تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 5 اولاول 12345 آخرآخر
نمايش نتايج 11 به 20 از 49

نام تاپيک: مغناطیس و الکترومغناطیس |مقالات|

  1. #11
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,058

    پيش فرض آهنربا

    دید کلی :
    آیا تابحال به این فکر کرده اید که جرثقیل ، چگونه قطعات بزرگ آهن را جابجا می کند؟


    آیا تا کنون ملاحظه کرده اید که یک میخ آهنی بعد از چند بار مالش برروی یک آهنربا ، میخهای آهنی کوچکتر از خود را جذب کند؟

    برای پاسخ گفتن به پرسشهای فوق و سوالات دیگر شبیه آنها ، باید اطلاعاتی در مورد آهنربا و خاصیت آهنربایی داشته باشیم. مقاله حاضر تا حدی ما را با این مقوله آشنا می کند.

    سنگ مغناطیسی و کهربا ، دو ماده طبیعی هستند که از دیر باز ، مورد توجه مردم بوده اند. سنگ مغناطیسی ، یک ماده معدنی با خصوصیات غیر عادی است که آهن را جذب می کند. اگر یک قطعه کوچک از این سنگ را از نقطه ای آویزان کنیم. آن قدر می چرخد تا سرانجام بطور تقریبی در راستای شمال و جنوب قرار گیرد. نخستین بار در کشورهای غربی ، دریانوردان از این سنگ بعنوان قطبنما استفاده می کردند.


    سیر تحولی و رشد :

    انسانهای اولیه به سنگهایی برخورد کردند که قابلیت جذب آهن را داشتند. معروف است که ، نخستین بار ، شش قرن قبل از میلاد مسیح ، در شهر باستانی ماگنزیا واقع در آسیای صغیر «ترکیه امروزی) ، یونانیان به این سنگ برخورد کردند. بنابراین بخاطر نام محل پیدایش اولیه ، نام این سنگ را ماگنتیت یا مغناطیس گذاشتند که ترجمه فارسی آن آهنربا می باشد. سنگ مذکور از جنس اکسید طبیعی آهن با فرمول شیمیایی Fe3O4 می باشد.

    بعدها ملاحظه گردید که این سنگ در مناطق دیگر کره زمین نیز وجود دارد. پدیده مغناطیس همراه با کشف آهنربای طبیعی مشاهده شده است. با پیشرفت علوم مختلف و افزایش اطلاعات بشر در زمینه مغناطیس ، انواع آهنرباهای طبیعی و مصنوعی ساخته شد. امروزه از آهنربا در قسمتهای مختلف مانند صنعت ، دریانوردی و ... استفاده می گردد.


    منشا پیدایش :

    کهربا شیرهای است که مدتها پیش از بعضی از درختان مانند کاج که چوب نرم دارند، بیرون تراوید. و در طی قرنها سخت شده و بصورت جسم جامدی نیم شفاف در آمده است. کهربا به رنگهای زرد تا قهوهای وجود دارد. کهربای صیقل داده شده سنگ زینتی زیبایی است و گاهی شامل بقایای حشرههایی است که در زمانهای گذشته در شیره چسبناک گرفتار شده اند.

    یونانیان باستان خاصیت شگفت انگیز کهربا تشخیص داده بودند. اگر کهربا را به شدت به پارچهای مالش دهیم اجسامی مانند تکه های کاه یا رانههای گیاه را که نزدیک آن باشد جذب میکند. اما سنگ مغناطیس یک ماده معدنی است که در طبیعت وجود دارد. نخستین توصیف نوشته شده از کاربرد سنگ مغناطیس به عنوان یک قطب نما در دریانوردی در کشورهای غربی ، مربوط به اواخر قرن دوازدهم میلادی است. ولی خواص این سنگ خیلی پیش از آن در چین شناخته شده بود.


    انواع آهنربا :
    اساس کار تمام آهنرباها یکسان است، اما به دلیل کاربرد در دستگاههای مختلف ، آرایش و صنعت ، آن را به اشکال و اندازه‌های گوناگون می سازند، و لذا انواع آن از لحاظ شکل عبارتند از :


    تیغهای
    میلهای
    نعلیشکل
    استوانهای
    حلقهای
    کروی
    پلاستیکی
    سرامیکی و ...


    حوزه عمل :

    آهنربا به طور مستقیم و غیر مستقیم در زندگی روزانه بشر موثر است و به جرات می توان گفت که اگر این خاصیت نبود زندگی بشر امروزی با مشکل مواجه می شد. از جمله وسایلی که در ساختمان آن از خاصیت آهنربایی استفاده شده است، می توان به یخچال ، قطب نما ، کنتور برق ، انواع بلندگوها ، موتورهای الکتریکی (مانند کولر ، پنکه ، لوازم خانگی و ...) ، وسایل اندازه گیری الکتریکی مانند ولت سنج ، آمپر سنج و ... اشاره کرد.


    آیا آهنربا بغیر از آهن ، اجسام دیگری را جذب می کند؟

    بعد از پیدایش آهنربا ، دانشمندان به این فکر افتادند که آیا آهنربا غیر از آهن ، اجسام دیگری را نیز می تواند جذب کند. پس از بررسیها و مطالعات مختلف ، سرانجام مشخص شد که آهنربا در عنصر دیگر به نامهای نیکل و کبالت را نیز می تواند جذب کند. بر این اساس به سه عنصر آهن ، کبالت ، نیکل و آلیاژهای آنها که توسط آهنربا جذب می گردد، مواد مغناطیسی می گویند. بدیهی است که سایر مواد را که فاقد این خاصیت است، مواد غیر مغناطیسی می گویند.


    روشهای مختلف تشخیص قطبهای یک آهنربا :


    اگر یک آهنربا را از وسط بوسیله تکه نخ بسته و از محلی آویزان کنید، آهنربا در راستای شمال و جنوب مغناطیسی زمین قرار می گیرد.


    با توجه به اینکه در آهنرباها ، قطبهای همنام همدیگر را دفع و قطبهای غیر همنام همدیگر را جذب می کنند، لذا اگر یک آهنربای دیگر که قطبهای آن معلوم است، در اختیار داشته باشیم، به راحتی می توان قطبهای آهنربای دیگر را تشخیص داد.


    به کمک یک عقربه مغناطیسی و با استفاده از رانش و ربایش قطبها نیز میتوان این کار را انجام داد

  2. #12
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,058

    پيش فرض آهنربای الکتریکی

    دید کلی
    آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند. ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است. از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.

    عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند. از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند. زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد. با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد. بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.

    ساخت آهنربای الکتریکی ساده
    آهنربای الکتریکی ساده را می‌توان در منزل ساخت. کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم. بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود. مثلا در کوره گرم و سپس به آرامی سرد شود. سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد. گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.

    ساختار آهنربای الکتریکی
    میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است. ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند. در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.

    وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند. ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود. وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.

    هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود. بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند. به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.

    آهنربای الکتریکی پر قدرت
    تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است. در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند. در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود. گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند. ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.

    از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم. پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.

    تکنیک کاپیتزا
    کاپیتزا (P.L. kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد. او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید. در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.

    البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند. در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا).

  3. #13
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,058

    پيش فرض اثر فاراده

    اثر فاراده یا اثر مغناطیسی _ نوری یکی از ابتدائی‌ترین نشانه‌های بستگی درونی الکترومغناطیس و نور است. اعمال یک میدان مغناطیسی قوی در امتداد انتشار نور ، خطی که روی یک قطعه از شیشه فرود می‌آید، باعث چرخش صفحه ارتعاش آن می‌شود. این اثر حاکی از فعالیت نوری (خاصیتی از ماده که باعث می‌شود، میدان الکتریکی یک موج تخت خطی فرودی ، بچرخد) است، ولی بین این تمایز دو اثر وجود دارد.


    تاریخچه
    نخستین بار مایکل فاراده در سال 1224_1842 کشف کرد که شیوه انتشار نور در یک محیط مادی می‌تواند تحت تاثیر یک میدان خارجی قرار گیرد. وی دریافت که اعمال میدان مغناطیسی باعث چرخش صفحه ارتعاش می‌شود.

    مدوله‌ساز فاراده
    از هنگام کشف لیزر در اوایل دهه 1960 کوشش زیادی در جهت استفاده از پتانسیل عظیم نور لیزر به عنوان وسیله ارتباطاتی به عمل آمده است. یکی از اجرای تشکیل دهنده اساسی چنین ابزاری مدوله‌ساز است که عملکرد آن نشاندن اطلاعات برروی باریکه است. چنین ابزاری باید بتواند در سرعت‌های بالا و به شیوه‌ای نظام یافته ، به نحوی تغییر موج نوری را ایجاد کند.<br><br>مثلا ممکن است دامنه موج ، قطبش ، امتداد انتشار ، فاز ، یا فرکانس موج را به شیوه‌ای مربوط به سیگنالی که باید تراگسیلیده شود، تغییر دهد. به همین ترتیب اثر فاراده ، شالوده ممکن برای این مدوله‌ساز می‌تواند باشد. آشکار است که اگر قرار باشد دستگاهی از این نوع بطور موثر کار کند، هر واحد طول از محیط باید تاحد ممکن ، نور اندکی را بیاشامد و در همان حال باید تا حد ممکن به باریکه نور ، چرخش بیشتر دهد.

    ثابت وردت
    ثابت وردت مثبت متناظر است با یک ماده دیامغناطیس که برای آن در صورتی که نور موازی میدان اعمال شده (B) حرکت کند اثر فاراده l-گردان است. وقتی که در راستای پاد موازی با B انتشار می‌یابد، d –گردان است. ثابت وردت ضریبی است، که زاویه‌ای را که صفحه ارتعاشی در داخل آن می‌چرخد به میدان مغناطیس B و طول محیط d ربط می‌دهد. با تغییر بسامد دما تغییر می‌کند.<br><br>به فرض اگر میدان B بوسیله یک پیچه سیملوله‌ای در اطراف نمونه ایجاد شود، وقتی که ثابت وردت مثبت باشد صفحه ارتعاشی بدون توجه به امتداد انتشار باریکه ، در راستای محور پیچه در همان سویی می‌چرخد که جریان در پیچه شارش دارد. بنابراین می‌توان با چند بار بازتابش نور به جلو و عقب در درون نمونه این اثر را تقویت کرد.

