تبلیغات :
آموزشگاه برنامه نویسی تحلیل داده ها 021-88446780 021- 88146330 021 88146323
دوره آموزش برنامه نویسی آندروید دوره آموزش برنامه نویسی #C
دوره کارگاه عملی وپیشرفته آموزش ASP.NET دوره کارگاه عملی آموزش PHP
دوره آموزش برنامه نویسی IOS دوره آموزش کامل و حرفه ای طراحی وب سایت HTML5-CSS3-JQuery
دوره آموزش MVC.NET 5.2 همراه با BootStrap AJAX دوره آموزش Sql Server 2012
دوره آموزش Entity Framework دوره آموزش PHP پيشرفته

آموزش تعمیرات لپ تاپ
دانلود رایگان نقشه لپ تاپ برای اولین بار در ایران
اجاره آپارتمان
گیفت کارت آیتونز گیفت کارت گوگل پلی
آگهی استخدام
فیلم های فارسی آموزشی شبکه (Microsoft,Cisco,VMware)


    

صفحه 1 از 5 12345 آخرآخر
نمايش نتايج 1 به 10 از 45

نام تاپيک: جدول تناوبي و عناصر داخل آن

  1. #1
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض جدول تناوبي و عناصر داخل آن

    سلام

    جدول تناوبی

    جدول تناوبی عناصر شیمیایی نمایشی از عناصر شیمیایی است که براساس ساختار الکترونی مرتب شده است، بطوریکه بسیاری از خواص شیمیایی بصورت منظم در طول جدول تغییر نماید. جدول اولیه بدون اطلاع از ساختار داخلی اتمها ساخته شد: اگر عناصر را بر حسب جرم اتمی آنها مرتب نمائیم، و آنگاه نمودار خواص معین دیگر آنها را بر حسب جرم اتمی رسم نمائیم، میتوان نوسان یا تناوب این خواص را بصورت تابعی از جرم اتمی مشاهده نمود. اولین کسی که توانست این نظم را مشاهده نماید، یک شیمیدان آلمانی به نام Johann Wolfgang D?einer بود. او متوجه تعدادی تثلیث از عناصر مشابه شد:
    نمونه تثلیث ها
    عنصر جرم اتمی چگالی ------ عنصر جرم اتمی چگالی
    Cl 35.5 1.56 g/L ------ Ca 40.1 1.55 g/cm3
    Br 79.9 3.12 g/L ------ Sr 87.6 2.6 g/cm3
    I 126.9 4.95 g/L ------ Ba 137 3.5 g/cm3

    و به دنبال او، شیمیدان انگلیسی John Alexander Reina Newlands متوجه گردید که عناصر از نوع مشابه در فاصله‌های هشت تایی یافت می شوند، که آنها را با نت‌های هشتگانه موسیقی شبیه نمود، هرچند که قانون نت‌های او مورد تمسخر معاصرین او قرار گرفت. سرانجام شیمیدان آلمانی Lothar Meyer و شیمیدان روسی Dmitry Ivanovich Mendeleev تقریبا بطور همزمان اولین جدول تناوبی را، با مرتب نمودن عناصر بر حسب جرمشان، توسعه دادند( ولی مندلیف تعداد کمی از عناصر را خارج از ترتیب صریح جرمی، برای تطابق بهتر با خواص همسایگانشان رسم نمود – این کار بعدها با کشف ساختار الکترونی عناصر در اواخر قرن نوزدهم و اوایل قرن بیستم توجیه گردید). فهرست عناصر بر اساس نام، علامت اختصاری و عدد اتمی موجود میباشد. شکل زیر جدول تناوبی عناصر شناخته شده را نمایش میدهد. هر عنصر با عدد اتمی و علامتهای شیمیایی. عناصر در یک ستون ("گروه") از لحاظ شیمیایی مشابه می باشند.
    تعداد لایه الکترون در یک اتم تعیین کننده ردیفی است که در آن قرار می گیرد. هر لایه به زیرلایه های متفاوتی تقسیم میشود، که هر اندازه عدد اتمی افزایش می یابد، این لایه ها به ترتیب زیر:

    1s
    2s 2p
    3s 3p
    4s 3d 4p
    5s 4d 5p
    6s 4f 5d 6p
    7s 5f 6d 7p
    8s 5g 6f 7d 8p
    ...

    براساس ساختار جدول پر میشوند. از آنجائیکه الکترونهای خارجی ترین لایه، خواص شیمیایی را تعیین مینمایند، این لایه ها در میان گروهای یکسان مشابه اند.عناصر همجوار با یکدیگر در یک گروه، علیرغم اختلاف مهم در جرم، دارای خواص فیزیکی مشابه میباشند. عناصر همجوار با یکدیگر در یک ردیف دارای جرم های مشابه ولی خواص متفاوت میباشند.

