک وارد بازار شدند. در این سامانه ها پایداری نوری به مراتب بهتر شده و هر گاه که ایزوسیانات مصرفی TXMDI باشد، سرعت واکنش کمتر می شود. با این حال هنوز هم سرعت واکنش تشکیل پلی اوره چن زیاد است که برای پژوهشگران در آزمایشگاه مشکل ایجاد می کند. زمانی که پلی اوره به طور دستی تهیه می شود، سامانه پس از چند ثانیه غیر قابل استفاده شده و قالبگیری و تهیه فیلم از آن امکانپذیر نخواهد بود. با این حال تهیه نمونه ها به روش پاشش امکانپذیر است، ولی هنگامی که نمونه ها در سردخانه خیلی سرد شوند جابجایی مواد بسیار مشکل است.

روش ساخت
رنگدانه را به مقداری از آمین و افزودنی ها اضافه می کنند تا مخلوط مناسب برای غلتک کاری بدست آید. زمانی که مخلوط به حالتی رسید که براحتی خرد شود، باقیمانده آمین را نیز بدان می افزایند. در صورت وجود رنگدانه های آلی لازم است بجای توزیع کننده های سریع از آسیاب غلتکی افقی استفاده شود. همچنین، دمای مخلوط باید به C 350 برسد.در مرحله بعد در جو نیتروژن، ایزوسیانات به آهستگی در مدت زمان 30 دقیقه به مخلوط آمین اضافه و به حد کافی هم زده می شود.باید اجازه داد که دمای واکنش گرمازا به C350 برسد و سپس محصول برداشته شود. ویکس و همکارانش سرعت سامانه های پلی اوره را تا حدی کند کردند به طوری که امکان استفاده از سامانه های پلی یورتانی در تجهیزات پوشش دهی به طور مستقیم و بدون تغییر به وجود آمد. گرانروی آمین های دارای گروههای جانبی بیشتر از آمین های ساده است و این د ر حالی است که وزن مولکولی آنها نیز بیشتر است. یک راه برای کم کردن گرانروی و بهتر کردن خواص، استفاده از اکسازولیدین با گرانروی کم است. یکی از معایب این سامانه نیاز آن به اجزای با گروه های عاملی ایزوسیانات است. صنعت رنگ هنوز راه زیادی در پیش رو دارد تا به فناوری عاری از ایزوسیانات ها دست یابد.

سامانه های آمیخته
یکی از راه های بکارگیری اکسازولیدین و پلی اوره، ترکیب کردن دو سامانه با هم است. لازم است که موازنه شیمیایی انجام گیرد که البته سامانه های با حجم یک به یک چنین اند. در برخی از موارد، وجود عامل رطوبت زا برای عمل سخت شدن ضرورت دارد.

کفپوش های با سامانه های بر پایه آب
هنگامی که سطح زیادی با سامانه های رنگی بر پایه حلال رنگ می شود مقادیر قابل توجهی از ترکیبات آلی فرار وارد می شود. کاربرد روز افزون پوششها بازار بزرگی برای سامانه های عاری از حلال یا سامانه های بر پایه آب به وجود آورده است. رنگهای پلی یورتانی آمیخته های آنها ورزین های آکریلیکی سهم زیادی از بازار اروپا را به خود اختصاص داده اند. پلیمرهای اکریلیکی امولسیونی یا همان لاتکس ها نسبتاً ارزان تر هستند.امولسیون های آکریلیکی نیز تقریباً برای چند سال جزو کالاهای مقرون به صرفه محسوب می شدند. آنها کاربرد زیادی در پوششهای تزئینی دارند، بخصوص در کفپوشهای از جنس پلی یورتان و در مقابل سایش نسبت به نوع آکریلیکی بسیار مقاوم تراند، ولی این ترکیبات گران بوده و تلاش می شود تا فرمول های جدید ارزان از آنها تهیه شود.

رزین های پراکنشی پلی یورتانی (PUD)
روش مرسوم در ساخت رزین های پراکنشی پلی یورتانی بر پایه آب، تهیه پیش پلیمری با گروه پایانی ایزوسیانات است که پلی ال اصلاح کننده در ساختار زنجیر، گروه عاملی کربوکسیلیک اسید را به وجود می آورد و در مرحله بعد این ماده با آمین نوع سوم در آب پخش می شود تا مراکز یونی به وجود آورد. به این ترتیب ذرات پلیمر پایدار می گردند. با حضور یک پلی آمین موجب می شود طول زنجیر اجزای تشکیل دهنده زیادتر شود.
در برخی مخلوط ها نسبت مولی گروههای NCO به OH دقیقاً 2 به 1 است. در نسبت مولی حدود 1 به 1، گرانروی بسیار زیاد می شود و تهیه رزین های پراکنشی پلی یورتانی با مشکل روبرو می شود. در ضمن خطر ژله ای شدن نابهنگام هم وجود دارد. ولی اگر این نسبت کمتر از 5/1 به 1 باشد امکان بروز چنین خطری کمتر میشود. برای پایین آوردن سریع دما در حین تهیه مخلوط های پلی یورتانی از یخ استفاده می شود. در نتیجه سرعت واکنش بین آب و گروه ایزوسیانات کم می گردد. بهترین حالت آن است که پیش پلیمر با گروه پایانی NCO با افزاینده زنجیر آمینی واکنش دهد. با این حال پراکنده کردن پیش پلیمر در آب، به ویژه در یک واحد صنعتی نیازمند زمان مشخصی است. در هر صورت واکنشهای جانبی نامطلوب بین آب و ایزوسیانات رخ می دهد. با سرد کردن مخلوط خنثی تا زیر دمای 0C5 واکنش های جانبی به حداقل میزان خود می رسند.