    کاربردها
    این اثر برای تجزیه آمیزه‌های هیدروکربن‌ها استفاده می‌شود. زیرا هر کدام از اجزای تشکیل دهنده آن دارای چرخش مغناطیسی خاص خود است. به علاوه وقتی که این اثر در مطالعات طیف‌نمایی استفاده می‌شود، اطلاعاتی در مورد خواص حالت‌های انرژی بالای تراز زمینه بدست می‌دهد. اخیرا اثر فاراده کاربردهای حتی مهیج‌تر و امید‌ بخش‌تری نیز داشته است.

  4. #14
    آخر فروم باز Hidden-H's Avatar
    تاريخ عضويت
    Feb 2006
    محل سكونت
    گیلان
    پست ها
    1,058

    پيش فرض اثر مایسنر

    وقتی که یک ابر رسانا در یک میدان مغناطیسی سرد شود، در دمای گذار ، جریانهای ماندگار روی سطح به راه افتاده و به طریقی حرکت می‌‌کنند که شار مغناطیسی داخل نمونه را خنثی کنند. این درست به همان روشی است که پس از این که فلز را سرد کرده باشیم، یک میدان مغناطیسی به آن اعمال شود. این اثر یعنی این که یک ماده ابر رسانا حتی وقتی که در میدان مغناطیسی اعمال شده قرار گرفته باشد، دارای شار عبوری مغناطیسی در داخل نیست، اثر مایسنر نامیده می‌‌شود.


    مقدمه
    یک ماده رسانای کامل به صورت حلقه در نظر بگیرید. فرض کنید این نمونه در غیاب هر گونه میدان مغناطیسی ، مقاومت خود را از دست می‌‌دهد (نمونه را سرد می‌‌کنیم). حال یک میدان مغناطیسی اعمال می‌‌کنیم. چون چگالی شار مغناطیسی در فلز باید ثابت باشد و نیز چون در حالت قبل از اعمال میدان ، شار صفر بوده است، لذا باید بعد از اعمال میدان نیز شار صفر بماند. به چنین نمونه‌ای که در آن هیچ شار مغناطیسیی ، وقتی که میدان مغناطیسی اعمال می‌‌شود، وجود ندارد، دیامغناطیس کامل گفته می‌‌شود.

    در سال 1923 مایسنر و اوشن فلد ، دو دانشمند آلمانی ، توزیع شار مغناطیسی را در خارج از فلزات قلع و سرب که در یک میدان مغناطیسی تا دمای گذار (دمایی که ماده تبدیل به ابر رسانا می‌شود) اندازه گیری کردند. لازم به ذکر است که در این حالت ، در حالت اول شار مغناطیسی در درون ماده وجود دارد، لذا اگر بعد از این که ماده به ابر رسانا تبدیل شد، میدان را حذف کنیم، باید باز هم شار مغناطیسی در داخل آن وجود داشته باشد، اما مایسنر و اوشن ملاحظه کردند که نمونه‌های مورد آزمایش با وجود این که در میدان مغناطیسی سرد شده بودند، در دمای گذارشان بطور آنی به یک دیامغناطیس کامل تبدیل شده و شار داخلی آنها حذف گردید.

    بنابراین آنان دریافتند که ابر رسانا چیزی بیشتر از موادی که صرفا یک رسانای کامل هستند، می‌‌باشد. آنها خاصیت اضافی دیگری که یک فلز بدون مقاومت فاقد آن است، دارا هستند. یعنی در داخل یک فلز ابر رسانا همیشه میدان صفر است، در حالی که در داخل فلزی که بدون مقاومت است، ممکن است شار مغناطیسی موجود باشد، یا نباشد که بستگی به شرایط دارد.

    فرق یک ابر رسانا و یک رسانای کامل از نظر مغناطیس شدگی
    اگر فلزی را که فقط دارای مقاومت نیست، رسانای کامل بگوییم، @می‌‌توان گفت که مغناطیس شدگی یک رسانای کامل به ترتیبی که حالت نهایی میدان مغناطیسی و درجه حرارت اعمال شده به جسم بدست آید، بستگی خواهد داشت، اما مغناطیس شدگی یک ابر رسانا فقط به مقادیر میدان اعمال شده و درجه حرارت بستگی دارد و به ترتیبی که اندازه گرفته می‌‌شود، وابسته نیست.

    دلیل صفر بودن شار در داخل ماده ابر رسانا
    فرض کنید که یک نمونه در غیاب میدان مغناطیسی مقاومت الکتریکی خود را از دست می‌‌دهد و به ابر رسانا تبدیل می‌‌گردد. حال میدان مغناطیسی اعمال می‌‌شود. چون چگالی شار در فلز نمی‌‌تواند تغییر کند، پس باید شار حتی بعد از اعمال میدان نیز صفر باقی بماند. در حقیقت اعمال میدان مغناطیسی جریانهای القایی بدون مقاومتی را در روی سطح نمونه ایجاد می‌‌کند، طوری که چگالی شار مغناطیسی ایجاد شده توسط این جریانها دقیقا با چگالی شار میدان اعمال شده مساوی و مختلف‌الجهت است.

    به دلیل میرا نبودن این جریانها ، چگالی شار خالص داخل فلز در سطح ، صفر باقی می‌‌ماند. به فرض اگر جریان سطحی را با i و چگالی شار مغناطیسی ایجاد شده از این جریان را با B_i و چگالی شار اعمال شده را با B_a نشان دهیم، چگالی شار B_i دقیقا چگالی شار B_a را در همه جا داخل فلز خنثی می‌‌کند. این جریانهای سطحی را جریان پوششی می‌‌گویند.

    چگالی شار ایجاد شده توسط جریانهای ماندگار در مرزهای نمونه محو نمی‌‌شوند، اما خطوط شار حلقه‌های بسته‌ای را تشکیل می‌‌دهند که از طریق فضای خارج بر می‌‌گردند. با وجود این که چگالی این شار در داخل فلز همه جا با چگالی شار میدان اعمال شده ، مساوی و مختلف‌الجهت است، این شرایط در خارج فلز برقرار نیست. بنابراین به نظر می‌‌رسد که نمونه از ورود شار حاصل از میدان اعمال شده ، به درون خود جلوگیری می‌‌کند.

  5. #15
    حـــــرفـه ای Renjer Babi's Avatar
    تاريخ عضويت
    Dec 2005
    محل سكونت
    Canes Venatici
    پست ها
    1,448

    پيش فرض

    مغناطيس و الكتريسيته تاريخي طولاني و درازي دارند. الكتريسيته و مغناطيس ابتدا در قرن هشتم قبل از ميلاد مورد توجه يونانيان باستان قرار گرفتند. مهمترين عاملي كه موجب جذب و توجه مردم به الكتريسيته ومغناطيس شد، دو ماده طبيعي كهربا و كاني مگنتيت(سنگ مغناطيس) بود. كهربا، شيره برخي از درختاني است كه چوب نرمي دارند؛ هنگامي كه اين شيره از درخت بيرون مي آيد، پس از مدتي سفت مي شود. اين جامد سفت كه رنگي بين قهوه اي و زرد دارد، كهرباست. و اگر كهربا را به پارچه اي بماليم، باردار شده و مي تواند تكه هاي برگ يا كاغذ را جذب كند.

    سنگ مغناطيس، همان اكسيد آهن است؛ كه براده هاي آهن را جذب مي كند. سنگ هاي مغناطيسي مي توانند يكديگر را جذب كنند. و علت اين نامگذاري آنست كه اين سنگ در منطقه اي به نام "مگنزيا" يا "مغناطيس" براي نخستين بار كشف شد. كه به ماهيت اين سنگ، مغناطيس گفته مي شود. اگر يك تكه از اين سنگ ها را بر روي آب شناور كنيم، جهت آن در راستاي شمال-جنوب قرار مي گيرد. همين خاصيت سنگ مغناطيسي سبب شد كه در قرون گذشته دريانوردان از آن بعنوان جهت ياب استفاده كنند.

    دموكريتوس، كه يكي از فلاسفه بزرگ باستان و بنيانگذار تئوري اتمي است، معتقد است كه ميان سنگ مغناطيسي جرياني از ذرات بسيار ريز به نام اتم وجود دارد. و در اين جريان هنگامي كه اتم به آهن يا سنگ مغناطيسي ديگر برخورد مي كند، در برگشت به سوي سنگ مناطيس، سبب مي شود كه آهن را به دنبال خود بكشاند. ويليام گيلبرت يكي از نخستين دانشمنداني است كه در زمينه مغناطيس دست به آزمايش ها و بررسي هاي اساسي كرد. او مشاهده كرد كه براده هاي آهن در اطراف سنگ مغناطيس در راستاي منظمي قرار مي گيرند. و همچنين سنگ مغناطيس در حالت آويزان يا حتي سوزن هاي آهني در حالت شناور در راستاي شمال-جنوب قرار مي گيرند. او چنين پنداشت كه علت اين امر آنست كه زمين يك سنگ مغناطيس بسيار بزرگيست كه اينگونه عمل مي كند. او براي اثبات نظريه خود، يك سنگ مغناطيس را به صورت يك كره بزرگ در آورد و سپس در اطراف و بر روي سطح اين كره، سنگ هاي مغناطيسي كوچك و براده هاي آهني قرار داد و مشاهده كرد كه اين براده ها در راستاي شمال-جنوب قرار مي گيرند.

    قبل از اينكه به بحث در مورد خطوط و ميدان مغناطيسي آهنربا و زمين بپردازيم، لازم است كه به قطب هاي مغناطيسي و خاصيت آن اشاره اي كنيم.