    برای مثال، عناصر بسیار نزدیک به نیتروژن (N) در ردیف دوم کربن(C) و اکسیژن(O) میباشند. علیرغم تشابه آنها در جرم ( که بصورت ناچیزی در واحد جرم اتمی تفاوت دارند)، دارای خواص بینهایت متفاوتی هستند، همانطور که با بررسی فرمهای دیگر میتوان ملاحظه نمود: اکسیژن دو اتمی یک کاز است که سوختن را تشدید می نماید، نیتروژن دو اتمی یک گاز است که سوختن را تشدید نمی کند، و کربن یک جامد است که میتواند سوزانده شود( بله، میتوان الماس را سوزاند!).

    در مقایسه، عناصر بسیار نزدیک به کلر (Cl) در گروه یکی مانده به آخر در جدول «هالوژن‌ها) فلوئور( F) و برم( Br) میباشند. علیرغم تفاوت فاحش جرم آنها در گروه، فرمهای دیگر آنها دارای خواص بسیار مشابه میباشند: آنها بسیار خورنده ( بدین معنی که تمایل خوبی برای ترکیب با فلزات، برای تشکیل نمک هالاید فلز)؛ کلر و فلوئور گاز هستند، درحالیکه برم یک مایع با تبخیر بسیار کم میباشد؛ کلر و برم بسیار رنگی هستند.



  2. #2
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض عدد اتمی

    عدد اتمی ( Z )، اصطلاحی است که در شیمی و فیزیک برای بیان تعداد پروتونهای موجود در هسته اتم به کار می‌رود.

    عدد اتمی اصولا شماره محل هر اتم در جدول تناوبی می‌باشد. وقتی مندلیف، عناصر شیمیائی شناخته شده را بر اساس تشابهاتشان در شیمی مرتب کرد، متوجه شد که قرار دادن دقیق آنها بر اساس جرم اتمی، ناهماهنگیهای را بوجود می‌آورد. او متوجه شد که اگر ید و تلوریوم بر اساس جرم اتمی‌شان قرار بگیرند، ترتیبشان غلط به نظر می رسد و وقتی در جدول در جای مناسب قرار خواهند گرفت که جابجا شوند. با قرار دادن آنها بر اساس نزدیکتر بودن خواص شیمیائی، شماره آنها در جدول تناوبی، همان عدد اتمی آنها بود. به نظر می‌رسید که این عدد تقریبا با جرم اتم نسبت دارد، اما همانطور که تفاوت جرم _ خواص شیمیای نشان داد، بازتاب خاصیت دیگری به جز جرم بود.

    عجیب بودن این ترتیب، بالاخره بعد از تحقیقات Henry Gwyn Jeffries Moseley در سال1913 تشریح شد. موسلی کشف کرد که ارتباط دقیقی بین طیف بازتاب اشعه X عناصر و محل صحیح آنها در جدول تناوبی وجود دارد. بعدا نشان داده شد که عدد اتمی مساوی بار الکتریکی هسته میباشد- به عبارت دیگر تعداد پروتونها-؛ و این بار الکتریکی است که خواص شیمیائی عناصر را بوجود می‌آورد، نه جرم اتمی.

  3. #3
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض جرم اتمی

    دیدکلی
    اتمها ذرات بسیار کوچکی هستند که تک تک آنها را نمی‌توان وزن کرد. یک جنبه بسیار مهم از کار دالتون کوشش او برای تعیین جرمهای نسبی اتمها بود. دالتون سیستم سنجش خود را برمبنای اتم هیدروژن گذاشت و جرم همه اتمهای دیگر را با جرم اتم هیدروژن مقایسه کرد.

    دالتون و تعیین جرم اتمی اکسیژن از آب
    آب ماده مرکبی است که ازلحاظ جرمی % 88.8 هیدروژن و % 11.2 اکسیژن دارد. دالتون بطور نادرست پذیرفته بود که آب از یک اتم اکسیژن با یک اتم هیدروژن ترکیب شده است. براین مبنا ، نسبت جرم یک اتم اکسیژن تنها به یک اتم هیروژن تنها ، 88.8 یعنی تقریبا 8 به 1می‌شد. با تخصیص جرم اختیاری 1 به اتم هیدروژن ، جرم نسبی 8 برای اتم اکسیژن به دست می‌آید. فرمولی را که دالتون برای آب بکار گرفته بود، نادرست بود. در واقع یک اتم اکسیژن با دو اتم هیدروژن ترکیب می‌شود. بنابراین جرم یک اتم اکسیژن تقریبا 8 برابر جرم دو اتم هیدروژن است. اگر به یک اتم هیدروژن جرم 1اختصاص داده شود، جرم دو اتم هیدروژن 2 خواهدشد، و بر این مقیاس جرم نسبی یک اتم اکسیژن 8 برابر 2 یعنی 16 می‌شود.

    وزن اتمی
    گرچه دالتون در تعیین جرمهای نسبی اشتباه کرده بود، اما اعتبار معرفی این مفهوم و تشخیص اهمیت آن را باید از آن دالتون بدانیم. این مقادیر را وزنهای اتمی نامیده‌اند. این واژه از لحاظ معنی درست نیست، زیرا باید جرم ارجاع شود نه وزن ، اما بر اثر کاربرد طولانی مجاز شمره می‌شود.