اصلاح کننده های چسبندگی
راه های زیادی برای اصلاح خواص و کارایی رزین های پراکنشی پلی یورتانی وجود دارد. یکی از روش های اصلاح به فناوری اختلاف مرسوم است. رزین های پراکنشی پلی یورتانی در حضور سایر پلیمرها تهیه می شوند. یا به عبارت دیگر با آنها مخلوط می شوند و قبل از پراکنده شدن پلی یورتان پیش پلیمر تازه که برای تهیه رزین پراکنشی پلی یورتانی بکار می رود باید اصلاح شود. با وارد کردن نوعی اصلاح کننده اپوکسی دار به درون ساختار پیش پلیمر می توان استحکام چسبندگی رزین های پراکنشی پلی یورتانی را زیاد کرد. برای مثال، پروپیلن اکسید بر پایه دی گلیسیدیل اتر با وزن مولکولی بیش از 700 با دی اتانول آمین به نسبت مولی یک به یک در دمای C60 واکنش می دهد و ترکیبی با گروه پایانی اپوکسی و سه گروه OH به وجود می آید. با NMP بعنوان حلال کمکی می توان گرانروی را کنترل کرد.پیش از افزودن ایزوسیانات ترکیب حد واسط را به مخلوط پلی ال و DMPA اضافه می کنند. گروه انتهایی اپوکسی با گروه های ایزوسیانات یا افزاینده زنجیر پلی آمین واکنش نمی دهد، چرا که واکنش با ایزوسیانات و آمین به ویژه زمانی که دما پایین باشد، بسیار کند است. می توان از رزین های پراکنشی پلی یورتانی اصلاح شده برای پوشش دادن انواع پلاستیکهای مصرفی در صنایع خودرو سازی استفاده کرد یا آنکه این مخلوط ها را در ترکیب یک آئروسل بر پایه آب بکار برد. در این حالت به ماده ای مانند دی متیل اتر نیاز است. یکی از روش های کاهش قیمت، اختلاط رزین های پراکنشی پلی یورتانی با پلیمرهای آکریلیک است.مدت مدیدی است که در اروپا از پوششهای رنگدانه دار بر پایه آب حاوی مخلوط 50:50 از مخلوط معلق پلی یورتانی و رزین های امولسیونی آکریلیکی در تهیه کفپوشها استفاده می شود. این پوششها در حالت خشک سطح نیمه براق سفید رنگی را ایجاد می کنند که برای پوشش کف های بتنی و یا تزئین کفپوش های چوبی به ویژه در مواردی که مقاومت در برابر الکل یا آب حائز اهمیت است، بسیار مناسب تشخیص داده اند. یکی از مزایای بسیار مهم مخلوط معلق پلی یورتانی بر پایه آب کامل شدن واکنش ها در این مدت سامانه هاست، به طوریکه در پایان واکنش هیچ ایزوسیانات آزادی بر جای نمی ماند. در دراز مدت با حرکت صنعت پوشش دهی به سوی سامان های عاری از ایزوسیانات این مورد یک مزیت جدی تلقی می گردد.

سامانه های بر پایه سیمان
تعدادی از شرکت های اخیر در کف پوش های مورد استفاده خود، سیمان های اصلاح شده پلی یورتانی را بکار برده اند. از جمله خواص مهم در این ترکیب می توان به کم بودن گاز دی اکسید کربن به وجود آمده مسطح شدن خوب و زمان کاری حدود 30 دقیقه آن اشاره کرد. هر سه جزء سازنده روی خواص پوشش کف بر پایه سیمان اصلاح شده با پلی یورتان اثر می گذارند. در این نوع سامانه های پلی یورتانی از واکنش اجزای سازنده با آب، اوره و گاز دی اکسید کربن به وجود می آید که علت آن وجود MDI در فرمول است. MDI با گروههای هیدروکسی در روغن کرچک که نوعی تری گلیسیرید اسید الکل چرب است، واکنش می دهد مخلوط سیمان – پلی یورتان پوشش سختی به وجود می آورد که می توان انواع پوششهای به حالت مایع را برای تزئین روی آن بکار برد. آهک موجود در ترکیب آب جذب می کند و سرعت سخت شدن سیمان به این روش کنترل می شود. در ضمن آهک مقداری از دی اکسید کربن حاصل از واکنش MDI و آب را نیز جذب خود می کند. واکنش های آهک با دی اکسید کربن و آب به شکل زیر است:


CaO+CaCO3 ----------> CaCO3

Ca(OH)+ CO2 ---------> CaCO3+H2O

در فناوری نوین بخشی از سامانه رنگزای پوشش را ملات تشکیل می دهد. ملات مخلوطی از رزین های ویژه و جزء رنگز است که از سیمان و الیاف تشکیل می شود. الیاف انعطاف پذیری لازم را به پوشش داده و رشد ترک را کنترل می کند، ضمن آنکه استحکام کششی را بهبود می بخشد. استحکام کششی ترکیبات سیمانی مانند اکثر مواد سرامیکی کم، ولی استحکام فشاری آنها زیاد است. با افزودن الیاف با برخی از پلیمرها می توان ویژگی های رشد ترک را در پوشش کنترل کرد. وقتی سیمان با آب ترکیب می شود. یونهای OH به تعداد فراوان تشکیل شده و PH شدیداً بالا می رود. اگر از این نوع پوششها برای پوشش دهی سطوح فولادی استفاده شود، محیط قلیایی حاصل فولاد را در برابر خوردگی محافظت می کند. درست مانند آنچه که در بتن های مسطح با میلگردهای فولادی به وقوع می پیوندد. این نوع پوششها را می شود روی سطوح عمودی مانند لوله های انتقال نفت به راحتی مورد استفاده قرارداد. حاصل کار، سامانه های ارزان قیمت مقاوم در برابر خوردگی است که بسیار انعطاف پذیر، محکم وبا دوام نیز هستند.

نتیجه گیری
استفاده از پلی یورتانها، پلی اوره ها و رزین های پراکنشی پلی یورتانی و مواد شرکت کننده در واکنش های آنها به طور پیوسته در حال رشد و توسعه است. این مواد بیشترین کاربرد را در پوشش دهی سطوح گوناگونی دارند. مسائل زیست محیطی و مقررات جدید، فناوری نوین ساخت پوشش را به سوی سامان های بدون حلال، پر جامد و سامانه های بر پایه آب هدایت می کنند. در آینده سامانه های پوشش دهی عاری از ایزوسیانات کاربری بیشتری پیدا خواهند کرد. البته کیه این موارد به هوش، ذکاوت و تلاش محققان و طراحان انواع پلیمرها و رزین های صنعتی بستگی دارد.طرح های نوین جالبی نیز برای سامانه های سیمانی اصلاح شده با پلیمرها به منظور حفاظت کف و سطوح فولادی وجود دارد. با ورود سامانه های جدید به بازار قدیمی ها از رده خارج می شوند و برای سامانه های جدید آینده ای روشن در پیش است.

officer
25-07-2010, 14:38
مقدمه
آمینها ، دسته وسیعی از مواد آلی نیتروژندار را تشکیل می‌دهند که در آنها ، اتم نیتروژن به یک یا دو یا سه گروه آلکیل و یا آریل متصل می‌باشد. آمینها بسته به تعداد گروههای موجود ، بعنوان نوع اول ، دوم و سوم تقسیم‌بندی می‌شوند. در این بخش ، آمینهای آلیفاتیک مورد مطالعه و بررسی قرار می‌گیرند.