    در آهنربا يا همان سنگ مغناطيسي، دو ناحيه وجود دارد كه نسبت به ساير نقاط ديگر آهنربا، خاصيت جذب براده هاي آهن بيشتر و راستاي اين براده ها به سمت اين نواحي است. كه به اين دو ناحيه، قطب هاي مغناطيسي مي گويند. اگر آهنربا را شناور قرار دهيم، قطبي كه به سمت شمال است را قطب شمال يا شمال ياب، و قطب مقابل آن را قطب جنوب يا جنوب ياب مي گويند. پس هر ماده مغناطيسي از دو قطب شمال وجنوب تشكيل شده است. در مغناطيس مانند الكتريسيته، قطب هاي ناهمنام يكديگر را جذب و قطب هاي همنام يكديگر را دفع مي كنند. پس در خاصيت مغناطيسي، نيروي دفع وجذب نيز وجود دارد. آزمايش ها نشان مي دهد كه اگر در اطراف يك آهنربا، قطب نما يا سنگ هاي مغناطيسي كوچك قرار دهيم، نيروي حاصله از مغناطيس بر قطب هاي آن ها اثر گذاشته، به طوري كه قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعكس قرار مي گيرد. و اين نشان مي دهد، كه در نقاط اطراف آهنربا، نيرويي وجود دارد كه بر قطب هاي قطب نما وارد مي شود و آن را در راستاي مشخصي قرار مي دهد. كه به مجموعه اي از اين نيروها يا نقاط، ميدان مغناطيسي مي گويند. ميدان مغناطيسي اطراف آهنربا را توسط خطوطي نشان مي دهند كه اين خطوط قطب جنوب(s) را به قطب شمال(n) وصل مي كند. و جهت اين خطوط از شمال(n) به جنوب(s) است. خطوط ميدان مغناطيسي ويژگي هايي دارند كه عبارتند از:

    1) خطوط همانطور كه قبلا گفته شد راستاو جهتشان از شمال به جنوب است.

    2) خطوط يكديگر را قطع نمي كنند.

    3) تراكم خطوط در نزديكي قطب ها بيشتر از نواحي ديگر است و اين نشان دهنده آن است كه نيروي مغناطيسي در اين نواحي زياد است.

    4) برآيند نيروهاي مماس بر خطوط ميدان در يك نقطه برابر با نيروي مغناطيسي در آن نقطه است.

    اكنون به سراغ علت تاثير نيروي مغناطيسي بر براده هاي آهن مي رويم. مي دانيم كه الكترون در ساختار تمام اجسام وجود دارد كه الكترون ها داراي دو قطب مغناطيسي مي باشند. بنابراين مي توان نتيجه گرفت كه تمام اجسام از ذراتي تشكيل شده اند كه داراي دو قطب مغناطيسي هستند كه به اين ذرات، دو قطبي مغناطيسي مي گويند و به موادي كه داراي دوقطبي مغناطيسي هستند، مواد مغناطيسي مي گويند. البته لزومي ندارد كه بگوييم اين دوقطبي ها همان الكترون ها هستند بلكه اين دوقطبي ها ذرات بنيادي مغناطيس هستند همانطور كه از الكترون بعنوان بار بنيادي در الكتريسيته ياد مي كنيم. اين دوقطبي هاي مغناطيسي مانند يك آهنربا عمل مي كنند و در اطراف خود ميدان مغناطيسي توليد مي كنند. آهن نيز داراي اين دوقطبي هاي مغناطيسي است اما در آهن دو قطبي هاي مغناطيسي به گونه اي رفتار مي كنند، كه خاصيت مغناطيسي يكديگر را خنثي مي كنند. و هنگامي كه در يك ميدان مغناطيسي قرار مي گيرند، بر اين دوقطبي ها نيروي مغناطيسي وارد مي شود، به طوري كه قطب شمال تمام اين دوقطبي ها در جهت خطوط ميدان قرار مي گيرند. و آهن ساختار ساختماني منظمي پيدا مي كند و به يك آهنربا تبديل مي شود. كه از آن مي توان بعنوان يك قطب نما استفاده كرد. اگر اين آهنربا را به دوقسمت تقسيم كنيم، اين آهنربا باز هم خاصيت مغناطيسي خود را حفظ مي كند، زيرا دوقطبي هاي مغناطيسي در يك جهت قرار دارند و اين دو قطبي ها عامل ايجاد خاصيت مغناطيسي در آهنربا هستند.

    سوالي كه پيش مي آيد اين است كه آيا فقط آهن تحت تاثير ميدان مغناطيسي قرار مي گيرد؟ براي پاسخ به اين سوال برمي گرديم به مواد مغناطيسي كه از دو قطبي هاي مغناطيسي تشكيل شده اند در مواد مغناطيسي، حركت و رفتار دوقطبي ها به گونه اي است كه اثر ميدان مغناطيسي يكديگر را خنثي مي كنند. مواد مغناطيسي از نظر رفتار دوقطبي هاي مغناطيسي به سه دسته تقسيم مي كنند:

    الف) مواد پارامغناطيس ب) مواد ديامغناطيس پ) مواد فرومغناطيس



    الف) مواد پارامغناطيس: موادي هستند كه حركت و جنبش دوقطبي هايشان راحت و آسان تر است. هنگامي كه اين مواد را در ميدان مغناطيسي قرار دهيم، بر دوقطبي هاي آن نيرو وارد شده و تعداد زيادي از آن ها در خطوط ميدان به طوري كه قطب هاي شمال در جهت خطوط قرار مي گيرند. و اين امر سبب مي شود كه اين مواد به يك آهنرباي قوي تبديل شود. اما چون حركت وجنبش اين دو قطبي ها سريع است، با برداشتن اين مواد از ميدان مغناطيسي، اين دوقطبي ها به سرعت از مسير خطوط خارج و به حالت كاتوره اي قبلي برمي گردند و اين مواد در خارج از خطوط ميدان به سرعت خاصيت مغناطيسي خود را از دست مي دهند. مانند آلومينيوم.

    ب) مواد ديامغناطيس : مواد ديامغناطيس موادي هستند كه اگر در ميدان مغناطيسي قرار بگيرند از آهنربا دفع مي شوند. در اين مواد برآيند گشتاور دو قطبي مغناطيسي صفر است و در واقع فاقد دوقطبي ذاتي هستند و هنگامي كه در ميدان مغناطيسي قرار مي گيرند، گشتاور دو قطبي در آن ها القا مي شود اما جهت اين دوقطبي هاي القا شده بر خلاف جهت ميدان مغناطيسي خارجي مي باشد و اين امر باعث مي شود كه ماده ديامغناطيس از ميدان مغناطيسي دفع شود. البته اين خاصيت در تمام مواد وجود دارد، و هنگامي اين خاصيت در مواد ظاهر مي شود كه خاصيت پارامغناطيسي آن ها ضعيف باشد.مانند: بيسموت.

    پ) مواد فرومغناطيس : اين مواد مانند مواد پارامغناطيس است اما با اين تفاوت كه در اين مواد مجموعه اي از دوقطبي هاي مغناطيسي در يك جهت و راستا قرار دارند كه اين مجموعه ها در راستا و جهت هاي متفاوتي قرار دارند به طوري كه اثر ميدان يكديگر را خنثي مي كنند. كه به اين مجموعه از دوقطبي هاي مغناطيسي كه در يك استا قرار دارند، حوزه مغناطيسي مي گويند. هنگامي كه اين مواد در ميدان مغناطيسي قرار مي گيرند، بر حوزه هاي مغناطيسي نيرو وارد مي شود و آن ها را در جهت ميدان قرار مي دهند. خاصيت مغناطيسي اين مواد به سرعت تغيير مسير اين حوزه ها و قرار گرفتن در جهت ميدان بستگي دارد. كه از اين لحاظ مواد فرومغناطيس را به دو دسته تقسيم مي كنند:

    1) مواد فرومغناطيس نرم: در اين مواد سرعت تغيير حوزه ها بسيار آسان و سريع است و به همين خاطر در ميدان مغناطيسي اين حوزه ها به سرعت در جهت خطوط ميدان قرار مي گيرند و خاصيت مغناطيسي بسيار قوي بدست مي آورند. اما همينكه اين مواد را از ميدان دور كنيم، جهت اين حوزه ها به سرعت تغيير و به حالت كاتوره اي قبلي بر مي گردند. مانند آهن

    2) مواد فرومغناطيسي سخت: در اين مواد سرعت تغيير حوزه ها بسيار سخت و كُند است و همين كه در ميدان قرار مي گيرند، اين حوزه ها به كندي در جهت خطوط قرار مي گيرند و خاصيت مغناطيسي آن ها نسبت به مواد فرومغناطيس نرم ضعيفتر است؛ اما همين كه از ميدان دور مي شوند بر خلاف مواد فرومغناطيس نرم خاصيت مغناطيسي خود را حفظ مي كنند.مانند آلياژ هاي نيكل.

    پس مواد پارامغناطيس و فرومغناطيس تحت تاثير ميدان مغناطيسي قرار مي گيرند و به يك آهنربا تبديل مي شوند.

    در قرن هيجدهم هانس اورستد نشان داد كه در اطراف سيم حامل جريان ميدان مغناطيسي ايجاد مي شود و بعد ها آمپر و مايكل فارادي در اين زمينه دست به فعاليت هاي گسترده اي زدند. آن ها نشان دادند كه در اطراف يك سيم حامل جريان، ميدان مغناطيسي توليد مي شود و حتي موفق شدند كه روابط كمي آن را محاسبه كنند. بنابراين منبع توليد ميدان مغناطيسي عبارتند از:سنگ مغناطيس يا همان آهنرباي طبيعي و جريان الكتريكي. البته بعدها ماكسول نتيجه گرفت كه بر اثر تغيير جريان الكتريكي، ميدان مغناطيسي در فضا منتشر مي شود و همچنين براثر تغيير ميدان مغناطيسي، جريان الكتريكي در فضا توليد مي شود كه نتيجه اين، امواج الكترومغناطيسي است.

    و از طرفي تغيير ميزان عبور ميدان مغناطيسي از يك رسانا، باعث توليد جريان الكتريكي در همان رسانا مي شود. پس منبع توليد ميدان الكتريكي عبارتند از: اختلاف پتانسيل بين دو سر رسانا و تغيير شار(ميزان عبور ميدان) مغناطيسي است.

    پس مي توان اينگونه نتيجه گرفت كه الكتريسيته و مغناطيس باهم در ارتباطند و به جر‌‌أت مي توان گفت كه يكي بدون ديگري معني ندارد. چون وجود يكي باعث پيدايش ديگري مي شود.