    واحد جرم اتمی
    هر گونه مقیاس برای جرم اتمی نسبی باید بنابر مقداری اختیاری باشد که به یک اتم انتخابی استاندارد نسبت داده می‌شود. دالتون اتم هیدروژن را به عنوان اتم استاندارد انتخاب کرد و مقدار یک را به آن نسبت داد. در سالهای بعد شیمیدانان اکسیژن طبیعی را به عنوان استاندارد انتخاب کردند و وزن اتمی آن را دقیقا 16 در نظر گرفتند. استانداردی که امروزه بکار می‌رود، اتم 612C است. واحد جرم اتمی ( که نماد SI آن U است) به عنوان یک دوازدهم جرم اتم 612C تعریف می‌شود. بنابراین با این مقیاس جرم اتم 612C دقیقا 12U است. اما جرم یک اتم را نمی‌توان با این مقادیر محاسبه کرد. به استثنای 11H (که هسته ان تنها یک پروتون دارد) ، حاصل جمع جرمهای ذراتی که یک هسته را می‌سازند، همواره بیشتر از جرم واقعی هسته است.

    انرژی اتصال هسته
    انیشتین نشان داد که جرم و انرژی هم‌ارز هستند. این تفاوتهای جرمی ، برحسب انرژی ، آنچه را که انرژی اتصال هسته نامیده می‌شود، توجیه می‌کند. اگر جداکردن اجزای هسته ممکن باشد انرژی اتصال ، انرژی لازمه برای چنین کاری است. عکس این فرایند یعنی متمرکز شدن نوکلئونها در یک هسته ، موجب آزاد شدن انرژی اتصال می‌شود که همراه با کاهش جرم است.

    تعیین جرمهای اتمی با استفاده از طیف‌سنج جرمی
    جرمهای اتمی با استفاده از طیف سنج جرمی معین می‌شود. غالبا عناصر موجود در طبیعت مخلوطی از ایزوتوپها هستند. در این موارد ، با طیف سنج جرمی می‌توان مقدارنسبی هر ایزوتوپ موجود در عنصر و همچنین جرم اتمی هر ایزوتوپ را معین کرد. داده‌های آزمایشی در مورد کلر نشان می‌دهد که این عنصر مرکب از % 75.77 اتمهای 1735Cl ( باجرم 34.969 u) و % 24.23 اتمهای 1735Cl (با جرم 36.266 u ) است. هر نمونه از کلر که از یک منبع طبیعی به دست آمده باشد، شامل این دو ایزوتوپ با همین نسبت است.

    جرم اتمی ایزوتوپهای طبیعی
    وزن اتمی عنصر کلر میانگین جرمهای اتمی توزین شده ایزوتوپهای طبیعی این عنصر است. این میانگین را نمی‌توانیم با جمع کردن جرمهای ایزوتوپها و تقسیم کردن آن بر 2 به دست بیاوریم. مقداری که به این طریق به دست می‌آید تنها در صورتی درست است که عنصر کلر شامل تعدادی مساوی از اتمهای دو ایزوتوپ باشد. برای به دست آوردن میانگین وزنی باید جرم اتمی هر ایزوتوپ را در کسر فراوانی آن ضرب کنیم و مقادیر حاصله را با هم جمع کنیم. کسر فراوانی معادل اعشاری در صد فراوانی است. مقدار پذیرفته شده برای کلر 35.453±0.001U است. هیچ اتم کلری ، جرم 35.453 u ندارد، اما فرض چنین اتمی آسانتر است.

    درطبیعت چند نوع اتم کربن .ج.د دارد. اتم کربن 12 ، که به عنوان استاندارد برای وزنهای اتمی بکار گرفته می‌شود، فراوانترین نوع آن است. هر گاه درصدها و جرمهای همه انواع کربن را به حساب آوریم، جرم نسبی میانگین برای کربن موجود در طبیعت 12.011 می‌شود و این مقداری است که به عنوان وزن اتمی کربن ثبت می‌شود.

  4. #4
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض انرژی یونش

    انرژی لازم برای جدا کردن سست‌ترین الکترون از یک اتم منفرد گازی شکل و درحالت پایه یک عنصر را «انرژی اولین یونش» آن عنصر می‌نامند.
    (A(g) → A(g)+ + e(g
    نماد (g) نشان دهنده حالت گازی عنصر و یون مربوطه است.


    علامت انرژی‌های یونش
    در تعیین انرژی‌های یونش عناصر برای بیرون کشیدن الکترون از اتم ، انرژی مصرف می‌شود، زیرا این امر متضمن فائق آمدن بر جاذبه متقابل هسته و الکترون است. پس چون سیستم ، در این فرآیند ، انرژی جذب می‌کند، انرژیهای یونش علامت مثبت دارند. مثلا می‌توان انرژی اولین یونش سدیم را به صورت زیر نمایش داد:



    (Na(g) → Na(g)+ + e(g

    ::496Kj+ = اولین یونش سدیم
    واحد انرژی یونش
    انرژی یونش برای هر الکترون منفرد بر حسب الکترون ولت (اتم/ev) و برای یک مول الکترون (6.02x1023 الکترون) که از یک مول اتم (6.02x1023 اتم) عنصر جدا شود، Kj/mol بیان می‌گردد.