اسید آمینه گلیسین و گروه امینی

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


نامگذاری آمینها
برای نامگذاری آمینها ، روشهای متعددی مورد استفاده قرار می‌گیرند. ساده‌ترین و مرسوم‌ترین آنها ، روش استفاده از کلمه آلکیل آمین یا آریل آمین می‌باشد. مانند:


PhCH2) 2NH) : دی بنزیل آمین
CH3-NH2: متیل آمین C6H11-NH2 : سیکلو هگزیل آمین

برای نامگذاری آمینهای نوع اول ، از آمینو آلکان نیز استفاده می‌شود، مانند:

C5H9NH2: آمینو سیکلو پنتان
C2H5-NH2: آمینو اتان

برخی از آمینهای حلقه‌ای نام خاصی دارند و معمولا از این اسامی برای معرفی آنها استفاده می شود. آمینهای حلقه‌ای با نام azacycloalkane نیز مشخص می‌شوند.

خواص آمینهای آلیفاتیک
تعدادی از آمینهای آلیفاتیک مانند 1 ,4- دی‌آمینو بوتان (Putrescine) و 1 ,5- دی‌آمینو پنتان (Codaverine) سمّی هستند و از فاسد شدن گوشت و ماهی ایجاد می‌شوند. برخی دیگر مانند 2- متیل آزیریدین ، سرطانزا تشخیص داده شده‌اند.
با وجود این ، بسیاری از آمینها و مشتقات آنها ، دارای اثرات زیستی می‌باشند. از آن جمله پیپرازین (ضد انگل) ، هیستامین (تنگ کننده رگها) و نواکائین (بیهوش کننده) را می‌توان نام برد.
خواص فیزیکی و خصلت اسیدی و بازی آمینهای آلیفاتیک
آمینهای نوع اول ، دوم و سوم می‌توانند بعنوان دهنده و یا پذیرنده پیوند هیدروژنی عمل نمایند. ولی پیوند هیدروژنی آنها ضعیفتر از الکلها و آب می‌باشد و به همین علت ، آمینها نقطه ذوب و جوش پایینتری نسبت به الکلهای هم‌کربن دارند. مثلا نقطه جوش متیل آمین ، 6- درجه و متانول ، 64 درجه سانتی‌گراد می‌باشد. آمینهای کوچک با هر نسبتی در آب حل می‌شوند.

آمینها در مقایسه با الکل ، اسیدهای ضعیفتری می‌باشند، ولی با وجود این می‌توان به کمک بازهای قوی عمل پروتون‌گیری از آمینها انجام داد. خاصیت بازی آمینها قابل ملاحظه می‌باشد و قدرت بازی آنها بوسیله استخلاف کنترل می‌شوند. لازم به یادآوری است که آلکیل آمینها درمقایسه با آریل آمینها قدرت بازی بیشتری از خود نشان می‌دهند.


ساختمان یک نوع آمین

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


روشهای تهیه آمینهای آلیفاتیک
از واکنش آمونیاک یا آمینهای نوع اول و دوم با هالیدهای آلکیل ، می‌توان آمینها را تهیه نمود. از فعل و انفعال آمونیاک با هالیدهای آلکیل ، ابتدا منوآلکیل آمین تولید می‌شود. برای جلوگیری از ادامه واکنش ، لازم است که غلظت هالید آلکیل کم انتخاب شود. معمولا نوع محصول واکنش به مدت زمان انجان واکنش ، طبیعت ، غلظت هالید آلکیل ، نوع هالوژن و نوع کربنی که هالوژن روی آن قرار گرفته است، بستگی دارد. با کلریدها ، واکنش قابل کنترل‌تر می‌باشد و در صورت استفاده از یدید آلکیل ، آمونیوم چهارتایی تشکیل می‌شود. اگر غلظت CH3I کم باشد، می‌توان آمینهای نوع دوم یا سوم را سنتز نمود.

می‌توان با انجام واکنش آمیدور سدیم با یدیدهای آلکیل نوع اول در دمای پایین ، آمین نوع اول را بدست آورد. هالیدهای آلکیل نوع دوم و سوم به واکنش حذفی منجر می‌شوند و لذا برای تهیه آمین مربوطه مناسب نمی‌باشند.

واکنشهای شیمیایی آمینهای آلیفاتیک
آمونیاک و آمینهای آلیفاتیک در نقش بازهای قوی ، هسته خواه قوی و همچنین بعنوان اسید ضعیف در واکنشهای گوناگون شرکت می‌کنند. ساده‌ترین واکنش آمینها ، پروتون‌دار شدن آنهاست که به نمک مربوطه منجر می‌شود. به همین علت ، معمولا از آمینها جهت جذب اسیدهای آزاد شده در فعل و انفعالات شیمیایی استفاده می‌شود.

officer
25-07-2010, 14:46
اسیدهای کربوکسیلیک ، ترکیباتی هستند که دارای عامل -–COOH می‌باشند. ممکن است به هیدروژن ، آلکیل ، آریل ، گروههای اشباع شده ، اشباع نشده استخلاف‌دار یا بدون استخلاف وصل شده باشد.

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

نام‌گذاری اسیدهای کربوکسیلیک
اسیدهای کربوکسیلی زنجیری از دیرباز شناخته شده‌اند و لذا نام معمولی دارند. نام آنها از ماده یا منبعی که بدست آمده‌اند، گرفته شده است. در نامگذاری معمولی جهت مشخص کردن محل استخلافها از α و β و γ و ... نیز استفاده شده است. در این روش ، اولین کربن متصل به عامل اسیدی α و دومی β و... می‌باشد.