    مي دانيم كه ذرات باردار تحت تاثير ميدان الكتريكي يا نيروي كولني قرار مي گيرند. اگر اين ذرات وارد ميدان مغناطيسي شوند تحت تاثير نيروي ديگري كه همان نيروي مغناطيسي است مي شوند. آزمايش ها نشان مي دهند كه ميزان انحراف ذره باردار به بزرگي ميدان، اندازه بار، سرعت و زاويه حركت ذره بستگي دارد. اگر اين ذره در راستاي خطوط ميدان حركت كند، هيچ نيرويي مغناطيسي بر آن وارد نمي شود. نيروي مغناطيسي بر راستاي حركت ذره عمود است و بر سرعت آن تاثيري نمي گذارد و فقط جهت بردار حركت آن را تغيير مي دهد. به همين دليل اگر ذره باردار وارد ميدان مغناطيسي شود حركت مارپيچي يا دايره اي خواهد داشت. اگر ذره به طور عمود بر راستاي خطوط وارد ميدان شود، چون اندازه سرعتش ثابت و نيروي وارده بر آن عمود بر جهت حركت است، شتاب مركز گرا خواهد گرفت و اين امر موجب مي شود كه ذره در ميدان يك مسير دايره اي داشته باشد. البته ذره باردار بر اثر حركتش مقداري از انرژي خود را به صورت امواج الكترومغناطيسي گسيل مي كند و انرژي آن كاهش و سرعتش كم مي شود و به همين خاطر شعاع حركت دايره اي آن در طي مدت زماني، كوچك و كوچكتر مي شود. و اگر به صورت غير عمود بر خطوط ميدان وارد شود، حركت مارپيچي خواهد داشت.

    همين خاصيت ذرات باردار در ميدان مغناطيسي سبب مي شود كه ما را از آسيب هاي ذرات باردار و پرانرژي كيهاني كه به زمين برخورد مي كنند، مصون نگاه دارد.

    در اطراف كره زمين ميدان مغناطيسي وجود دارد و طبق نظريه اي كه گيلبرت پيشنهاد كرد، زمين يك آهنرباي بزرگي است كه قطب شمالش در قطب جنوب جغرافيايي و قطب جنوب مغناطيسي در قطب شمال جغرافيايي قرار دارد كه ميدان مغناطيسي در اين دو قطب نسبت به ساير نواحي ديگر كره زمين قوي تر مي باشند. ذرات باردار و پر انرژي كيهاني كه به سوي زمين مي آيند گرفتار ميدان مغناطيسي زمين شده و حركت مارپيچي به خود مي گيرند كه به اين منطقه، كمربند "وان آلن" مي گويند.اين ذرات با حركت مارپيچي خود به سمت دو قطب حركت مي كنند. اين ذرات با نزديك شدن به دو قطب بر اثر برخورد به لايه هاي بالايي جو قطب شمال و جنوب، مقدار زيادي از انرژي خود را ازدست مي دهند كه به صورت تابش آزاد و روشنايي را در دو قطب ايجاد مي كنند كه به اين روشنايي، شفق هاي قطبي مي گويند.

    علت ايجاد ميدان مغناطيسي در اطراف زمين و يا آهنربا بودن زمين، سوالي است كه ذهن دانشمندان را در طي چند ده مشغول كرده بود. نظريه اي كه توانست در توضيح علت ميدان مغناطيسي موفق ظاهر شود، را بيان مي كنيم:

    در درون زمين فلزاتي نظير آهن و نيكل به صورت مذاب و گداخته وجود دارند كه در حال حركت و جنبش هستند. حركت اين مواد از هسته شروع شده و به نزديكي سطح زمين نزديك شده و دوباره به هسته و مركز زمين بر مي گردند. اين مواد مذاب با حركت رفت وبرگشتي كه دارند باعث پيدايش جريان الكتريكي در درون زمين مي شوند. از همين خاصيت الكتريكي مواد مذاب درون زمين، براي پيش بيني وقوع فوران آتشفشان يا زلزله استفاده مي كنند. جريان الكتريكي كه اين مواد مذاب ايجاد مي كنند، باعث پيداش ميدان مغناطيسي در اطراف زمين مي شود. خطوط ميدان مغناطيسي به اينگونه هستند كه از هسته به قطب جنوب جغرافيايي وصل و سپس از قطب جنوب به قطب شمال و از آنجا دوباره به هسته وصل مي شوند. و به اين گونه اين خطوط در اطراف زمين رسم مي شوند.

    قطب هاي مغناطيسي زمين بر روي قطب هاي جغرافيايي آن منطبق نيستند و امروزه حدود 11 درجه اختلاف دارند.

    بررسي ها و مطالعه آثار نشان مي دهند كه ميدان مغنطيسي زمين ثابت نيست و تغيير مي كند. آثاري كه از روي سنگ هاي زمين بدست آمده حاكي از آنست كه ميدان مغناطيسي زمين به مدت حدود 800000 سال وارونه بوده و حدود 100000 سال دچار افت شديدي مي شود. علت اين امر آنست كه مواد مذاب و گداخته حركت رفت و برگشتي كاتوره اي دارند كه سرعتشان حدود 5 سانتي متر در روز است. و جابجايي اين مواد باعث تغيير جريان الكتريكي و درنتيجه ميدان مغناطيسي زمين مي شود. البته دانشمندان در تلاش هستند تا بتوانند به ساختار كاتوره اي تغيير ميدان مغناطيسي در آينده دست يابند.

  6. #16
    حـــــرفـه ای Renjer Babi's Avatar
    تاريخ عضويت
    Dec 2005
    محل سكونت
    Canes Venatici
    پست ها
    1,448

    پيش فرض مغناطیس سلطان میدان ها

    مغناطيس و الكتريسيته تاريخي طولاني و درازي دارند. الكتريسيته و مغناطيس ابتدا در قرن هشتم قبل از ميلاد مورد توجه يونانيان باستان قرار گرفتند. مهمترين عاملي كه موجب جذب و توجه مردم به الكتريسيته ومغناطيس شد، دو ماده طبيعي كهربا و كاني مگنتيت(سنگ مغناطيس) بود. كهربا، شيره برخي از درختاني است كه چوب نرمي دارند؛ هنگامي كه اين شيره از درخت بيرون مي آيد، پس از مدتي سفت مي شود. اين جامد سفت كه رنگي بين قهوه اي و زرد دارد، كهرباست. و اگر كهربا را به پارچه اي بماليم، باردار شده و مي تواند تكه هاي برگ يا كاغذ را جذب كند.

    سنگ مغناطيس، همان اكسيد آهن است؛ كه براده هاي آهن را جذب مي كند. سنگ هاي مغناطيسي مي توانند يكديگر را جذب كنند. و علت اين نامگذاري آنست كه اين سنگ در منطقه اي به نام "مگنزيا" يا "مغناطيس" براي نخستين بار كشف شد. كه به ماهيت اين سنگ، مغناطيس گفته مي شود. اگر يك تكه از اين سنگ ها را بر روي آب شناور كنيم، جهت آن در راستاي شمال-جنوب قرار مي گيرد. همين خاصيت سنگ مغناطيسي سبب شد كه در قرون گذشته دريانوردان از آن بعنوان جهت ياب استفاده كنند.

    دموكريتوس، كه يكي از فلاسفه بزرگ باستان و بنيانگذار تئوري اتمي است، معتقد است كه ميان سنگ مغناطيسي جرياني از ذرات بسيار ريز به نام اتم وجود دارد. و در اين جريان هنگامي كه اتم به آهن يا سنگ مغناطيسي ديگر برخورد مي كند، در برگشت به سوي سنگ مناطيس، سبب مي شود كه آهن را به دنبال خود بكشاند. ويليام گيلبرت يكي از نخستين دانشمنداني است كه در زمينه مغناطيس دست به آزمايش ها و بررسي هاي اساسي كرد. او مشاهده كرد كه براده هاي آهن در اطراف سنگ مغناطيس در راستاي منظمي قرار مي گيرند. و همچنين سنگ مغناطيس در حالت آويزان يا حتي سوزن هاي آهني در حالت شناور در راستاي شمال-جنوب قرار مي گيرند. او چنين پنداشت كه علت اين امر آنست كه زمين يك سنگ مغناطيس بسيار بزرگيست كه اينگونه عمل مي كند. او براي اثبات نظريه خود، يك سنگ مغناطيس را به صورت يك كره بزرگ در آورد و سپس در اطراف و بر روي سطح اين كره، سنگ هاي مغناطيسي كوچك و براده هاي آهني قرار داد و مشاهده كرد كه اين براده ها در راستاي شمال-جنوب قرار مي گيرند.

    قبل از اينكه به بحث در مورد خطوط و ميدان مغناطيسي آهنربا و زمين بپردازيم، لازم است كه به قطب هاي مغناطيسي و خاصيت آن اشاره اي كنيم.

    در آهنربا يا همان سنگ مغناطيسي، دو ناحيه وجود دارد كه نسبت به ساير نقاط ديگر آهنربا، خاصيت جذب براده هاي آهن بيشتر و راستاي اين براده ها به سمت اين نواحي است. كه به اين دو ناحيه، قطب هاي مغناطيسي مي گويند. اگر آهنربا را شناور قرار دهيم، قطبي كه به سمت شمال است را قطب شمال يا شمال ياب، و قطب مقابل آن را قطب جنوب يا جنوب ياب مي گويند. پس هر ماده مغناطيسي از دو قطب شمال وجنوب تشكيل شده است. در مغناطيس مانند الكتريسيته، قطب هاي ناهمنام يكديگر را جذب و قطب هاي همنام يكديگر را دفع مي كنند. پس در خاصيت مغناطيسي، نيروي دفع وجذب نيز وجود دارد. آزمايش ها نشان مي دهد كه اگر در اطراف يك آهنربا، قطب نما يا سنگ هاي مغناطيسي كوچك قرار دهيم، نيروي حاصله از مغناطيس بر قطب هاي آن ها اثر گذاشته، به طوري كه قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعكس قرار مي گيرد. و اين نشان مي دهد، كه در نقاط اطراف آهنربا، نيرويي وجود دارد كه بر قطب هاي قطب نما وارد مي شود و آن را در راستاي مشخصي قرار مي دهد. كه به مجموعه اي از اين نيروها يا نقاط، ميدان مغناطيسي مي گويند. ميدان مغناطيسي اطراف آهنربا را توسط خطوطي نشان مي دهند كه اين خطوط قطب جنوب(s) را به قطب شمال(n) وصل مي كند. و جهت اين خطوط از شمال(n) به جنوب(s) است. خطوط ميدان مغناطيسي ويژگي هايي دارند كه عبارتند از:

    1) خطوط همانطور كه قبلا گفته شد راستاو جهتشان از شمال به جنوب است.

    2) خطوط يكديگر را قطع نمي كنند.