    ترتیب انرژی یونش در عناصر یک دوره
    انرژی یونش در یک دوره از چپ به راست بتدریج افزایش می‌یابد. به آن قسمتهایی از منحنی که به عناصر دوره دوم (از
    Li تا Ne) ، دوره سوم (ازNa تا Ar) و الی آخر تعلق دارد. توجه کنید که انرژی یونش به این سبب افزایش می‌یابد که اتمها بتدریج کوچکتر می‌شوند و بار مؤثر هسته بتدریج افزایش می‌یابد، در نتیجه جدا کردن الکترون بتدریج دشوارتر می‌شود.


    ترتیب انرژی یونش در عناصر یک گروه
    در عناصر نماینده ، بطور کلی انرژی یونش بین عناصر یک گروه از بالا به پایین کاهش می‌یابد. عناصر گروه (Cs ، Rb ، K ، Na ، Li) و عناصر گروه صفر (Rn ، Xe ، Kr، Ar، Ne ، He) بصورت مینیمم و ماکسیمم منحنی نشان داده شده‌اند. در هر گروه بتدریج از اتمی به اتم پایینتر می‌رویم ، بار هسته ، افزایش می‌یابد، اما اثر آن تا حد زیادی از طریق افزایش تعداد الکترونهای پوسته زیرین که اثر پوششی دارند، حذف می‌شود. در حالیکه اتمها بزرگتر می‌شوند، الکترونی که باید یونیده شود، در فاصله‌ای دورتر از هسته قرار می‌گیرد، در نتیجه جدا شدن الکترون آسانتر شده ، انرژی یونش کاهش می‌یابد.

    انرژی یونش عناصر واسطه در یک دوره به سرعت مشابه با عناصر نماینده افزایش پیدا نمی‌کند. انرژی یونش عناصر واسطه درونی ، کم و بیش ثابت می‌ماند. در این دو دسته عناصر ، الکترون متمایز کننده به پوسته‌های درونی اضافه می‌شود. افزایش اثر پوششی حاصل ، وضعیت انرژی یونش در عناصر واسطه و واسطه درونی را توجیه می‌کند. اتم فلزات در واکنشهای شیمیایی معمولا الکترون از دست می‌دهند و به یونهای مثبت تبدیل می‌شوند. اتم غیرفلزات معمولا به این ترتیب عمل نمی‌کنند. بنابراین فلزات عناصری با انرژی یونش نسبتا کم و غیرفلزات عناصری با انرژی یونش نسبتا زیادند.

    انرژی دومین یونش
    بحثهای ما تاکنون مربوط به انرژی اولین یونش بوده است. انرژی دومین یونش هر عنصر انرژی لازم برای جدا کردن یک الکترون از یون +1 آن عنصر است.



    (A(g) → A(g)2+ + e(g


    انرژی سومین یونش
    انرژی سومین یونش بیان کننده انرژی مورد نیاز برای جدا کردن یک الکترون از یون +2 آن عنصر است. جدا کردن یک الکترون منفی از اتم خنثی طبعا آسانتر از جدا کردن الکترون از ذره دارای یک بار مثبت و آن هم به نوبه خود آسانتر از جدا کردن الکترون از ذره دارای دو بار مثبت است. در نتیجه انرژی سومین یونش بزرکتر از انرژی دومین یونش و آن هم بزرگتر از انرژی اولین یونش است.

    انرژی چهارمین یونش و بالاتر
    از آنجا که انرژی چهارمین یونش و بالاتر ، به غایت زیاد است، یونهای بالاتر از +3 بندرت در شرایط عادی وجود دارند. همانگونه که انتظار می‌رود برای هر عنصر انرژی یونش از اولین تا چهارمین زیاد می‌شود.

    جهش
    در تمام مراحل پس ازجدا شدن الکترونهای والانس ، افزایش انرژی مورد نیاز برای یونش بعدی بصورت جهشی است.

    واکنش پذیری فلزات
    واکنش پذیری فلزات در گوشه پایین سمت چپ جدول تناوبی دیده می‌شوند. واکنش پذیری ، بر حسب از دست دادن الکترون ، بتدریج که از این گوشه به طرف بالا یا به سمت راست حرکت می‌کنیم، کاهش می‌یابد.

  5. #5
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض آمریکیوم

    آمریکیوم (آمریسیوم)

    آمریکیوم عنصر شیمیایی است که در جدول تناوبی با نشان Am و عدد اتمی 95 وجود دارد .تمام ایزوتوپهای این عنصر مصنوعی رادیو اکتیو هستند. این عنصر به گروه اکتینیدها تعلق دارد . این عنصر با قرینه سازی Americas و Europium نامگذاری شد .