CH3COOH: استیک اسید
HCOOH: فرمیک اسید
PhCOOH: بنزوئیک اسید

نام‌گذاری رسمی
در نامگذاری رسمی ، ابتدا طولانی‌ترین زنجیری را که عامل اسیدی روی آن قرار گرفته ، مشخص نموده و شمارش از طرف عامل اسیدی انجام می‌گیرد. پس از مشخص کردن استخلافهای و محل آنها ، نام زنجیر اصلی را قید و سپس به آخر آن ، پسوند اوئیک (oic) اضافه می‌گردد. اگر زنجیر دارای پیوند دوگانه باشد، ذکر نوع ایزومر هندسی نیز لازم است.
خواص فیزیکی اسیدهای کربوکسیلیک
اسیدهای کربوکسیلیک ، مولکولهای قطبی می‌باشند و می‌توانند مثل الکل‌ها و آمین‌ها ، پیوند هیدروژنی ایجاد نمایند. نقطه جوش اسیدهای کربوکسیلیک حتی از الکلهای هم‌کربن نیز بالاتر است. بعنوان مثال ، نقطه جوش بوتانل و اسید بوتیریک به ترتیب 177,7 درجه سانتی‌گراد و 162درجه سانتی‌گراد می‌باشد. بالا بودن نقطه جوش اسید به پیوند هیدروژنی قوی و تشکیل دی‌مر اسید نسبت داده می‌شود. بالا بودن نقطه ذوب همه اسیدها در نقایسه با الکل‌ها نیز بدین گونه توجیه می‌شود.

اسیدهای یک تا چهار کربنه در آب بخوبی محلوند. اسید پنج کربنه (اسید والریک) نیز تا حدودی در آب حل می‌شود، ولی اسیدهای سنگینتر کم‌محلولند. بدون شک ، محلول بودن اسیدهای کربوکسیلیک کوچک در آب ، بعلت تشکیل پیوند هیدروژنی بین گروه کربوکسیلی و مولکوهای آبکی باشد.

با وجود این ، اسیدهای کربوکسیلیک در حلالهای غیرقطبی مثل اتر ، بنزن و در حلالهای با قطبیت کمتر مانند الکل نیز حل می‌شوند. در طیف سنجی مادون قرمز گروه کربونیل اسیدهای کربوکسیلیک در 1700-1725cm-1 جذب می‌دهند و جذب مربوط به پیوند هیدروژنی در 2500-3500cm-1 ظاهر می‌گردد.
خاصیت اسیدی اسیدهای کربوکسیلیک
اگرچه اسیدهای کربوکسیلیک در مقایسه با اسیدهای معدنی مثل اسید سولفوریک و اسید کلریدریک و اسید نیتریک بسیار ضعیف می‌باشند، ولی در هر صورت ، در مقایسه با الکل‌ها ، آب ، آمونیاک و استیلن‌ها از اسیدیته قوی‌تری برخوردارند.

اسیدیته اسیدهای آلی به ساختمان اسید و طبیعت عوامل و گروههای موجود در روی آلکیل یا آریل بستگی دارد. مثلا تری‌کلرو استیک اسید حدود 103*15 بار قوی‌تر از استیک اسید می‌باشد. این اسیدیته زیاد و قابل ملاحظه به خاصیت الکترون‌گیری هالوژن ، مربوط می‌باشد. بطور کلی ، گروههای گیرنده الکترون ، قدرت اسیدی را افزایش می‌دهند و برعکس گروههای دهنده ، موجب تضعیف اسیدیته می‌گردند.



روشهای صنعتی تهیه اسیدهای کربوکسیلیک

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


در بین اسیدهای کربوکسیلیک ، از اسید استیک زیاد استفاده می‌شود و این ماده به روش صنعتی و از اکسید شدن آلدئید استیک یا هیدروکربنها و یا از واکنش متانل با منوکسید کربن در حضور کاتالیزور (رودیم- ید) بدست می‌آید. بخش عمده اسید استیک که بعنوان سرکه (محلول رقیق اسید استیک در آب) مصرف می‌شود، از اکسید شدن اتانول بوسیله آنزیم‌ها در شرایط هوازی (در حضور اکسیژن) تهیه می‌شود.

یکی از منابع مهم تهیه اسیدهای کربوکسیلیک ، منابع گیاهی و حیوانی می‌باشد. از استرهای بدست آمده از منابع ذکر شده ، اسیدهای 6 تا 18 کربنی و با درجه خلوص بالا بدست می‌آید. برای تهیه اسیدهای آروماتیک مانند اسید بنزوئیک و یا اسید فتالیک در مقیاس صنعتی ، از روش اکسید شدن استفاده می‌شود.

در این روش ، تولوئن و گزیلن تولید شده از واکنشهای Reforming بوسیله اکسید کننده‌های مناسب اکسید می‌شود. اکسید کردن آلکیل بنزن ، مشکل‌تر از اکسید کردن اولفین‌ها می‌باشد و لذا فرایند اکسید کردن با استفاده از حرارت انجام داده می‌شود. آلکیل بنزن‌ها از طریق هالوژن دار شدن و هیدرولیز هم به اسید مربوط تبدیل می‌شوند.

officer
25-07-2010, 15:04
پلی اتیلن یكی از ساده ترین و ارزان ترین پلیمرها و پر مصرف ترین ماده پلاستیكی در جهان است. این ماده از پلیمریزاسیون اتیلن به دست می آید و به طور خلاصه به صورت PE نشان داده می شود. نام آیوپاك مونومر آن، برخلاف آنچه كه در گذشته اتیلن ذكر شده، اتن می باشد. بنابراین نام آیوپاك این پلیمر، پلی اتن خواهد بود. البته این نام هرگز توسط شیمیدان ها به كار نمی رود و این پلیمر به نام متداول خود یعنی پلی اتیلن نامیده می شود.