    3) تراكم خطوط در نزديكي قطب ها بيشتر از نواحي ديگر است و اين نشان دهنده آن است كه نيروي مغناطيسي در اين نواحي زياد است.

    4) برآيند نيروهاي مماس بر خطوط ميدان در يك نقطه برابر با نيروي مغناطيسي در آن نقطه است.

    اكنون به سراغ علت تاثير نيروي مغناطيسي بر براده هاي آهن مي رويم. مي دانيم كه الكترون در ساختار تمام اجسام وجود دارد كه الكترون ها داراي دو قطب مغناطيسي مي باشند. بنابراين مي توان نتيجه گرفت كه تمام اجسام از ذراتي تشكيل شده اند كه داراي دو قطب مغناطيسي هستند كه به اين ذرات، دو قطبي مغناطيسي مي گويند و به موادي كه داراي دوقطبي مغناطيسي هستند، مواد مغناطيسي مي گويند. البته لزومي ندارد كه بگوييم اين دوقطبي ها همان الكترون ها هستند بلكه اين دوقطبي ها ذرات بنيادي مغناطيس هستند همانطور كه از الكترون بعنوان بار بنيادي در الكتريسيته ياد مي كنيم. اين دوقطبي هاي مغناطيسي مانند يك آهنربا عمل مي كنند و در اطراف خود ميدان مغناطيسي توليد مي كنند. آهن نيز داراي اين دوقطبي هاي مغناطيسي است اما در آهن دو قطبي هاي مغناطيسي به گونه اي رفتار مي كنند، كه خاصيت مغناطيسي يكديگر را خنثي مي كنند. و هنگامي كه در يك ميدان مغناطيسي قرار مي گيرند، بر اين دوقطبي ها نيروي مغناطيسي وارد مي شود، به طوري كه قطب شمال تمام اين دوقطبي ها در جهت خطوط ميدان قرار مي گيرند. و آهن ساختار ساختماني منظمي پيدا مي كند و به يك آهنربا تبديل مي شود. كه از آن مي توان بعنوان يك قطب نما استفاده كرد. اگر اين آهنربا را به دوقسمت تقسيم كنيم، اين آهنربا باز هم خاصيت مغناطيسي خود را حفظ مي كند، زيرا دوقطبي هاي مغناطيسي در يك جهت قرار دارند و اين دو قطبي ها عامل ايجاد خاصيت مغناطيسي در آهنربا هستند.

    سوالي كه پيش مي آيد اين است كه آيا فقط آهن تحت تاثير ميدان مغناطيسي قرار مي گيرد؟ براي پاسخ به اين سوال برمي گرديم به مواد مغناطيسي كه از دو قطبي هاي مغناطيسي تشكيل شده اند در مواد مغناطيسي، حركت و رفتار دوقطبي ها به گونه اي است كه اثر ميدان مغناطيسي يكديگر را خنثي مي كنند. مواد مغناطيسي از نظر رفتار دوقطبي هاي مغناطيسي به سه دسته تقسيم مي كنند:

    الف) مواد پارامغناطيس ب) مواد ديامغناطيس پ) مواد فرومغناطيس



    الف) مواد پارامغناطيس: موادي هستند كه حركت و جنبش دوقطبي هايشان راحت و آسان تر است. هنگامي كه اين مواد را در ميدان مغناطيسي قرار دهيم، بر دوقطبي هاي آن نيرو وارد شده و تعداد زيادي از آن ها در خطوط ميدان به طوري كه قطب هاي شمال در جهت خطوط قرار مي گيرند. و اين امر سبب مي شود كه اين مواد به يك آهنرباي قوي تبديل شود. اما چون حركت وجنبش اين دو قطبي ها سريع است، با برداشتن اين مواد از ميدان مغناطيسي، اين دوقطبي ها به سرعت از مسير خطوط خارج و به حالت كاتوره اي قبلي برمي گردند و اين مواد در خارج از خطوط ميدان به سرعت خاصيت مغناطيسي خود را از دست مي دهند. مانند آلومينيوم.

    ب) مواد ديامغناطيس : مواد ديامغناطيس موادي هستند كه اگر در ميدان مغناطيسي قرار بگيرند از آهنربا دفع مي شوند. در اين مواد برآيند گشتاور دو قطبي مغناطيسي صفر است و در واقع فاقد دوقطبي ذاتي هستند و هنگامي كه در ميدان مغناطيسي قرار مي گيرند، گشتاور دو قطبي در آن ها القا مي شود اما جهت اين دوقطبي هاي القا شده بر خلاف جهت ميدان مغناطيسي خارجي مي باشد و اين امر باعث مي شود كه ماده ديامغناطيس از ميدان مغناطيسي دفع شود. البته اين خاصيت در تمام مواد وجود دارد، و هنگامي اين خاصيت در مواد ظاهر مي شود كه خاصيت پارامغناطيسي آن ها ضعيف باشد.مانند: بيسموت.

    پ) مواد فرومغناطيس : اين مواد مانند مواد پارامغناطيس است اما با اين تفاوت كه در اين مواد مجموعه اي از دوقطبي هاي مغناطيسي در يك جهت و راستا قرار دارند كه اين مجموعه ها در راستا و جهت هاي متفاوتي قرار دارند به طوري كه اثر ميدان يكديگر را خنثي مي كنند. كه به اين مجموعه از دوقطبي هاي مغناطيسي كه در يك استا قرار دارند، حوزه مغناطيسي مي گويند. هنگامي كه اين مواد در ميدان مغناطيسي قرار مي گيرند، بر حوزه هاي مغناطيسي نيرو وارد مي شود و آن ها را در جهت ميدان قرار مي دهند. خاصيت مغناطيسي اين مواد به سرعت تغيير مسير اين حوزه ها و قرار گرفتن در جهت ميدان بستگي دارد. كه از اين لحاظ مواد فرومغناطيس را به دو دسته تقسيم مي كنند:

    1) مواد فرومغناطيس نرم: در اين مواد سرعت تغيير حوزه ها بسيار آسان و سريع است و به همين خاطر در ميدان مغناطيسي اين حوزه ها به سرعت در جهت خطوط ميدان قرار مي گيرند و خاصيت مغناطيسي بسيار قوي بدست مي آورند. اما همينكه اين مواد را از ميدان دور كنيم، جهت اين حوزه ها به سرعت تغيير و به حالت كاتوره اي قبلي بر مي گردند. مانند آهن

    2) مواد فرومغناطيسي سخت: در اين مواد سرعت تغيير حوزه ها بسيار سخت و كُند است و همين كه در ميدان قرار مي گيرند، اين حوزه ها به كندي در جهت خطوط قرار مي گيرند و خاصيت مغناطيسي آن ها نسبت به مواد فرومغناطيس نرم ضعيفتر است؛ اما همين كه از ميدان دور مي شوند بر خلاف مواد فرومغناطيس نرم خاصيت مغناطيسي خود را حفظ مي كنند.مانند آلياژ هاي نيكل.

    پس مواد پارامغناطيس و فرومغناطيس تحت تاثير ميدان مغناطيسي قرار مي گيرند و به يك آهنربا تبديل مي شوند.

    در قرن هيجدهم هانس اورستد نشان داد كه در اطراف سيم حامل جريان ميدان مغناطيسي ايجاد مي شود و بعد ها آمپر و مايكل فارادي در اين زمينه دست به فعاليت هاي گسترده اي زدند. آن ها نشان دادند كه در اطراف يك سيم حامل جريان، ميدان مغناطيسي توليد مي شود و حتي موفق شدند كه روابط كمي آن را محاسبه كنند. بنابراين منبع توليد ميدان مغناطيسي عبارتند از:سنگ مغناطيس يا همان آهنرباي طبيعي و جريان الكتريكي. البته بعدها ماكسول نتيجه گرفت كه بر اثر تغيير جريان الكتريكي، ميدان مغناطيسي در فضا منتشر مي شود و همچنين براثر تغيير ميدان مغناطيسي، جريان الكتريكي در فضا توليد مي شود كه نتيجه اين، امواج الكترومغناطيسي است.

    و از طرفي تغيير ميزان عبور ميدان مغناطيسي از يك رسانا، باعث توليد جريان الكتريكي در همان رسانا مي شود. پس منبع توليد ميدان الكتريكي عبارتند از: اختلاف پتانسيل بين دو سر رسانا و تغيير شار(ميزان عبور ميدان) مغناطيسي است.

    پس مي توان اينگونه نتيجه گرفت كه الكتريسيته و مغناطيس باهم در ارتباطند و به جر‌‌أت مي توان گفت كه يكي بدون ديگري معني ندارد. چون وجود يكي باعث پيدايش ديگري مي شود.

    مي دانيم كه ذرات باردار تحت تاثير ميدان الكتريكي يا نيروي كولني قرار مي گيرند. اگر اين ذرات وارد ميدان مغناطيسي شوند تحت تاثير نيروي ديگري كه همان نيروي مغناطيسي است مي شوند. آزمايش ها نشان مي دهند كه ميزان انحراف ذره باردار به بزرگي ميدان، اندازه بار، سرعت و زاويه حركت ذره بستگي دارد. اگر اين ذره در راستاي خطوط ميدان حركت كند، هيچ نيرويي مغناطيسي بر آن وارد نمي شود. نيروي مغناطيسي بر راستاي حركت ذره عمود است و بر سرعت آن تاثيري نمي گذارد و فقط جهت بردار حركت آن را تغيير مي دهد. به همين دليل اگر ذره باردار وارد ميدان مغناطيسي شود حركت مارپيچي يا دايره اي خواهد داشت. اگر ذره به طور عمود بر راستاي خطوط وارد ميدان شود، چون اندازه سرعتش ثابت و نيروي وارده بر آن عمود بر جهت حركت است، شتاب مركز گرا خواهد گرفت و اين امر موجب مي شود كه ذره در ميدان يك مسير دايره اي داشته باشد. البته ذره باردار بر اثر حركتش مقداري از انرژي خود را به صورت امواج الكترومغناطيسي گسيل مي كند و انرژي آن كاهش و سرعتش كم مي شود و به همين خاطر شعاع حركت دايره اي آن در طي مدت زماني، كوچك و كوچكتر مي شود. و اگر به صورت غير عمود بر خطوط ميدان وارد شود، حركت مارپيچي خواهد داشت.

    همين خاصيت ذرات باردار در ميدان مغناطيسي سبب مي شود كه ما را از آسيب هاي ذرات باردار و پرانرژي كيهاني كه به زمين برخورد مي كنند، مصون نگاه دارد.