    آمریکیوم چهارمین عنصر ترااورانیمی بود که کشف شد .ایزوتوپ Am-24 توسط گلن تی سیبورک ِ جیمز ِ مورگان و آلبرت گیورسو اواخر سال 1944 هنگام جنگ در آزمایشگاه متالوژی دانشگاه شیکاگو ودر نتیجه واکنشهای جذب نوترون پی در پی توسط ایزوتوپهای پلوتونیوم در راکتورهای اتمی شناخته شد. درخشش فلز آمریکیوم تازه تهیه شده از پلوتونیوم یا نپتونیومی که با همین روش تهیه شده سفید و براقتر است. ظاهرا این عنصر انعطاف پذیرتر از اورانیوم یا نپتونیوم است و در هوای خشک با درجه حرارت اتاق به کندی کدر می شود. با آمریکیوم باید با دقت زیادی رفتار شود تا از آلودگی انسانی جلوگیری گردد. فعالیت آلفا از Am-241 تقریبا سه برابر رادیوم است. وقتی با مقدار گرمی Am-241 سروکار داریم فعالیت شدؤد گاما ما را در معرض مشکلات جدی قرار می دهد. Am-241 بعنوان منبعی قابل حمل برای رادیوگرافی گاما بکار رفته است. مقدار جزیی از آمریکیوم 241 برای اندازه گیری ضخامت شیشه در این صنعت و بعنوان منبعی برای یونیزاسیون دستگاههای اعلام حریق مورد استفاده قرار می گیرد.


    منبع :
    بخش شیمی آزمایشگاه ملی لوس آلاموس- جدول تناوبی - آمریکیوم

  6. #6
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,059

    پيش فرض کالیفرنیم

    کالیفرنیم ششمین عنصر فرا اورانیوم کشف شده در جدول تناوبی است.این عنصر دارای نشان Cf و عدد اتمی 98 می باشد.نام این عنصر از نام ایالت کالیفرنیا و دانشگاه کالیفرنیا – برکلی بر گرفته شده است.
    کشف کالیفرنیم در 17 مارس 1950 بوسیله hompson ، Street ، Albert Ghiorso و Glenn T. Seaborg ، محققان UC برکلی اعلام شد.این عنصر بوسیله بمباران مقادیر میکروگرمی Cm242 با MeV35 یونهای هلیم در سیکلوترون 60 اینچی آزمایشگاه برکلی ایجاد گردید.
    کالیفرنیم (III) تنها یون پایدار در محلولهای آبی است و تمامی تلاشها برای برای کاهش یا اکسیده کردن کالیفرنیم (III ) باشکست مواجه شده است .ایزوتوپ Cf-249 از فروپاشی اشعه بتای Bk-249 حاصل می شود درحالیکه ایزوتوپهای سنگین تر بر اثر برتابش شدید نوترون در این واکنشها بوجود می آیند.

    ایزوتوپ کالیفرنیم 252 ( گسیلگر بسیار قوی نوترون) به علت خاصیت رادیواکتیو شدید و برخی کاربردهای خاص معروف است.یک میکروگرم آن در هر دقیقه 170 میلیون نوترون آزاد می کند که خطرات بیولوژیکی جدی را باعث می گردد بنابراین هنگام کار با کالیفرنیم باید ازمحافظ استفاده کرد.


    جدا سازی کالیفرنیم به شکل فلزی آن هنوز تحقق نیافته است.چون کالیفرنیم منبعی غنی از نوترون می باشد انتظار کاربردهای زیادی از آن می رود . تا کنون از آن در اندازه گیری رطوبت نوترون و در تشخیص لایه های حاوی آب و نفت استفاده شده است.کالیفرنیم همچنین بعنوان یک منبع قابل حمل برای کشف فلزاتی نظیر طلا و نقره ، با استفاده از تحلیل فعل و انفعالات موجود در محل بکار می رود.امروزه Cf-252 توسط O.R.N.L به قیمت هر میلی گرم 10 دلار به فروش مِ رسد.در ماه می سال 1975 بیش از 63 میلی گرم از آن تولید وبه فروش رسید.یک فرضیه این است که شاید کالیفرنیم در انفجارات ستاره ای خاصی بوجود می آید چون فروپاشی رادیو اکتیو Cf-254 ( نیمه عمر 55 روز) با خصوصیات منحنیهای نوری چنین انفجاراتی که با تلسکوپ رویت شده تطبیق دارد.بهرحال این فرضیه مورد تردید است

  7. #7
    اگه نباشه جاش خالی می مونه snow chem's Avatar
    تاريخ عضويت
    Aug 2006
    محل سكونت
    اونجائى كه مردمش هنوز خدا رو فراموش نكردن!
    پست ها
    262

    1

    مرسي tanha.bikas عزيز
    مفيد بودن بخصوص کالیفرنیم ششمین عنصر فرا اورانیوم .

  8. #8
    آخر فروم باز soleares's Avatar
    تاريخ عضويت
    Jul 2006
    محل سكونت
    اراج ...
    پست ها
    3,750

    11 جدول تناوبي عناصر

    همه چيز درباره همه چيز جدول تناوبي عناصر ...

    جدول تناوبی عناصر شیمیایی نمایشی از عناصر شیمیایی است که براساس ساختار الکترونی مرتب شده است، بطوریکه بسیاری از خواص شیمیایی بصورت منظم در طول جدول تغییر نماید. جدول اولیه بدون اطلاع از ساختار داخلی اتمها ساخته شد: اگر عناصر را بر حسب جرم اتمی آنها مرتب نمائیم، و آنگاه نمودار خواص معین دیگر آنها را بر حسب جرم اتمی رسم نمائیم، میتوان نوسان یا تناوب این خواص را بصورت تابعی از جرم اتمی مشاهده نمود. اولین کسی که توانست این نظم را مشاهده نماید، یک شیمیدان آلمانی به نام Johann Wolfgang D?einer بود. او متوجه تعدادی تثلیث از عناصر مشابه شد:


    و به دنبال او، شیمیدان انگلیسی John Alexander Reina Newlands متوجه گردید که عناصر از نوع مشابه در فاصله‌های هشت تایی یافت می شوند، که آنها را با نت‌های هشتگانه موسیقی شبیه نمود، هرچند که قانون نت‌های او مورد تمسخر معاصرین او قرار گرفت. سرانجام شیمیدان آلمانی Lothar Meyer و شیمیدان روسی Dmitry Ivanovich Mendeleev تقریبا بطور همزمان اولین جدول تناوبی را، با مرتب نمودن عناصر بر حسب جرمشان، توسعه دادند( ولی مندلیف تعداد کمی از عناصر را خارج از ترتیب صریح جرمی، برای تطابق بهتر با خواص همسایگانشان رسم نمود – این کار بعدها با کشف ساختار الکترونی عناصر در اواخر قرن نوزدهم و اوایل قرن بیستم توجیه گردید). فهرست عناصر بر اساس نام، علامت اختصاری و عدد اتمی موجود میباشد. شکل زیر جدول تناوبی عناصر شناخته شده را نمایش میدهد. هر عنصر با عدد اتمی و علامتهای شیمیایی. عناصر در یک ستون ("گروه") از لحاظ شیمیایی مشابه می باشند.


    تعداد لایه الکترون در یک اتم تعیین کننده ردیفی است که در آن قرار می گیرد. هر لایه به زیرلایه های متفاوتی تقسیم میشود، که هر اندازه عدد اتمی افزایش می یابد، این لایه ها به ترتیب زیر:

    1s
    2s 2p
    3s 3p
    4s 3d 4p
    5s 4d 5p
    6s 4f 5d 6p
    7s 5f 6d 7p
    8s 5g 6f 7d 8p
    ...

    براساس ساختار جدول پر میشوند. از آنجائیکه الکترونهای خارجی ترین لایه، خواص شیمیایی را تعیین مینمایند، این لایه ها در میان گروهای یکسان مشابه اند.عناصر همجوار با یکدیگر در یک گروه، علیرغم اختلاف مهم در جرم، دارای خواص فیزیکی مشابه میباشند. عناصر همجوار با یکدیگر در یک ردیف دارای جرم های مشابه ولی خواص متفاوت میباشند.

    برای مثال، عناصر بسیار نزدیک به نیتروژن (N) در ردیف دوم کربن(C) و اکسیژن(O) میباشند. علیرغم تشابه آنها در جرم ( که بصورت ناچیزی در واحد جرم اتمی تفاوت دارند)، دارای خواص بینهایت متفاوتی هستند، همانطور که با بررسی فرمهای دیگر میتوان ملاحظه نمود: اکسیژن دو اتمی یک کاز است که سوختن را تشدید می نماید، نیتروژن دو اتمی یک گاز است که سوختن را تشدید نمی کند، و کربن یک جامد است که میتواند سوزانده شود( بله، میتوان الماس را سوزاند!).

    در مقایسه، عناصر بسیار نزدیک به کلر (Cl) در گروه یکی مانده به آخر در جدول «هالوژن‌ها) فلوئور( F) و برم( Br) میباشند. علیرغم تفاوت فاحش جرم آنها در گروه، فرمهای دیگر آنها دارای خواص بسیار مشابه میباشند: آنها بسیار خورنده ( بدین معنی که تمایل خوبی برای ترکیب با فلزات، برای تشکیل نمک هالاید فلز)؛ کلر و فلوئور گاز هستند، درحالیکه برم یک مایع با تبخیر بسیار کم میباشد؛ کلر و برم بسیار رنگی هستند.

    ...

  9. #9
    آخر فروم باز soleares's Avatar
    تاريخ عضويت
    Jul 2006
    محل سكونت
    اراج ...
    پست ها
    3,750

    11 جدول جايگزين ..



    عناصر شماره گذاری شده با رنگ آبی ، در دمای اتاق مایع هستند؛
    عناصر شماره گذاری شده با رنگ سبز ، در دمای اتاق بصورت گاز می باشند؛
    عناصر شماره گذاری شده با رنگ سیاه، در دمای اتاق جامد هستند.
    عناصر شماره گذاری شده با رنگ قرمز ترکیبی بوده و بطور طبیعی یافت نمی شوند(همه در دمای اتاق جامد هستند).
    عناصر شماره گذاری شده با رنگ خاکستری ، هنوز کشف نشده‌اند (و بصورت کم رنگ نشان داده شده‌اند تا گروه شیمیایی را که در آن قرار می گیرند، مشخص نماید).

  10. #10
    آخر فروم باز soleares's Avatar
    تاريخ عضويت
    Jul 2006
    محل سكونت
    اراج ...
    پست ها
    3,750

    11 هيدروژن عنصر شماره يك جدول (تمام مطالب مرتبط)

    خصوصیات قابل توجه

    هیدروژن سبک ترین عنصر شیمیایی بوده با معمول ترین ایزوتوپ آن که شامل تنها یک پروتون و الکترون است. در شرایط فشار و دمای استاندارد هیدروژن یک گاز،H2، دو اتمی با نقطه جوش 20.27° K و نقطه ذوب 14.02° K را میسازد. در صورتیکه این گاز تحت فشار فوق العاده بالایی، مانند شرایطی که در مرکز غولهای گازی وجود دارد، قرار گیرد مولکولها ماهیت خود را از دست داده و هیدروژن بصورت فلزی مایع در می آید. (رجوع شود به هیدروژن فلزی). اما در فشار های بسیار پایین مانند شرایطی که در فضا یافت می شود، به این علت که هیچ راهی برای ترکیب اتمهایش وجود ندارد، هیدروژن تمایل دارد تا بصورت اتم های مجزا در آمده؛ابرهای H2 (هیدروژنی) تشکیل می شود که به شکل گیری ستارگان نیز مرتبط می باشد.

    این عنصر نقش بسیار حیاتی در تامین انرژی جهان از طریق واکنش پروتون-پروتون و چرخه کربن-نیتروژن به عهده دارد(اینها فرآیندهای هم جوشی هستهای هستند که با ترکیب دو اتم هیدروژن به یک اتم هلیم، مقدار بسیار عظیمی از انرژی آزاد می کنند.)

    کاربردها

    به مقدار بسیار زیادی هیدروژن در فرآیند هابر (Haber Process) صنعت نیاز می باشد، مقدار قابل توجهی در برای تولید آمونیاک، هیدروژنه کردن چربیها و روغنها، و تولید متانول. سایر مواردی که نیازمند هیدروژن است عبارتند از:


    هیدرودیلکیلاسیون (hydrodealkylation)، هیدرودیسولفوریزاسیون (hydrodesulfurization) و هیدروکرکینک (hydrocracking)
    تولید اسید هیدروکلریک،جوشکاری،سوختها ی موشک و احیاء سنگ معدن فلزی
    هیدروژن مایع در تحقیقات سرما شناسی مانند مطالعات ابررسانایی بکار می رود.
    تریتیوم که در رآکتورهای اتمی تولید می شود در ساخت بمبهای هیدروژنی مورد استفاده قرار می گیرد.
    هیدروژن چهارده و نیم بار از هوا سبکتر است و سابقا بعنوان عامل بالا برنده در بالونها و کشتیهای هوایی مورد استفاده قرار می گرفت تا وقتیکه فاجعه هیندنبرگ ثابت کرد که استفاده از این گاز برای این منظور بسیار خطرناک است.
    دوتریوم بعنوان یک کند کننده جهت کاهش حرکت نوترونها در فعالیت های هسته ای مورد استفاده قرار می گیرد، و ترکیبات دوتریوم در شیمی و زیست شناسی در مطالعاتتاثیرات ایزوتوپ، مورد استفاده وافع می شوند.
    تریتیوم که یک ایزوتوپ طبقه بندی شده در علوم زیست شناسی است که بعنوان یک منبع تشعشع در رنگهای نورانی کاربرد دارد.
    هیدروژن می تواند در موتورهای درون سوز سوخته شود و در برهه کوتاهی اتومبیلهایی با سوخت هیدروژنی توسط شرکت Chrysler-BMW تولید شدند. پیل های سوختی هیدروژنی، بعنوان راه کاری برای تولید توان بالقوه ارزان و بدون آلودگی، مورد توجه قرار گرفته است.

    تاریخچه

    هیدروژن «فرانسه به معنی سازنده آب و واژه یونانی hudôr یعنی "آب" و gennen یعنی "تولید کننده") برای اولین بار در سال 1776 بوسیله هنری کاوندیش بعنوان یک ماده مستقل شناخته شده، آنتونی لاوازیه نام هیدروژن را برای این عنصر انتخاب کرد.

    پیدایش

    هیدروژن فراوانترین عنصر در جهان است بطوریکه 75% جرم مواد طبیعی از این عنصر ساخته شده و بیش از 90% اتمهای تشکیل دهنده آنها اتم های هیدروژن است.