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

مولكول اتیلن دارای یك پیوند دوگانه C=C است. در فرآیند پلیمریزاسیون، پیوند دوگانه هر یك از مونومرها شكسته شده و به جای آن یك پیوند ساده بین اتم های كربن ایجاد و درشت مولكول n حاصل می شود.
پلی اتیلن معمولاً تحت نام های تجاری آلاتون ، هستالن ، مارلكس ، پتروتن ، ترولن ، هیپالن ، لوپولن و آلكاتن به بازارهای دنیا عرضه می شود.

تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار به طور اتفاقی توسط شیمیدان آلمانی هنس وان پكما سنتز شد. او در سال ۱۸۹۸، هنگام حرارت دادن دی آزومتان، تركیب مومی شكل و سفیدی را سنتز كرد كه بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی، توسط اریك فاوست و رینولدگیبسون انجام شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدهید در فشار بالا، ماده ای موم مانند به دست آوردند. علت این واكنش، وجود ناخالصی های اكسیژن دار در دستگاه های مورد استفاده بود كه به عنوان ماده آغازگر پلیمریزاسیون عمل كرده بود. در سال ۱۹۳۵، مایكل پرین این روش را توسعه داد و تحت فشار بالا، پلی اتیلن را سنتز كرد كه برای تولید صنعتی پلی اتیلن، به عنوان روش اساسی در سال ۱۹۳۹ اتخاذ شد. از آن زمان به بعد با از میان برداشتن موانع، پیشرفت های زیادی در زمینه سیستم های پلیمری و ساخت پلیمر صورت گرفت و همه این ها منجر به این شد كه تولید پلیمرها، امروزه به صورت صنعت عظیمی درآمده است.

روش های تولید پلی اتیلن
چهار روش اصلی برای تولید صنعتی پلی اتیلن وجود دارد و در هر مورد، محصولاتی با خواص متفاوت حاصل می شود.

▪ فرآیند فشار بالا
در فرآیند فشار بالا، از فشارهای atm ۳۰۰۰-۱۰۰۰ و دماهای استفاده می شود. یكی از مكانیسم ها برای انجام این كار، پلیمریزاسیون به صورت رادیكالی است كه برای شروع واكنش می توان از پراكسیدها، تركیبات آزو و مقادیر جزئی اكسیژن استفاده كرد و باید شرایط به دقت كنترل شود تا واكنش فرعی انجام نشود. در صورت انجام واكنش فرعی، هیدروژن، متان و گرافیت تولید می گردد كه اگر به دست آوردن پلیمری با جرم مولكولی زیاد مورد نظر باشد باید آنها را از محیط واكنش خارج كرد. به طور كلی، فرآیندهای فشار بالا، پلی اتیلن های شاخه دار با دانسیته كمتر در محدوده ۳- gr cm ۹۴۵/۰-۹۱۵/۰ ایجاد می كنند كه جرم مولی آنها نیز نسبتاً پایین است[.

▪ فرآیند زیگلر- ناتا
فرآیند زیگلر براساس واكنش های كوردیناسیون به كمك كاتالیزورها شامل هالیدهای تیتان و تركیبات آلی آلومینیوم دار انجام می شود. این واكنش ها توسط زیگلر در سال ۱۹۵۳ در موسسه ماكس پلانك در آلمان كشف و توسط ناتا در ایتالیا در اوایل دهه ۱۹۵۰ توسعه یافتند. كاتالیزور زیگلر- ناتا كمپلكسی تهیه شده از تتراكلراید تیتانیوم و تری اتیل آلومینیوم است. این كاتالیزور در ابتدا به ظرف واكنش وارد شده و پس از آن اتیلن اضافه می شود. واكنش در دماها و فشارهای پایین در غیاب هوا و رطوبت، كه كاتالیزور را تجزیه می كنند انجام می گیرد. پلی اتیلن تولید شده طی این فرآیند، دارای دانسیته متوسط در حدود ۳- grcm۹۴۵/۰ می باشد. با تغییر نسبت اجزای پلیمر یا وارد كردن مقدار كمی هیدروژن به ظرف واكنش، می توان به دامنه ای از جرم های مولی نسبی دست یافت.

▪ فرآیند فیلیپس
این فرآیند، پلی اتیلن با دانسیته زیاد در فشار و دمای نسبتاً پایین به دست می دهد. در فرآیند فیلیپس، از كاتالیزور CrO۳ %۵ در سیلیس/ آلومینا بسیار ریز در فشار atm۳۵-۱۵ و دمای استفاده می شود. دانسیته محصول ۳- grcm۹۶/۰ می باشد.

▪ فرآیند نفت استاندارد (ایندیانا)
در این فرآیند نیز همانند فرآیند فیلیپس كه پلی اتیلن با دانسیته بالا (۳- grcm۹۶/۰) تولید می شود از MnO۳ تثبیت شده روی فلز یا هیدرید كلسیم و سدیم در فشار atm۸۰-۴۰ و دمای استفاده می گردد.

● انواع پلی اتیلن
طبقه بندی پلی اتیلن ها براساس دانسیته آنها صورت می گیرد كه در مقدار دانسیته، اندازه زنجیر پلیمری، نوع و تعداد شاخه های موجود در زنجیر دخالت دارد.

* HDPE (پلی اتیلن با دانسیته بالا)
این پلی اتیلن دارای زنجیر پلیمری بدون شاخه است. بنابراین نیروی بین مولكولی در زنجیرها بالا و استحكام كششی آن بیشتر از بقیه پلی اتیلن ها است. پلی اتیلن خطی معمولاً با وزن مولكولی از ۲۰۰۰۰۰ تا ۵۰۰۰۰۰ تولید می شود اما می تواند حتی سنگین تر هم ساخته شود. شرایط واكنش و نوع كاتالیزور مورد استفاده در تولید HDPE موثر است. پلی اتیلن بدون شاخه معمولاً از روش پلیمریزاسیون با كاتالیزور زیگلر- ناتا حاصل می شود.

ـ LDPE (پلی اتیلن با دانسیته پایین)
این پلی اتیلن دارای زنجیری شاخه دار است یعنی بعضی از كربن ها به جای اتصال به اتم های هیدروژن به زنجیرهای بلندی از پلی اتیلن متصل هستند. بنابراین زنجیرهای LDPE نمی توانند به خوبی با یكدیگر ارتباط برقرار كنند و دارای نیروی بین مولكولی ضعیف و استحكام كششی كمتری هستند. این نوع پلی اتیلن معمولاً با روش پلیمریزاسیون رادیكالی تولید می شود. (پلیمریزاسیون رادیكال آزاد وینیل). البته پلیمریزاسیون زیگلر هم برای تهیه LDPE به كار می رود.


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]
شكل ۱-۱ : مولكول پلی اتیلن با دانسیته بالا یا HDPE



ـ LLDPE (پلی اتیلن خطی با دانسیته پایین)
این پلی اتیلن، یك پلیمر خطی با تعدادی شاخه های كوتاه است و معمولاً از كوپلیمریزاسیون اتیلن با الكن های بلند زنجیر ایجاد می شود .
ـ UHMWPE (پلی اتیلن با وزن مولكولی بسیار بالا)


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]
شكل ۱-۲ : مولكلول پلی اتیلن با دانسیته پایین یا LDPE



این پلیمر با وزن مولكولی ۳ تا ۶ میلیون، با استفاده از پلیمریزاسیون كاتالیزور متالوسن تهیه می شود.
انواع دیگر پلی اتیلن شامل MDPE ، HDXLPE ، XPE ، VLDPE می باشد.

خواص پلی اتیلن
پلی اتیلن، جامدی موم مانند، كه از نظر شیمیایی بی اثر است. در درجه حرارت معمولی در هیچ حلالی حل نمی شود و فقط به وسیله برخی هیدروكربن ها و تتراكلرید كربن متورم می شود. همچنین در مقابل اسیدها و قلیاها مقاومت خوبی دارد اما اسیدنیتریك غلیظ بر آن اثر می گذارد. پلی اتیلن در مجاورت با نور و اكسیژن به مرور فرسوده می شود. محلول و یا سوسپانسیون های پلی اتیلن در تتراكلریدكربن می توانند در درجه حرارت كلردار شوند و یك محلول نرم و الاستیكی را به وجود آورند.
پلی اتیلن از دو ناحیه بلورین و آمورف تشكیل شده است كه سهم بلورینگی در پلی اتیلن های بدون شاخه بیشتر است. دمای انتقال شیشه ای (Tg) بسیار پایین در حدود ، دمای ذوب (Tm) نسبتاً بالا در حدود و انعطاف پذیری، استفاده از آن را در دامنه وسیعی از دما سبب شده است. خواص فیزیكی پلی اتیلن هایی كه در فشار بالا به دست می آیند كاملاً با آنهایی كه در فشار كم به دست می آیند متفاوت است. شاخه دار كردن باعث می شود كه میزان تبلور، چگالی، نقطه نرم شدن و نقطه ذوب ساختمان بلورین كاهش یابد.

برخی دیگر از خصوصیات پلی اتیلن كه سبب می شوند تا این پلیمر دارای كاربردهای بسیاری باشد عبارتند از :

۱) قیمت پایین
۲) خواص الكتریكی مطلوب
۳) مقاومت شیمیایی بالا
۴) شفافیت مناسب در فیلم های نازك
۵) عاری بودن از بوی زننده و سمیت
۶) قابلیت نفوذ بسیار كم آب در هنگام استفاده در بسته بندی و در كاربردهای كشاورزی و ساختمانی.
از معایب این پلیمر می توان به
۱) قابلیت اكسیداسیون
۲) كدر بودن جسم در حالت توده
۳) ظاهر شبیه به پارافین
۴) مقاومت كم در مقابل خراشیدن اشاره كرد.

كاربردهای پلی اتیلن
این ماده اولین بار در سال ۱۹۳۹ به عنوان عایق الكتریكی مورد استفاده قرار گرفت. انواع گوناگون پلی اتیلن، كاربردهای مختلفی از جمله لوله ها، لفاف های بسته بندی، تولید انواع لوازم پلاستیكی مورد استفاده در آشپزخانه، اجزای سازنده كارخانه های مواد شیمیایی، جعبه ها، اسباب بازی ها، جلیقه های ضد گلوله و عایق های الكتریكی دارند.

پلی اتیلن با چگالی زیاد به خاطر استحكام كششی و سختی بیشتری كه دارد در ساخت لوله ها، تولید ظروف شیر و مایعات، انواع لوازم پلاستیكی آشپزخانه و بسیاری وسایل و ظروف به كار می رود.

Ldpe كه سالانه ۶/۳ میلیون تن در ایالات متحده تولید می شود به خاطر انعطاف پذیری و مقاومت زیاد در برابر پارگی و همچنین مقاومت در برابر رطوبت و مواد شیمیایی، دامنه وسیعی از كاربردها را در برگرفته است. حدود ۵۵ درصد از كل پلی اتیلن با چگالی كم، به شكل فیلم و ورقه تولید می شود و عمدتاً برای مصارف بسته بندی و خانگی (كیسه، پوشش غذا، لباسشویی، خشكشویی و زباله) و همچنین مصارف كشاورزی و ساختمانی (گلخانه، لایه های داخل تانك، رطوبت گیر، محافظ) استفاده می گردد. قالب گیری تزریقی اسباب بازی ها و اجناس خانگی ۱۰ تا ۱۵ درصد دیگر از مصرف را شامل می شوند. در حدود ۱۵ درصد یا بیشتر از Ldpe تولیدی در عایق سیم و كابل، برای انتقال نیرو و مخابرات و همچنین به عنوان روكش های مذاب داغ (بر روی كاغذ، ورقه فلزی و دیگر فیلم های پلاستیكی) استفاده می شود. دیگر مصارف Ldpe، شامل بطری ها و ظروف ساخته شده از طریق قالب گیری بادی و لوله های آبیاری در كشاورزی می باشد.