    در اطراف كره زمين ميدان مغناطيسي وجود دارد و طبق نظريه اي كه گيلبرت پيشنهاد كرد، زمين يك آهنرباي بزرگي است كه قطب شمالش در قطب جنوب جغرافيايي و قطب جنوب مغناطيسي در قطب شمال جغرافيايي قرار دارد كه ميدان مغناطيسي در اين دو قطب نسبت به ساير نواحي ديگر كره زمين قوي تر مي باشند. ذرات باردار و پر انرژي كيهاني كه به سوي زمين مي آيند گرفتار ميدان مغناطيسي زمين شده و حركت مارپيچي به خود مي گيرند كه به اين منطقه، كمربند "وان آلن" مي گويند.اين ذرات با حركت مارپيچي خود به سمت دو قطب حركت مي كنند. اين ذرات با نزديك شدن به دو قطب بر اثر برخورد به لايه هاي بالايي جو قطب شمال و جنوب، مقدار زيادي از انرژي خود را ازدست مي دهند كه به صورت تابش آزاد و روشنايي را در دو قطب ايجاد مي كنند كه به اين روشنايي، شفق هاي قطبي مي گويند.

    علت ايجاد ميدان مغناطيسي در اطراف زمين و يا آهنربا بودن زمين، سوالي است كه ذهن دانشمندان را در طي چند ده مشغول كرده بود. نظريه اي كه توانست در توضيح علت ميدان مغناطيسي موفق ظاهر شود، را بيان مي كنيم:

    در درون زمين فلزاتي نظير آهن و نيكل به صورت مذاب و گداخته وجود دارند كه در حال حركت و جنبش هستند. حركت اين مواد از هسته شروع شده و به نزديكي سطح زمين نزديك شده و دوباره به هسته و مركز زمين بر مي گردند. اين مواد مذاب با حركت رفت وبرگشتي كه دارند باعث پيدايش جريان الكتريكي در درون زمين مي شوند. از همين خاصيت الكتريكي مواد مذاب درون زمين، براي پيش بيني وقوع فوران آتشفشان يا زلزله استفاده مي كنند. جريان الكتريكي كه اين مواد مذاب ايجاد مي كنند، باعث پيداش ميدان مغناطيسي در اطراف زمين مي شود. خطوط ميدان مغناطيسي به اينگونه هستند كه از هسته به قطب جنوب جغرافيايي وصل و سپس از قطب جنوب به قطب شمال و از آنجا دوباره به هسته وصل مي شوند. و به اين گونه اين خطوط در اطراف زمين رسم مي شوند.

    قطب هاي مغناطيسي زمين بر روي قطب هاي جغرافيايي آن منطبق نيستند و امروزه حدود 11 درجه اختلاف دارند.

    بررسي ها و مطالعه آثار نشان مي دهند كه ميدان مغنطيسي زمين ثابت نيست و تغيير مي كند. آثاري كه از روي سنگ هاي زمين بدست آمده حاكي از آنست كه ميدان مغناطيسي زمين به مدت حدود 800000 سال وارونه بوده و حدود 100000 سال دچار افت شديدي مي شود. علت اين امر آنست كه مواد مذاب و گداخته حركت رفت و برگشتي كاتوره اي دارند كه سرعتشان حدود 5 سانتي متر در روز است. و جابجايي اين مواد باعث تغيير جريان الكتريكي و درنتيجه ميدان مغناطيسي زمين مي شود. البته دانشمندان در تلاش هستند تا بتوانند به ساختار كاتوره اي تغيير ميدان مغناطيسي در آينده دست يابند.

  7. #17
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض بمبهاي الكترومغناطيسي

    بمبهاي الكترومغناطيسي

    سلاح تازه اي كه ساخت آن بسيار ساده و تأثير آن كاملاً گسترده است ، نگراني هايي را براي دانشمندان و دولتمردان بوجود آورده است . به نوشته هفته نامه علمي نيوساينتيست اين سلاح مؤثر « بمب الكترو مغناطيسي » نام دارد كه اساس و عصاره آنها چيزي نيست جز يك پرتو شديد و آني از موجهاي راديويي يا مايكروويو كه قادر است همه مدارهاي الكتريكي را كه در سر راهش قرار گيرد ، نابود سازد . در دوراني كه بافت و ساخت تمامي جوامع تا حدود بسيار زيادي به دستاوردهاي علمي از نوع الكترونيكي وابسته است و همه امور از تجهيزات بيمارستانها تا شبكه هاي مخابراتي و از رايانه هاي بانكها و مؤسسات بزرگ مالي يا نظامي تا دستگاههاي نظارت و مراقبت ، نحوه كار ماشينها و ادوات صنعتي همگي متكي به ساختارهاي الكترونيك هستند ، كاربرد بمبهاي الكترو مغناطيس مي تواند سبب فلج شدن روند زندگي در مناطق بزرگ مسكوني شود . به اعتقاد برخي كارشناسان به نظر مي رسد كشورهاي پيشرفته پيشاپيش چنين سلاحي را تكميل كرده اند و حتي برخي بر اين باورند كه ناتو در جريان جنگ عليه صربستان از اين قبيل بمبها براي تخريب دستگاههاي رادار صربها بهره گرفته است . توجه به بمبهاي الكترو مغناطيس حدود نيم قرن قبل مطرح شد . متخصصان در آن هنگام به اين نكته توجه كردند كه اگر بمبي هسته اي منفجر شود ، امواج الكترومغناطيسي كه در اثر انفجار پديد مي آيد تمامي مدارهاي الكترونيك را نابود مي سازد . اما مسئله اين بود كه به چه ترتيب بتوان موج انفجار را ايجاد كرد بدون آنكه نياز به انجام يك انفجار هسته اي باشد ؟

    دانشمندان مي دانستند كه كليد حل اين مسئله در ايجاد پالسهاي ( تپ هاي ) الكتريكي كه با عمر بسيار كوتاه و قدرت زياد نهفته است . اگر اينگونه پالسها به درون يك آنتن فرستنده تغذيه شوند ، امواج الكترومغناطيس قدرتمندي در فركانسهاي ( بسامد ) مختلف از آنتن بيرون مي آيند ، هر چه فركانس موج بالاتر باشد ، امكان تأثيرگذاري آن بر مدارهاي الكترونيك دستگاهها بيشتر خواهد شد . بزودي اين نكته روشن شد كه مناسب ترين امواج الكترومغناطيس براي ساخت بمبهاي الكترومغناطيس امواج با فركانس در حدود گيگا هرتز است . اين نوع امواج قادرند به درون انواع دستگاههاي الكترونيك نفوذ كنند و آنها را از كار بيندازند . براي توليد امواج با فركانس گيگاهرتز نياز به توليد پالسهاي الكترونيكي بود كه تنها 100 پيكو ثانيه تدوام پيدا كنند . يك شيوه توليد اين نوع پالسها استفاده از دستگاهي به نام « مولد ژنراتور ماركس » بود . اين دستگاه عمدتاً متشكل است از مجموعه بزرگي از خازنها كه يكي پس از ديگري تخليه مي شوند و نوعي جريان الكتريكي موجي شكل بوجود مي آورند . با گذراندن اين جريان از درون مجموعه اي از كليدهاي بسيار سريع مي توان پالسهايي با دوره زماني 300 پيكوثانيه توليد كرد . با عبور دادن اين پالسها از درون يك آنتن ، امواج الكترومغناطيسي بسيار قوي توليد مي شود . مولدهاي ماركس سنگين هستند اما مي توانند پشت سرهم روشن شوند تا يك سلسله پالسهاي قدرتمند را به صورت متوالي توليد كنند . اين نوع مولدها هم اكنون در قلب يك برنامه تحقيقاتي قرار دارند كه بوسيله نيروي هوايي آمريكا كانزاس در دست اجراست . هدف اين برنامه جاي دادن مولدهاي ماركس روي هواپيماهاي بدون خلبان يا در درون بمبها و موشكهاست تا از اين طريق نوعي « ميدان مين الكترومغناطيس » براي مقابله با دشمن ايجاد شود . اگر هواپيما يا موشك دشمن از درون اين ميدان مين الكترومغناطيس عبور كند ، بلافاصله نابود خواهد شد . اگر لازم باشد تنها يك انفجار عظيم به انجام رسد ، به دستگاهي نياز است كه بتواند يك پالس الكترونيكي بسيار قدرتمند را بوجود آورد ؛ اين كار را مي توان با استفاده از مواد منفجره متعارف نظير « تي . ان . تي » انجام داد . دستگاهي كه اين عمل را به انجام مي رساند ، « متراكم كننده شار » نام دارد . در اين دستگاه از انفجار اوليه يك ماده منفجره متعارف براي فشرده كردن يك جريان الكتريكي و ميدان الكترومغناطيسي توليد شده بوسيله آن استفاده مي شود. زماني كه اين جريان فشرده شد ، به درون يك آنتن فرستاده مي شود و يك موج الكترومغناطيس بسيار قدرتمند از آنتن بيرون مي آيد . نيوساينتيست مي افزايد : طرح تكميل دستگاههاي متراكم كننده شار از سوي نيروي هوايي آمريكا در ايالت نيو مكزيكو در دست تكميل است . از جمله طرحهايي كه براي كاربرد اين دستگاه در نظر گرفته شده ، جاي دادن آنها در بمبهايي است كه از هواپيما به پايين پرتاب مي شود و نصب آنها در موشكهاي هوا به هواست . امتياز بزرگ بمبهاي الكترومغناطيس در دو نكته است : نخست آنكه اين بمبها مستقيماً جان انسانها را به خطر نمي اندازد و تنها بر دستگاههاي الكترونيك اثر مي گذارد ؛ و نكته دوم آنكه ساخت آنها بسيار ساده است . بمبهاي الكترومغناطيس در صورتي مي توانند بالاترين خسارت را وارد آورند كه فركانس امواجشان با فركانس دستگاههايي كه به آنها وارد مي شوند يكسان باشد . بنابراين براي ايجاد مصونيت در دستگاههاي الكترونيكي كه در مراكز حساس كار مي كنند ، مي توان طراحي مدارها را به گونه اي انجام داد كه اولاً ميان بخشهاي مختلف ، سپرهاي محافظتي موجود باشد و ثانياً در ورودي اين قبيل دستگاهها بايد صافيها و سنجنده هايي را قرار داد كه بتواند علامتهاي مورد نياز و امواج حاصل از انفجار را تشخيص دهند و مانع ورود اين قبيل امواج شوند .