    این عنصر به مقدار زیاد و به وفور در ستارگان و سیارات غولهای گازی یافت می شود. به نسبت فراوانی زیاد آن در جاهای دیگر، هیدروژن در اتمسفر زمین بسیار رقیق است(1 ppm برحسب حجم). متعارف ترین منبع برای این عنصر در زمین آب است که از دو قسمت هیدروژن و یک قسمت اکسیژن (H2O) ساخته شده است.

    منابع دیگر عبارتند از بیشترین اشکال مواد آلی که در اندام تمام موجودات زنده شناخته شده وجود دارند، زغال،سوخت فسیلی و گاز طبیعی. متان ( CH4)، که یکی از محصولات فرعی فساد ترکیبات آلی است که اهمیت منابع آن رو به افزایش است.

    هیدروژن از چندین راه مختلف بدست می آید، عبور بخار از روی کربن داغ، تجزیه هیدروکربن بوسیله حرارت، واکنش هیدروکسید سدیم یا پتاسیم بر آلومینیوم، الکترولیز آب یا از جابجائی آن در اسیدها توسط فلزات خاص.

    هیدروژن تجاری در حجمهای زیاد معمولا بوسیله تجزیه گاز طبیعی تولید می شود.

    ترکیبات

    هیدروژن سبک ترین گازها با اکثر عناصر ترکیب شده و ترکیبات مختلف را بوجود می آورد. هیدروژن دارای عدد اکترونگاتیویته 2.2 است پس هیدروژن هنگامی ترکیبات را می سازد که عناصر غیر فلزی تر و عناصر فلزی تری وجود داشته باشند. در این حالت(غیر فلزی) تشکیل دهنده ها هیدریدها نامیده می شوند، که هیدروژن یا بصورت یونهای H- یا بصورت حل شده در عنصر دیگر وجود خواهد داشت (مانند هیدرید پالادیوم). در حالت دوم (ترکیب با فلز) هیدروژن تمایل برای تشکیل پیوند کووالانسی دارد، چون یونهای H+ بصورت یک اتم عریان فاقد الکترون در می آیند بنابراین تمایل شدیدی به جذب الکترونها به سمت خود داردند. هر دوی اینها تولید اسید می کنند. لذا حتی در یک محلول اسیدی می توان یونهایی مثل H3O+ را دید که گویی پروتونها به جایی محکم به چیزی چسبیده اند.

    هیدروژن با اکسیژن ترکیب شده و تولید آب می کند، H2O، که در این واکنش مقدار زیادی انرژی را بصورتی آزاد می کند که، باعث انفجار در هوا میگردد. به اکسید دوتریوم یا D2O، که معمولا آب سنگین گفته می شود. همچنین هیدروژن با کربن یک سری ترکیبات گستردهای را بوجود می آورد. بخاطر ارتباط این ترکیبات با چیزهای زنده، این ترکیبات را ترکیبات آلی می نامند، و به مطالعه خصوصیات این ترکیبات شیمی آلی گفته می شود.


    حالتها

    در شرایط عادی گاز هیدروژن ترکیبی از دو نوع متمایز مولکول است که با هم از نظر جهت چرخش الکترونها و هسته تفاوت دارند. این دو شکل به نام ارتو- و پارا- هیدروژن معروفند. (این مورد با ایزوتوپها فرق می کند به پاراگراف بعد توجه کنید.) در شرایط استاندارد هیدروژن معمولی ترکیبی از 25% شکل پاراو 75% شکل ارتو است. شکل ارتو را نمی توان بصورت حالت خالص آن تهیه کرد. این دو مدل هیدروژن از نظر انرژی با هم متفاوتند که این مسئله موجب می گردد، تا خصوصیات فیزیکی آنها کمی متفاوت باشد. مثلا نقطه ذوب و جوش پاراهیدروژن تقریبا 0.1 K ° پائین تر از ارتوهیدروژن است. (به اصطلاح شکل عادی.)

    ایزوتوپها

    پروتیوم ، معمولی ترین ایزوتوپ هیدروژن فاقد نوترون است گرچه دو ایزوتوپ دیگر به نام دوتریوم دارای یک نوترون و تریتیوم رادیو اکتیویته دارای دو نوترون، وجود دارند. دو ایزوتوپ پایدار هیدروژن پروتیوم(H-1) و دیتریوم(D ، H-2) می باشند. دیتریوم شامل 0.0184-0.0082% درصد کل هیدروژن است «IUPAC)؛ نسبتهای دیتریوم به پروتیوم با توجه به استاندارد مرجع آب VSMOW اعلام میگردد. تریتیوم(T یا H-3)، یک ایزوتوپ رادیواکتیو دارای یک پرتون و دو نوترون می باشد. هیدروژن تنها عنصری است که ایزوتوپ های آن اسمی مختلفی دارند.

    هشدارها

    هیدروژن گازی است با قدرت اشتعال فوق العاده زیاد. این گاز همچنین به شدت با کلر و فلوئور واکنش نشان می هد. D2O، یا آب سنگین برای بسیاری از گونه های سمی است. اما مقدار قابل توجهی از آن برای کشتن انسان لازم است.


    ...

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

به اشتراک بگذارید

به اشتراک بگذارید