Lldpe به دلیل بالا بودن میزان انعطاف پذیری، در تهیه انواع وسایل پلاستیكی انعطاف پذیر مانند لوله هایی با قابلیت خم شدن كاربرد دارد. Mdpe در تولید لوله های پلاستیكی و اتصالات لوله كشی استفاده می شود. Uhmwpe برای ساختن فیبرهای بسیار قوی كه جایگزین كولار ، برای استفاده در جلیقه های ضد گلوله به كار می رود. ورقه های بزرگ این پلیمر، به جای یخ برای زمین های یخی اسكیت استفاده می شود.

officer
25-07-2010, 15:09
مواد شیمیایی سنتزی ترکیباتی هستند که در طبیعت یافت نمی‌شوند و اغلب توسط شیمیدانان از اجسام ساده‌تر یا فروپاشی موادی با ساختار پیچیده‌تر ، سنتز می‌شوند. اکثر این مواد مصرف تجاری دارند و بخش اعظم آنها ترکیباتی آلی هستند که از نفت بعنوان منبع اولیه کربن در ساختمان این ترکیبات استفاده شده است. از ترکیبات آلی سنتزی که سمی هم هستند در مهار انواع آفتها استفاده می‌شود و سمیت این مواد ، موجب نگرانی از لحاظ سلامتی انسان و سایر موجودات و همچنین آلودگی محیط زیست شده است.



مواد شیمیایی سمی

آفت‌کشها
آفت‌‌کشها ترکیباتی هستند که یک موجود نامطلوب را از بین برده و یا با مداخله در فرایند تکثیر آنها ، جمعیتشان را مهار می‌کنند. خاصیت مشترک تمام آفت‌کش‌های شیمیایی این است که فرایند سوخت و ساز مهم موجوداتی را که این مواد برای آنها سمی است، مسدود می‌کنند. آفت‌کش‌ها بطور گسترده در مهار آفتهای کشاورزی مانند علف‌های هرز و همچنین حشرات مورد استفاده قرار می‌گیرند. آفت‌کش‌های سنتزی از همان اوایل مصرف بعلت تاثیری که در سلامت انسان در اثر مصرف مواد غذایی آغشته با این مواد شیمیایی دارند، موجب نگرانی بوده است.

تاریخچه استفاده از آفت‌کش‌ها
یونانیها حدود 1000 سال پیش از میلاد برای ضد عفونی کردن خانه‌های خود ازحاصل از سوزاندن گوگرد جامد استفاده می‌کردند. این عمل تا قرن نوزدهم با وارد کردن این عنصر در شمع مورد استفاده قرار می‌گرفت. استفاده از آرسنیک و ترکیبات آن برابر مهار حشرات حداقل به سال 900 میلادی بر می‌گردد و از اواخر قرن نوزدهم تا جنگ جهانی دوم کاملا گسترش یافت.

سبز پاریس که نمک مس با یون آرسنیک است، حشره‌کش معروفی است که در سال 1867 معرفی شد. ترکیبات آرسنیک در دهه‌های 1930 تا 1950 بطور گسترده مورد استفاده قرار می‌گرفت تا اینکه در سالهای 1940 تا 1950 صنایع شیمیایی آمریکا مقادیر زیادی از آفت‌کش‌های جدید بویژه حشره‌کش‌ها را که ترکیبات آلی کلردار بودند، تولید کردند.

انواع آفت‌کش‌ها
آفت‌کش‌ها انواع مختلفی دارند، اما پرکاربردترین آنها عبارتند از:

حشره‌کش‌ها
حشره‌کش‌ها هزاران سال است که توسط مردم استفاده می‌شوند. انگیزه اصلی برای استفاده از آنها ، مهار امراضی است که حشرات ، ناقل آن هستند. مالاریا ، تب زرد و ... نمونه‌هایی از این امراض هستند. عامل دیگر استفاده از حشره‌کش‌ها این است که حشرات به محصولات غذایی آسیب می‌رسانند.

از مهمترین حشره‌کش‌ها می‌توان ترکیبات آلی کلردار مانند ددت را نام برد که در گذشته بصورت گسترده مورد استفاده قرار می‌گرفت. توکسافنها و سیکلوپنتادی‌انهای کلردار شده مانند هپتا کلروآلدرین جزء مواد آلی حشره‌کش‌ها محسوب می‌شوند. امروزه از حشره‌کش‌های آلی فسفات‌دار که مدت زیادی در محیط زیست انبار نمی‌شوند، استفاده می‌شود.

علف‌کش‌ها
این مواد اغلب برای از بین بردن علفهای هرز بدون آسیب رساندن به محصولات اصلی بکار می‌رود. در اوایل قرن بیستم از نمکهای معدنی مثل (سدیم کلرات) بعنوان افشانه‌های علف‌کش استفاده می‌کردند. بعدها ترکیبات آلی آرسنیک‌دار جای آنها را گرفتند. ولی امروزه علف‌کش‌های معدنی و آلی فلزی بدلیل دوام آنها در خاک از دور خارج شده‌اند و ترکیبات کاملا آلی جای آنها را گرفته‌اند که می‌توان بعنوان مثال به علف‌کش‌های تری‌آزین اشاره کرد که آترازین مشهورترین عضو این گروه برای نابود کردن علفهای هرز مزارع ذرت بکار می‌رود.

قارچ‌کش‌ها
قارچ‌کش‌ها برای مهار کردن رشد انواع مختلف قارچ‌ها بکار می‌رود. گوگرد به شکل گرد و افشانه بعنوان قارچ‌کش برای مبارزه با زنگ‌زدگی گردمانند روی گیاهان استفاده می‌شود. هگزاکلروبنزن بعنوان یک قارچ‌کش کشاورزی برای محصولات گندم مصرف می‌شود. از ترکیبات آلی جیوه‌مانند متیل جیوه هم بعنوان قارچ‌کش برای محافظت دانه‌های گندم استفاده می‌شود.

تاثیر ترکیبات آلی سمی بر روی محیط زیست
در ترکیب اکثر آفت‌کش‌های آلی از کلر استفاده می‌شود. شکستن پیوند کلر و کربن دشوار است و حضور کلر باعث کم شدن واکنش‌پذیری سایر پیوندها می‌شود. هرچند این خاصیت باعث دوام بیشتر آفت‌کش می‌شود، اما با وارد شدن ترکیبات آلی کلردار به محیط زیست تخریب آنها بکندی صورت می‌گیرد و باعث تراکم آنها در محیط زیست می‌شود. ترکیبات کلردار آلی آبگریزند. اما در چربی‌ها حل می‌شوند. این خاصیت سبب جمع شدن آنها در بافت چربی انسان و موجودات دیگر می‌شود.

مباحث مرتبط با عنوان
آفت‌کش
آلودگی شیمیایی
آلودگی محیط زیست
انواع حشره کش
بنزن
ددت
ددت و تاثیر آن بر محیط زیست
علف‌کش‌
قارچ‌کش
مواد شیمیایی

officer
29-07-2010, 23:57
با آن كه بیش از۲۰۰ سال از سنتز نخستین تركیب آلی فسفر دار می گذرد، اما در طول سه دهه اخیرتنوع و كاربرد این تركیبات بیش از هر زمان دیگری رشد و پیشرفت داشته است. تنوع و كاربردهای مهم این تركیبات در ساخت كودهای شیمیایی، مواد شوینده، مواد ساختمانی، مواد مورد كاربرد در صنعت دندانسازی و داروسازی، غذاهای حیوانی،
آفت كش ها، استرهای فسفات صنعتی و سمی و محصولات طبیعی انجام تحقیقات گسترده تر در این زمینه را ضروری ساخت است.
در حال حاضر بررسی و پژوهش در خصوص سنتز و كاربرد این تركیبات مورد توجه بسیاری از شیمیدانهای جهان قرار گرفته است.

شیمی فسفر شامل بررسی تركیب های اكسی فسفر است كه تمامی آنها پیوند فسفر- اكسیژن دارند، بسیاری از این تركیب ها، از نوع فسفات هستند. تقریباً در همه تركیب های فسفر طبیعی، پیوند فسفر- اكسیژن وجود دارد. در این میان استرهای فسفات آلی كه شامل پیوند فسفر- اكسیژن- كربن هستند، اهمیت بیوشیمیایی دارند. تركیبات آلی فسفر(تركیبات كربوفسفر) كه پیوند فسفر- كربن دارند، دومین گروه مهم تركیبات فسفر را تشكیل می دهند. تركیباتی كه دارای پیوند فسفر- نیتروژن هستند( تركیب های آزافسفر)، سومین گروه این طبقه است. تركیبات متالوفسفر كه پیوند بین فلز و فسفر را شامل می شوند، گروه بسیار مهم و بزرگی از این تركیبات را تشكیل می دهند كه با شناخت و سنتز سایر تركیبات هم گروه خود، از نظر تعداد به سرعت در حال رشد هستند. تركیبات هر یك از این گروه ها بسیار زیاد و متنوع است.

آپاتیت معدنی، بزرگترین و گسترده ترین تركیب فسفر در جهان است و اسید فسفریك، مهمترین تركیب صنعتی فسفر است. هم اكنون استرهای آلی فسفات كه به عنوان داكسی ریبونوكلئیك اسید(dna) شناخته شده اند، قلب بیوشیمی و ژنتیك در دنیا محسوب می شوند و بیشترین مطالعات بر روی آنها انجام شده است.
امروزه حفاظت از گیاهان به عنوان یكی ا ز اصلی ترین منابع غذایی از توجه روز افزونی برخوردار است. تركیب های آلی فسفر به علت داشتن آثار كوتاه مدت (از نظر پایداری، تخریب و ...)، تنوع و چگونگی عملكرد خاصشان توجه زیادی را به خود جلب كرده اند.

از این رو مطالعات ساختاری و مكانیسمی تركیبات آلی فسفر گسترش روز افزونی داشته و شیمی فسفر همچون شیمی كربن به سرعت توسعه یافته است. واكنش های چنین تركیباتی معمولاً در زیر مجموعه شیمی آلی طبقه بندی می شوند. چرا كه از روش های آزمایشگاهی مشابهی استفاده می شود و واكنش های مشتركی برای این دو عنصر( كربن و فسفر) وجود دارد.
از این تركیبات می توان به صورت مؤثر در ساخت داروها از جمله داروهای ضد سرطان استفاده كرد.
همچنین در صنعت از این تركیبات به عنوان نرم كننده، ضد اكسیداسیون و پایدار كننده و افزودنی های مواد نفتی هم استفاده می شود.

تركیبات جدیدی از خانواده ارگانوفسفر كه دارای Co- Nh- Po هستند می توانند به عنوان لیگاند مناسبی برای فلزات سنگین (به خصوص گروه لانتانیدها) باشند كه علاوه بر خصوصیات جالب ساختاری كه مورد توجه شیمیدان هاست، می توانند به صورت سوپر مولكول هایی باشند كه همانند زئولیتها عمل كنند.
علاوه بر این، این تركیبات می توانند به عنوان جاذب مؤثری برای فلزات سنگین خاص از پساب كارخانه ها عمل كنند. ارگانوفسفر طبقه بندی شده می توان به عنوان باز دارنده های مؤثر آنزیم استیل كولین استراز عمل كنند. بنابراین می توانند به عنوان سموم و آفت كش هایی، مورد استفاده قرار گیرند كه در محیط زیست به دلیل تخریب، تركیبات بی خطری تولید می كند. بنابراین انجام این تحقیق و سنتز این تركیبات می تواند گام مؤثری در پیشبرد اهداف علمی و كاربردهای صنعتی، كشاورزی و داروسازی در كشورباشد.

متداولترین موارد استفاده از تركیبات فسفر عبارتند از:
۱) مورد استفاده در ساخت كودهای شیمیایی،
۲) مورد استفاده در ساخت مواد شوینده، انجام عملیات سطحی روی سطح فلز،
۳) مورد استفاده در ساخت عینك ها،
۴) مورد استفاده در ساخت سیمان،
۵) مواد نسوز و ساختمانی،
۶) مورد استفاده در ساخت مواد دندان سازی و دارویی،
۷) مورد استفاده در تكنولوژی غذایی،
۸) مورد استفاده در ساخت غذاهای حیوانی و ساخت استرهای فسفات صنعتی و آفت كش ها،
۹) مورد استفاده در ساخت استرهای سمی و تركیبات دارویی،
۱۰) مورد استفاده در ساخت بسپارهای سنتزی و كند كننده آتش و محصولات طبیعی.

استرهای فسفات كه از جمله تركیب های آلی فسفر هستند، از اجزای مهم موجودات زنده بدست می آیند كه در بسیاری از فرآیندهای حیاتی مانند سنتز پروتئین ها، كد گذاری ژنتیكی، فتوسنتز، تثبیت نیتروژن و دیگر اعمال متابولیكی نقش اساسی ایفا می كنند.