    منبع : ( www . sciencedaily . com )

    مترجم : اسرين عبدالملكي

  8. #18
    آخر فروم باز soleares's Avatar
    تاريخ عضويت
    Jul 2006
    محل سكونت
    اراج ...
    پست ها
    3,803

    12 آهنربا

    به اشیایی که میدان مغناطیسی تولید کنند، آهنرُبا گفته می‌شود.

    معنای لغوی
    آهنربا از دو بخش آهن و -ربا از فعل ربودن تشکیل شده. کاربرد واژه‌هایی مانند آهنربا و کهربا در فارسی پیشینه طولانی دارد.

    برابر اروپایی آن: اولین شرح مغناطش به یونانیان قدیم باز می‌گردد که این اسم را به مغناطیس دادند. این اسم از مگنزیا که نام یک دهکده‌ی یونانی است، مشتق شده‌است. از لحاظ لغوی Magnet به معنی «سنگی از مگنزیا» است. این سنگ حاوی مگنتیت (Fe2O3) بود و هنگام مالش آن به آهن، آن را آهنربا می‌کرد.

    تاریخچه
    تلاش جدی برای استفاده از قدرت پنهان مواد مغناطیسی بسیار پس از کشف آن انجام شد. به عنوان مثال در قرن ۱۸ام با ادغام تکه‌های کوچک مواد مغناطیسی تکه‌ی بزرگتری بدست آمد که مشخص شد توانایی بلند کردن قابل توجهی دارد.

    پس از اینکه اورستد در سال ۱۸۲۰ کشف کرد که جریان الکتریکی می‌تواند میدان مغناطیسی به وجود آورد، پیشرفت‌های زیادی در این زمینه حاصل شد. استورگن دانش خودش را با موفقیت برای ساخت اولین آهنربای الکتریکی در سال ۱۸۲۵ بکار برد. با اینکه دانشمندان زیادی (از قبیل گاوس، ماکسول و فارادی) با این پدیده از دیدگاه تئوریک درگیر شدند، اما توصیف درست مواد مغناطیسی به فیزیکدانان قرن ۲۰ ام نسبت داده می‌شود.

    کیوری و ویس در شفاف‌سازی پدیده‌ی مغناطش دائمی و وابستگی دمایی آن موفق بودند. ویس فرضیه‌ی وجود حوزه‌های مغناطیسی را مطرح کرد تا توضیح دهد که مواد چگونه می‌توانند آهنربا شده یا خاصیت مغناطیسی کل آنها صفر شود.

    جزئیات خواص دیواره‌های این حوزه‌های مغناطیسی توسط بلوچ، لاندو و نیل بررسی شد.


    کاربرد
    مواد مغناطیسی جزء جدانشدنی فناوری مدرن هستند. آهنرباها یکی از اجزای مهم بسیاری از وسایل الکترونیکی و الکترومکانیکی هستند. کاربرد عمده‌ی آهنرباهای دائم در تبدیل انرژی مکانیکی به انرژی الکتریکی و بالعکس است. (مانند موتورهای الکتریکی و ژنراتورها) مغناطیس‌ها همچنین در حافظه‌های مغناطیسی (صفحات هارد دیسک و فلاپی‌دیسک‌ها و کارت‌های پلاستیکی حافظه)

    منابع
    Buschow, K.H.J., de Boer, F.R., Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2004.

  9. #19
    حـــــرفـه ای Marichka's Avatar
    تاريخ عضويت
    Sep 2005
    محل سكونت
    تهران
    پست ها
    5,662

    پيش فرض در جست و جوي القاي الکترومغناطيسي

    نويسنده: هاريس بنسون / مترجم : احمد توحيدي دي 1382

    در سده هيجدهم از تخليه بار الکتريکي بطري هاي ليد براي گرم کردن سيم ها و ايجاد تغييرات شيميايي در محلول هاي يوني استفاده مي کردند. اين ها نمونه هايي از کاربرد اثر هاي گرمايي و تغيير شيميايي الکتريسيته در آن زمان بودند. البته ، اين که گرما مي تواند آغازگر واکنش هاي شيمايي ، و واکنش هاي شيمايي هم مي توانند مولد گرما باشند، در آن زمان پديده هاي شناخته شده اي بودند. مثلاً با استفاده از پيل ولتا و پيل هاي گالواني معلوم شد که با تغييرات شيمايي مي توان الکتريسيته توليد کرد. در سال 1822 توماس سي بک 1 کشف کرد که با گرم کردن محل اتصال دو فلز مختلف مي توان جريان الکتريکي توليد کرد.
    اين شواهد اين گمان را در ميان دانشمندان تقويت کرد که همه " نيروهاي موجود در طبيعت " با هم ارتباط دارند. يادآوري کنيم که همين فکر انگيزه اورستد براي جست و جوي ارتباطي ميان الکتريسيته و مغناطيس گرديد. يک سال پيش از آن يعني در سال 1821 فرانسوا آراگو 2 نشان داد که ميله اي آهني داخل سيملوله حامل جريان الکتريکي مي تواند خاصيت مغناطيسي پيدا کند. اين واقعيت که جريان الکتريکي مي تواند ميله آهني را آهنربا کند به طور طبيعي موجب جست وجو براي عکس اين اثر گرديد. يعني جريان الکتريکي هم مي تواند خاصيت مغناطيسي ايجاد کند.
    در سال 1821 ، آمپر نشان داد که يک سيملوله حامل جريان مانند يک آهنرباي ميله اي است و دو سيم حامل جريان به يکديگر نيروي مغناطيسي وارد مي کنند. آمپر نتيجه گرفت که کليه اثر هاي مغناطيسي به علت جريان هاي الکتريکي است و نظريه خود را که درباره خاصيت مغناطيسي بود ، برحسب اجزاي جريان هاي الکتريکي بر هم کنش کننده از نيروهاي الکتريکي در يک آهنربا مشخص نبود . آنها مي توانستند جريان هاي مولکولي ميکروسکوپي يا جريان هاي ماکروسکوپي باشند که در مسيرهاي دايره اي اطراف محور آهنربا حرکت مي کنند.
    برخلاف رهيافت پيچيده ء رياضياتي آمپر ، فاراده به درک فيزيکي و ارائه مدل هاي تجسم پذير در مورد جريان الکتريکي تکيه کرد. او شديداً تحت تأثير " دايره اي بودن " خطوط نيروي اطراف سيم هاي حامل جريان قرار گرفت. در سپتامبر سال 1821 فارادي اين جنبه از نظريه خود را به زيبائي به نمايش گذاشت و بر حسب اتفاق يک موتور الکتريکي اختراع کرد. فارادي تحت تأثير نيروهاي مرکزي در نظريه آمپر و يا اين فکر که خاصيت مغناطيسي بر اثر جريان هاي الکتريکي به وجود مي آيد ، قرار نداشت. او براي رد کردن اين ايده ها ، آزمايش هاي ظريفي انجام داد. مثلاً ، او نشان داد که " قطب هاي " يک سيملوله حامل جريان درست در همان محل قطب هاي يک آهنربا ميله اي قرار ندارند. بنابر اين آمپر مجبور به کنار گذاشتن مفهوم جريان هاي ماکروسکوپي شد. او در تلاش براي حفظ نظريه اش به سرعت توصيفي را براي آزمايش هاي فارادي بر حسب جريان هاي ميکروسکوپي ارائه کرد. ديگر دانشمندان از روش ساده اي که آمپر براي اصلاح نظريه خود انجام داده بود تا با دستاوردهاي تجربي سازگار شود. خشنود نبودند. در سال 1822 آمپر آزمايش ( ناموفق) اوليه خود را که براي توضيح سرشت جريان ها طراحي کرده بود ، تکرار کرد. او يک حلقه مسي را داخل پيچه اي با دور زياد آويزان کرد و قطب هاي يک آهنربا را مطابق شکل (1) در دو سر نقطه اي روي لبه آن قرار داد. حلقه هنگام برقراري جريان الکتريکي تحت زاويه اي مي چرخيد و هنگام قطع جريان الکتريکي به مکان اوليه خود باز مي گشت. آمپر از اين آزمايش نتيجه گرفت که حلقه مسي نامغناطيسي به علت جريان هاي القايي ميکروسکوپي پايا " مغناطيدگي موقتي " به دست آورده است . آمپر براي پيدا کردن جهت جريان ها خود را به زحمت نينداخت.
    قرص آراگو در سال 1824 کشف بسيار جالب توجه ديگري وجود داشت. فرانسوا آرگو همکار آمپر دريافت که نوسان هاي يک آهنرباي ميله اي آويزان در حضور يک صفحه رسانا ميرا مي شود. او در سال بعد نشان داد که آهنربايي که به سرعت مي چرخد ، مي تواند يک قرص مسي را به چرخش وادارد و يک قرص سريعاً چرخان هم مي تواند يک عقربه مغناطيسي را به چرخش در آورد. آراگو يک سيملوله الکترومغناطيسي را نيز بالاي يک قرص چرخان آويزان و انحراف آن را ملاحظه کرد. آمپر از اين آزمايش ها صرفاً براي تأييد اين فکر که جريان ها علّت غايي خاصيت مغناطيي هستند استفاده کرد.
    بابيج 3 و هرشل 4 در لندن کارهاي آراگو را دنبال کردند. آن ها آهنربايي را بالاي قرص هاي فلزي چرخان مختلف مطابق شکل(2- الف) قراردادند. آن دو دريافتند که انحراف آهنربا به جنس قرص فلزي بستگي دارد. براي مثال ، براي قرص مسي بيشتر از قرص سربي است ( رسانندگي مس بيشتر از سرب است ) و در قرص هاي غير فلزي هيچ انحرافي مشاهده نکردند. همين طور بابيج و هرشل به اين نتيجه رسيدند که بايد قرص خاصيت مغناطيسي القايي موقتي به دست آورده باشد. سپس با ايجاد شکاف هاي شعاعي در صفحات فلزي مطابق شکل (2- ب) مشاهده کردند که با زياد شدن شکاف ها انحراف کاهش مي يابد. اين پديده را مي توان ناشي از کاهش مغناطيدگي حاصل از گاف هاي هوا در فاصله شکاف ها توضيح داد. معماي قرص آراگو حل نشد و علاقه مندي نسبت به آن به تدريج کاهش يافت. رابطه ميان انحراف آهنرباي آويزان و رسانندگي نشانگر وجود جريان هاي القاي مغناطيسي در قرص هاست. اين واقعيت را وقفه ايجاد شده در جريان در نتيجه ايجاد شکاف ها در قرص تأييد مي کرد . همين طور جريان هاي القايي در سيملوله آويزان آراگو به حدّ کافي بزرگ بود که مي توانست آن را به چرخش وادارد. در سال 1822 آمپر در مقاله اي که درباره آزمايش هاي خود ، بابيج و هرشل نوشت ، به طور آشکار از " جريان هاي الکتريکي کوچک " نام برد. به عبارت ديگر آمپر کاملاً متوجه شده بود که جريان هاي الکتريکي القا شده اند.
    آمپر تمام شواهد لازم براي کشف " پديده القايي الکترومغناطيسي" را در اختيار داشت ، اولاً ، پذيرش جريان هاي ماکروسکوپي براي آمپر مشکل بود. زيرا توجيه او از آزمايش هاي فارادي او را مقيد به مدلي از جريان هاي ميکروسکوپي کرد. ثانياً ، آمپر همراه با ديگران بر اين باور بودند که جريان پايا بايد جريان ديگري را القا کند. چشمان آمپر چنان با اين مفاهيم پيشبيني که چه چيزي را بايد بيابد و تمايل او به حفظ نظريه اش نابينا شده بود که به رغم ديدن تمام واقعيت هاي ضروري ، چيزي را از آنها استنباط نمي کرد. اين مثال روشني از اين واقعيت است که چيزي را که هرکس مشاهده مي کند ، شديداً به ديدگاه يا نظريه اش بستگي دارد.
    در اين بين ، فارادي براي مدت چند سال در پي جريان هاي القايي بود. هنگامي که از آزمايش آمپر با حلقه مسي آگاه شد کوشيد تا آن را تکرار کند. متأسفانه لغزشي در ترجمه به زبان انگليسي باعث آزمايشي ناموفق شد ، زيرا او به جاي حلقه مسي ، از قرص مسي استفاده کرد ( گشتاور لختي قرص مسي بسيار بزرگتر از گشتاور لختي حلقه است ). در سال 1828 فارادي آهنرباي ميله اي را در حلقه آويزان شده اي قرار داد. سپس کوشيد تا جريان القايي را با آهنرباهاي ديگر آشکار سازد( فکر مي کنيد اگر فارادي به سرعت آهنربا را داخل حلقه کرده بود چه اتفاق مي افتاد ؟). هر يک از اين آزمايش ها مي توانست کشف جريان هاي القايي بينجامد ، امّا در آن زمان ترتيب آزمايش ها به حدّ کافي حساس نبودند.
    در اينجا بد نيست از بداقبالي کولادون 5 نيز ذکري به ميان آوريم . در سال 1825 او آهنرباي توانمندي را به يک سيملوله با دورهاي زياد نزديک کرد. براي محافظت گالوانومتر از هر تأثير مستقيم آهنربا آن را در اتاق مجاور محل آزمايش قرار داد. او بسيار محتاط بود. امّا زماني که براي بررسي انحراف عقربه گالوانومتر به اتاق مجاور رفت ، اثر گذرا پايان يافته بود.
    در اوت 1830 جوزف هنري 6 به طور کاملاً مستقل و بدون آگاهي از آزمايش هايي که در اروپا در حال انجام شدن بود " تبديل مغناطيس به نظر مي رسد که او فرصت کافي براي دنبال کردن کامل اين پديده يا انتشار فوري کشف خود را نداشت. به هر حال ، هنري چيز جديدي را مشاهده کرده بود که فارادي آن را ناديده گرفته بود.
    در سال 1831 فارادي بدون آگاهي از کشف هنري با فوراني از خلاقيت و اطمينان شگفت انگيز به اين مسئله روي آورد. او نه تنها معماي قرص آراگو را حل کرد ، بلکه با ابداع مبدل همقطب خود شکل (3) جريان القايي پيوسته توليد کرد – نشان افتخاري که براي مدّت ده سال هنوز به چنگ هيچ کس نيفتاده بود. در سال 1822 آمپر شتابزده و بدون آگاهي از جزئيات کارهاي فارادي نظريه خود را درباره جريان هاي القايي انتشار داد. ديگران هم کوشيدند که در اين مورد ادعاي تقدم کنند، به استثناي آراگو که قرص او تماشايي ترين نمايش جريان هاي القايي بود. هنگامي که تنش ها فروکش کرد ، آمپر پذيرفت که از درک نقش عامل اساسي زمان در القاي مغناطيسي غافل بوده است. هر سه آزمايش ساده اي که در اين مقاله شرح داده شد آزمايش هاي سر راست و آشکاري به نظر مي رسند ، امّا ارائه منظم آنها شامل گزيده آزمايش هايي است که طي يک دهه انجام شده است. بيشتر ذهن هاي برجسته نظري و تجربي نمي توانند يا علاقه مند نيستند که اصول نهفته شده در يک پديده را تشخيص دهند.
    زير نويس
    * The Search for Electormagnetic induction 1. Seeback 2. Francois Arago 3.Babbage 4.Herschel 5. colladon 6. Joseph Henry

    منبع
    University physics / Harris Benson

  10. #20
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض تابش الكترومغناطيسي-تابش جسم سياه

    تابش الكترومغناطيسي:
    هر شي در نجوم بوسيله تابش الكترو مغناطيسي مشاهده مي شود بنابر اين توجه به برخي از مباني فيزيك درباره تابش وجذب لازم است .تابش الكترو مغناطيسي فقط يك موج متحرك در ميدان مغناطيسي و الكتريكي است كه در معادلات ماكسول به هم مربوط مي شوند.موج الكترو مغناطيسي باسرعت نور منتشر مي شود. C=2.998*108
    حاصل ضرب طول موج و فركانس برابر سرعت نور است.

    C = F * g

    كه به صورت سنتي طيف سنجها طول موج را اندازه گيري مي كنند.
    با وسائل جديد تمام محدوده طيف قابل مشاهده است. تعدادي ازطول موجهايي كه فقط مي توانند در بالاي جو اندازه گيري شوند؛درفنآوري ماهواره اي به كارمي روند.

    تابش نور به چندطريق صورت مي گيرد:
    1-فرآيند پهن شدگي (فرآيند گرما يوني )-تابش جسم سياه. 2-تابش خطي .
    3-تابش سينكروترون ناشي از بارهاي الكتريكي شتابدار.
    ما درباره’ مورد اول بحث خواهيم كرد
    تابش جسم سياه:

    جسم گرم در دماي مشخص T گستره پهني از امواج الكترو مغناطيس تابش مي كندو جسم گرمتر آبي تر تابش ميكند .
    براي مثال داخل زمين يك مخزن نور است كه مانند يك باطري ضعيف شده كم نورتر وقرمزتر است . اين مسئله در ابتداي قرن بيستم در فيزيك كلاسيك حل شده ويكي از موفقيتهاي مكانيك كوانتومي شكل گرفته بود.
    طيف تابش گسيل يافته براي فيزيك كلاسيك يك مشكل بزرگ بود .
    استفان و بولتزمن كشف كردند كه تمام گرماي تابش شده بوسيله سطح جسمي با مساحت A و دمايT برابر است با:
    Q=AsT4 s =5.67*108
    شدت تابش درواحد حجم كه تابع طول موج است ،اندازه گيري شد. موقعيت ماكزيمم ناگهاني در طيف ،توسط قانون جابجايي وينز ((Wiens تشريح شد و مكان بيشترين شدت در طول موج
    -3^10*2.9 كه در آن Tدر مقياس كلوين است.
    بنابرا ين طول موج تابش گسيل يافته، نظريه تابشي جسم را ارائه مي دهد.
    تلاشهاي رايلي (Rayleigh)براي توضيح مشاهدات از نظر كلاسيكي نا موفق بود .او محاسباتي انجام داد با اين فرض كه موجها درون كاواك قرار بگيرند وتابش گريزي از سوراخ كوچكي در ديواره كاواك را بدست آورد.فقط طول موجهايي مجازبودند كه دقيقا موج بر ديواره كاواك قرار مي گرفت (ديواره’ كاواك مكان گره ها بود).
    رايلي فرض كرد كه هر گونه طول موج داراي انرژي KT است( K ثابت بولتزمن است).محاسبات پش بيني مي كرد كه در دماي T تابندگي (شدت تابش ) به طول موج وابسته است.
    I(l)= T/landa^4
    فرض بالا يك مشكل دارد؛وقتي طول موج صفر مي شود شدت بينهايت مي گرددواين مساله به عنوان فاجعه فرابنفش شناخته شد.
    در سال 1900م.پلانگ اين مشكل را با گسسته فرض كردن تابش الكترو مغناطيسي حل كرد.او فرض كرد كه تابش بوسيله نوسانگرهاي الكترو مغناطيسي درون ديواره كاواك توليد ميشود.انرژي نوسانگرها فقط مي توانست به صور ت گسسته مضربي از بسامد باشدn=0,1,2,3,… ; E=nhn.
    محا سبات پلانگ تفاوت بنيادي با محاسبا ت رايلي داشت كه مقادير انرژي را پيوسته فرض كرده بود. محاسبات پلانك تابندگي در طول موج خاص را بصورت زير داد:
    I(l)=2*π*h*c^2/[l^5[exp(hc/lkT)-1]]
    فرم بالاقانون استفان بولتزمن و قانونوينز را تاييد مي كند
    . در طول موجهاي زياد فرمول بال منجر به نتايج رايلي مي شود.
    در واقع در اندازه گيري دماي يك ستاره نوعي طيف سنجي يا نور سنجي ميتواند به كار رود.
    مقايسه بين تابندگي نسبي مقدار نور گسيل شده يك ستاره در دو طول موج:.
    اين نسبت مشخصه دمايي است بنابر اين اندازه گيري تمام طيف جسم سياه الزامي نيست.چون تابندگي در هر دماي مشخص به طور نسبي در شدت 550 nm بهنجار شده است.called V or Visual Band
    اندازه گيري دوم در تابندگي 440nm
    (( called B or Blue band ))
    اندازه گيري دما را ممكن ميسازد.


    منبع :parash.persianblog.com

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •