تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 3 اولاول 123 آخرآخر
نمايش نتايج 11 به 20 از 28

نام تاپيک: کربن و ترکیبات آلی

  1. #11
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض اتر Ether

    اترها ، ترکیباتی با فرمول عمومی R-O-R ، Ar-O-R یا Ar-O-Ar هستند. (Ar ، فنیل یا یک گروه آروماتیک دیگر است).

    نام‌گذاری اترها
    برای نامیدن اترها ، معمولا دو گروه متصل به اکسیژن را نام می‌بریم و به دنبال آن ، واژه اتر را می‌آوریم. اگر دو گروه یکسان باشند، گفته می‌شود اتر متقارن است ( مانند دی اتیل اتر ، دی ایزوپروپیل اتر ). اگر دو گروه متفاوت باشند، اتر ، نامتقارن است مانند ترسیوبوتیل متیل اتر.

    خواص فیزیکی اترها
    از آنجا که زاویه پیوند C-O-C در اتر ، 180 درجه است، گشتاورهای دو قطبی دو پویند C-O یکدیگر را خنثی نمی‌کنند؛ در نتیجه ، اترها مقداری گشتاور دو قطبی برآیند دارند. (مثلا 180.1 برای دی اتیل اتر). این قطبیت کم بر دمای جوش اترها تاثیر چندانی ندارد. دماهایی که در حدود دمای جوش آلکانها با وزن مولکولی مشابهند و از دمای جوش الکلهای ایزومری ، بسیار پایین‌ترند، به عنوان مثال ، دمای جوش n- هپتان ( ْ98دجه سانتی‌گراد ) ، متیل n- پنتیل اتر ( 100درجه سانتی‌گراد ) و n- هگزیل الکل ( 157درجه سانتی‌گراد ) را با یکدیگر مقایسه کنید. پیوند هیدروژنی که مولکولهای الکل را با قدرت در کنار یکدیگر نگه می‌دارد، در اترها ممکن نیست؛ چون آنها فقط دارای هیدروژنهایی هستند که به کربن متصل‌اند.
    از سوی دیگر ، انحلال‌پذیری اترها و الکلها در آب در یک حدود است. به عنوان مثال ، دی‌اتیل اتر و n-بوتیل الکل ، تقریبا به میزان 8 گرم در 100 گرم آب حل می‌شوند. ما انحلال‌پذیری الکلهای سبک در آب را به پیوند هیدروژنی بین مولکولهای آب و الکهای آب نسبت دادیم. انحلال‌پذیری اترها در آبها را نیز بر همین اساس می‌توان تبیین کرد: از طریق الکترونهای به اشتراک گذاشته نشده اکسیژن ، اتر می تواند با هیدروژن آب ، پیوند هیدروژنی تشکیل دهد.

    منابع صنعتی اترها
    تعدادی از اترهای متقارن دارنده گروههای آلکیل کوچک در مقیاس بزرگ تولید می‌شوند و به‌عنوان حلال مورد استفاده قرار می‌گیرند. مهمترین آنها ، دی‌اتیل اتر است، یعنی همان حلال آشنایی که در استخراجها و در تهیه واکنشگرهای گرینیار مورد استفاده قرار می‌گیرند. نمونه‌های دیگری از این نوع اترها ، دی‌ایزوپروپیل اتر و دی-n-بوتیل اتر است.
    این اترها در اثر واکنش الکلهای مربوطه با اسید سولفوریک حاصل می‌شوند.
    از آنجا که از هر جفت الکل ، یک مولکول آب حذف می‌شود، واکنش از نوع آب‌زدایی است. الکلها می‌توانند با نوع دیگری آب‌زدایی ، واکنش حذفی به آلکن تبدیل شوند. آبگیری از الکلها و بدست آوردن اتر به جای آلکن ، با انتخاب شرایط واکنش کنترل می‌شود. به‌عنوان مثال ، اتیلن با گرم کردن اتیل الکل با اسید سوفلوریک غلیظ تا 180 درجه سانتی‌گراد تهیه می‌شود.
    دی‌اتیل اتر با گرم کردن مخلوطی از اتیل الکل و اسیدسولفوریک غلیظ تا 140 درجه سانتی‌گراد بدست می‌آید، در حالی‌که الکل دائما به مخلوط اضافه می‌شود تا فزونی مقدار آن حفظ شود. روش آبزدایی ، عموما به تهیه اترهای متقارن محدود است، چون ، همانگونه که انتظار می‌رود، ترکیبی از دو الکل ، معمولا می‌تواند مخلوطی از سه اتر بدهد.

    تهیه اترها از طریق سنتز ویلیامسون
    در آزمایشگاه ، سنتز اتر به روش ویلیامسون بدلیل تنوع‌پذیری آن ، بسیار مهم است و می‌توان آن را برای سنتز اترهای متقارن و نامتقارن بکار برد. در سنتز ویلیامسون ، یک آلکیل هالید (یا آلکیل هالید استخلاف شده) را با یک سدیم آلکوکسید ترکیب می‌کنند. به‌عنوان مثال:

    R-X + Na-O-R1 -----> R-O-R1 + NaX

    واکنش عبارت است از جایگزین شدن هسته دوستی یون هالید با یون آلکوکسید. این واکنش شباهت بسیار زیادی به تشکیل الکلها در اثر مجاورت آلکیل هالیدها با محلول آبی هیدروکسید دارد. از آنجا که الکوکسیدها و آلکیل هالیدها ، هر دو از الکلها تهیه می‌شوند، روش ویلیامسون نهایتا سنتز اتر از دو الکل است




  2. این کاربر از officer بخاطر این مطلب مفید تشکر کرده است


  3. #12
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض بنزن Benzene




    بنزن مایعی است بی‌رنگ و خوشبو که در تولید صنعتی گروهی از مواد مانند پلی استیرن،لاستیک مصنوعی و نایلون استفاده می‌شود.این مایع در تهیهٔ شوینده‌ها و رنگ‌ها نیز به‌ کار می‌رود
    بنزن متعلق به خانوادهٔ هیدروکربن‌هاست که هر مولکول آن ۶ اتم کربن و ۶ اتم هیدروژن دارد که یک آرایش حلقوی را به‌وجود می‌آورند. این آرایش حلقهٔ بنزن نامیده می‌شود که در بسیاری از ترکیبات از جمله آسپیرین و مادهٔ منفجرهٔ تی.ان.تی نیز وجود دارد. بنزن سمی و سرطانزا است

    تاریخچه
    بنزن را مایکل فارادی در سال ۱۸۲۵ میلادی کشف کرد.بنزن در ابتدا از طریق حرارت دادن و قطران زغال‌سنگ و سپس تبدیل بخار آن به مایع به‌دست می‌آمد اما امروزه بنزن را به مقدار زیاد از نفت خام استخراج می‌کنند.
    ساختار بنزن توسط فردریش آگوست ککوله شناسایی شد. انواع تقطیر دید کلی در اینجا ، منظور از تقطیر ، در واقع جداسازی فیزیکی برشهای نفتی در پالایشگاه است که اساس آن اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن ، سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. در این مقاله انواع روشهای تقطیر را در برج تقطیر بررسی می‌کنیم. تقطیر تبخیر ناگهانی در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در مبدلهای حرارتی و یا کوره گرم شده‌اند، بطور مداوم به ظرف تقطیر وارد می‌شوند و تحت شرایط ثابت ، مقداری از آنها به صورت ناگهانی تبخیر می‌شوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری می‌شوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست. تقطیر با مایع برگشتی (تقطیر همراه با تصفیه) در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده می‌شود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده می‌شود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار ، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار می‌شود.

    نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد می‌باشد.در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، می‌توان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج می‌توانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.

    امروزه به علت گرانی سوخت ، سعی می‌شود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی می‌شود. برای همین ، تعداد سینیها را افزایش می‌دهند. در ابتدا مایع برگشتی را 100درصد انتخاب کرده و بعد مرتبا این درصد را کم می‌کنند و به صورت محصول خارج می‌کنند تا به این ترتیب دستگاه تنظیم شود.







    انواع مایع برگشتی

    مایع برگشتی سرد: این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده می‌شود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.

    مایع برگشتی گرم: مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار می‌گیرد.

    مایع برگشتی داخلی: مجموع تمام مایعهای برگشتی داخل برج را که از سینی‌های بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان می‌باشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.

    مایع برگشت دورانی: این نوع مایع برگشتی ، تبخیر نمی‌شود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج می‌کند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمی‌گردد. معمولا این نوع مایع برگشتی در قسمتهای میانی یا درونی برج بکار گرفته می‌شود و مایع برگشتی جانبی هم خوانده می‌شود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است. نسبت مایع برگشتی نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار می‌برند. تقطیر نوبتی این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار می‌گیرد. امروزه تقطیر نوبتی ، صرفا در صنایع دارویی و رنگ و مواد آرایشی و موارد مشابه بکار برده می‌شود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار می‌گیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه می‌باشد.

    • تقطیر در مقیاس کم
    • ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز
    • استفاده نامنظم از دستگاه
    • تفکیک چند محصولی
    • عملیات تولید متوالی با فرآیندهای مختلف

    تقطیر مداوم امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده می‌شود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته می‌شود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده

    از تقطیر مداوم در پالایشگاهها مواد زیر تولید می‌شود:
    گاز اتان و متان بعنوان سوخت پالایشگاه ، گاز پروپان و بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، سوخت جت سبک و سنگین ، نفت گاز ، خوراک واحدهای هیدروکراکینگ و واحدهای روغن سازی ، نفت کوره و انواع آسفالتها. بنزین برشی از نفت است که بین 70 تا 175 درجه سانتی‌گراد تقطیر می‌شود و محتوی هیدروکربورهای C5 تا C11 یا C12 می‌باشد. بنزین طبیعی که حدود 15% از نفت خام را تشکیل می‌دهد، در موتورهای احتراقی بکار می‌رود.

    دید کلی
    سوخت‌های مایع را می‌توان از اثر هیدروژن روی زغال و مشتقات آن ، در دما و فشار زیاد بدست آورد. در این حال ، زغال خاکستری در حدود 8 تا 10 درصد وزنی از خود به جای گذارده و نفت خام ، به میزان 75 درصد وزنی زغال مصرف شده است. تاریخچه تولید بنزین گزارش‌های ثبت شده حاکی از آن است که در سال 1923 ، "برجیوس" اولین بار از روش هیدروژناسیون برای تولید بنزین استفاده کرد. در آن سال ، 350000 تن سوخت اتومبیل از این راه تهیه شد. در 1944، حدود 20 کارخانه برای تولید 3.5 میلیون‌تن سوخت مایع بکار مشغول بوده که از این مقدار 2.25 میلیون‌تن بنزین بوده است. امروزه از این روش برای تولید انواع بنزین مخصوصا بنزین هواپیما با خاصیت آرام سوزی مورد استفاده قرار می‌گیرد.
    ویژگی‌های بنزین ویژگی ضد ضربه یا آرام سوزی را بوسیله عدد اکتان که عبارت است از درصد ایزواکتان در مخلوطی از ایزواکتان و هپتان نرمال تعیین می‌کند. بدین منظور انفجار ناشی از مخلوطی از ایزواکتان و هپتان نرمال را در موتور استاندارد با هیدروکربور مورد نظر مقایسه می‌کنند. اجسامی با توان ضد انفجاری بیش از اکتان ، عددی بالاتر از 10 را اتخاذ می‌کنند. بر حسب معمول عدد اکتان بنزین اتومبیل در حدود 70 درصد و در مورد هواپیما این مقدار به 130 می‌رسد.

    خاصیت آرام سوزی با افزودن ترکیبات مختلفی از قبیل ایزواکتان ، ایزوپنتان ، اتیل بنزین و ایزوپروپیل و برای افزایش بیشتر با تترا اتیل سرب تحقق می‌یابد. ترکیب اخیر از نظر اقتصادی مقرون به صرفه بوده و از واکنش بین PbNa و کلروراتیل حاصل می‌شود. با افزودن 4 میلی لیتر از آن به یک کیلوگرم اسانس ، عدد اکتان بنزین از 70 به 89 می‌رسد.

    از آنجا که سرب در موتور رسوب کرده و اشکلاتی را ایجار می‌کند، آنرا با مخلوطی از کلرور یا برموراتیلن مخلوط کرده تا پس از احتراق ، سرب به صورت کلرور یا برمور که جسم فراری است درآمده و همراه گازهای حاصل از احتراق از موتور خارج شود. مزایای بنزین و سوخت‌های مایع نسبت به سوخت های جامد :

    • پس از سوختن ، خاکستر بر جا نمی‌گذارند.
    • سوخت‌های مایع را می‌توان در محوطه‌ای دور از محل مصرف و به اشکال مختلف انبار کرد.
    • سوخت مایع خود به خود آتش نمی‌گیرد و چنانچه فرار نباشد، در اثر ماندن فاسد نمی‌شود.
    • سوخت‌های مایع ، وزنشان 30% و حجمشان 50% کمتر از سوخت‌های جامد با همان ارزش حرارتی است.

    مشتقات بنزن
    مشتقات بنزن را می‌توان از در شمار یک گروه عاملی دانست




  4. این کاربر از officer بخاطر این مطلب مفید تشکر کرده است


  5. #13
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض آمین‌های آروماتیک




    آمینهای آروماتیک ، ترکیباتی هستند که گروه آمین به حلقه آروماتیک یا هترو آروماتیک متصل است. با شناختی که از حلقه آروماتیک و ساختار نیتروژن وجود دارد، به‌سهولت می‌توان پیش‌بینی کرد که حلقه آروماتیک موجب افزایش قدرت اسیدی و کاهش خصلت بازی آمین‌های آروماتیک می‌شود.

    روشهای تهیه آمین‌های آروماتیک

    روش آزمایشگاهی
    روش ساده برای سنتز آمین‌های آروماتیک ، احیای ترکیبات نیترو است. معمولا در آزمایشگاه از اسید کلریدریک و فلزاتی چون روی ، قلع ، یا آلومینیم و حتی ZnCl2برای احیای گروههای نیترو استفاده می‌شود.

    روش صنعتی

    در صنعت برای احیای مشتقات نیترو و تبدیل آن به آمین مربوطه از آهن قراضه استفاده می‌شود و مقدار کمی اسید بعنوان کاتالیزور به محیط اضافه می‌گردد. مزایای این روش در این است که گذشته از آمین ، اکسید آهن نیز تولید می‌شود. همچنین می‌توان با اندکی تغییر در شرایط کار به مشتقات آریل هیدروکسید آمین ، آزو بنزن ، دی‌فنیل هیدرازین و N– اکسی دی آزوبنزن نیز رسید که به آن ، سنتز Haber گویند.

    استفاده از کاتالیزورها

    در حضور کاتالیزورهایی مثل نیکل ، پلاتین یا پالادیم نیز می‌توان ترکیبات نیترودار را هیدروژن‌دار کرد و آمین مربوطه را بدست آورد. با این روش آمین‌های آروماتیک در مقیاس تجاری تهیه می‌شود.

    واکنشهای حذف – افزایش

    اگر هالیدهای آروماتیک تحت تاثیر آمیدورسدیم در آمونیاک مایع قرار داده شوند، ابتدا واکنش حذف انجام می‌گیرد و ترکیب فعالی به نام بنزاین تولید می‌شود که تحت تاثیر آمیدورسدیم قرار گرفته ، آمین مربوطه را تولید می‌نماید. واکنش مشابه با هالیدهای نفتالین به تشکیل دو نوع آمین منجر می‌شود.

    واکنشهای جانشینی هسته‌خواهی

    روش دیگر تهیه آمین‌های آروماتیک ، انجام واکنشهای جانشینی هسته‌خواهی است. بعنوان مثال از واکنش آنیلین با نمک آنیلینیوم هیدروکسید کلراید آمین‌های نوع بالاتر سنتز می‌شود.

    تهیه نیتروزو آمین
    هرگاه آمین‌های آروماتیک نوع اول در حضور محلول سرد و آبکی یک اسید معدنی و نیتریت سدیم قرار گیرد، ترکیب N– نیتروزو آمین تشکیل می‌گردد. آمین‌های آروماتیک نوع دوم نیز تحت شرایط ذکر شده بالا ترکیب N – نیتروزوی مربوطه را تولید می‌کنند. آمین‌های آروماتیک سه استخلاف‌دار مانند N و N– دی متیل آنیلین نیز با اسید نیترو واکنش می‌دهند و در نهایت پارا نیتروزو - N و N – دی متیل آنیلین تولید می‌نماید.

    نمکهای دی آزونیوم

    آمین‌های آروماتیک نوع اول و محلول سرد و آبکی اسیدهای معدنی و نیتریت سدیم با هم واکنش می‌دهند. ابتدا ترکیب N– نیتروزو آمین تشکیل می‌شود که در حضور مازاد اسید معدنی به نمک دی آزونیوم تبدیل می‌گردد. نمکهای دی آزونیوم خیلی فعال هستند بطوریکه در دمای حوالی صفر درجه خود بخود شکسته می‌شوند. از این‌رو لازم است که پس از تولید بلافاصله مصرف شوند.
    بطور کلی نمکهای دی آزونیوم آمین‌های آروماتیک در دو دسته مهم از واکنشها شرکت می‌کنند. دسته اول ، واکنشهای جانشینی هستند که در جریان این واکنشها نیتروژن آزاد می‌شود و گروه دیگری بجای آن جانشین می‌گردد. دسته دوم واکنشهای زوج شدن هستند که طی آن ، نمک دی‌آزونیوم از طریق نیتروژن به یک گروه آروماتیک یا هترو آروماتیک متصل می‌شود. هر دو دسته واکنش از نظر سنتزی بسیار با اهمیت هستند.

    شناساگر متیلا اورانژ ( هلیانتین)

    شناساگر معروف هلیانتین ، از واکنش نمک دی آزونیوم سولفانیلیک اسید با N و N– دی متیل آنیلین بدست می‌آید. این ترکیب دارای گروه عاملی -N=N- است. ترکیبات دارای این گروه عاملی به ترکیبات آزوئیک موسومند. خیلی از این ترکیبات در رنگرزی مورد استفاده قرار می‌گیرند.

    استامینوفن

    آنیلین یا پاراهیدروکسی آنیلین در محلولهای آبکی و اسیدی با انیدرید استیک ترکیب می‌شوند و مشتق N – آکسیل‌دار تولید می‌کنند. واکنش آکسل‌دار شدن پاراهیدروکسی آنیلین به داروی بسیار مهم استامینوفن منجر می‌شود.

    سولفا پیریدین و سولفا تیازول
    2- آمینو پیریدین و 2- آمینوتیازول با سولفونیل کلرید واکنش می‌دهد و به ترتیب سولفا پیریدین و سولفا تیازول تولید می‌کند که دارای اثرات دارویی بسیار مهم است.
    آروماتیک‌ها ، دسته وسیعی از ترکیبات را تشکیل می‌دهند که شامل بنزن و ترکیباتی باشند که از نظر رفتار شیمیایی مشابه بنزن می‌باشند. برخی از این مواد ، حتی به‌ظاهر شباهتی به بنزن ندارند. برخلاف آلکنها و آلکینها ، بنزن و سایر ترکیبات آروماتیک ، تمایلی برای انجام واکنشهای افزایش از خود نشان نمی‌دهند، ولی در واکنشهای جانشینی شرکت می‌کنند که یکی از صفات شاخص این دسته از مواد می‌باشد.
    اگر گروههای عاملی روی حلقه قرار بگیرند، بر واکنش پذیری حلقه اثر خواهند گذاشت. واکنش پذیری عوامل متصل به حلقه نیز بوسیله بخش آروماتیک تحت‌تاثیر قرار می‌گیرد.

    خصلت آروماتیکی و قاعده 4n+2 هوکل (Huckel)

    افزون بر بنزن و ترکیبات هم خانواده آن مثل نفتالین و آنتراسین و... ، مواد دیگری نیز وجود دارند که به‌ظاهر هیچ شباهتی به بنزن ندارند، ولی رفتاری مشابه بنزن دارند و به‌عبارت ساده‌تر ، آروماتیک هستند. از ویژگیهای این مواد می‌توان به نکات زیر اشاره نمود:
    گرمای هیدروژن دار شدن و گرمای سوختن آنها پایین است.
    برای انجام واکنشهای افزایشی ، تمایل زیادی نشان نمی‌دهند
    در واکنشهای جانشینی الکترونخواهی شرکت می‌کنند.
    بررسی‌های تجربی مثل مطالعه خواص فیزیکی و انرژی هیدروژن‌دار شدن سیستمها با تعداد الکترونهای π مختلف به این نتایج منجر شده است که:
    مولکولهایی آروماتیک هستند و خصلت آروماتیکی از خود نشان می دهند که تعداد الکترونهای سیستم π آنها ، 2 و 4 و 6و 10و... باشد. این ضرورت ، قاعده هوکل یا 4n+2 نامیده می‌شود. سپس ترکیباتی که برای آنها n=0, 1 , 2 ,… می‌باشد، آروماتیک خواهند بود.
    مولکول باید ساختمان مسطح داشته باشد. تمام ترکیباتی که این دو شرط اساسی در آنها رعات شده باشد، زوایای پیوندی در آنها طبیعی ، همپوشانی اوربیتالهای π مناسب و غیر مستقر شدن الکترونها بخوبی میسر باشد، پایداری مولکول بیشتر خواهد بود.

    یک مثال
    واکنش 3- کلرو سیکلوپروپن با SbCl5 ، ماده پایداری به فرمول C3H3SbCl6 ایجاد می‌کند که در حلالهای دی‌اکسید گوگرد مایع بخوبی حل نشده ، ولی در حلالهای غیرقطبی نامحلول است. مطالعه طیفNMR این ماده ، سه پروتون هم‌ارزش را به نمایش می‌گذارد. این نتایج ، با تشکیل کاتیون سیکلوپروپن که کوچکترین مولکول آروماتیک می‌باشد، مطابقت دارد.

    ترکیبهای آروماتیک ، هتروآروماتیک و انرژی رزونانس
    نتایج تجربی حاصل از واکنشهای هیدروژن دار شدن هیدروکربنهای جوش خورده دو حلقه‌ای و سه حلقه‌ای و... نشان می‌دهد که هر چه تعداد الکترونهای بیشتری در رزونانس شرکت کرده باشند، انرزژی آزاد شده بیشتر و پایداری نسبی نیز بیشتر خواهد بود.







    نامگذاری مشتقات بنزن و ترکیبات آروماتیک جوش خورده
    برخی از مشتقات بنزن ، نام مخصوص به خود دارند، مثلا هیدروکسی بنزن را فنل (C6H5OH) ، متوکسی بنزن را آنیزول (C6H5OCH3)، متیل بنزن را تولوئن (C6H5CH3) ، ایزوپروپیل بنزن را کیومن و آمینوبنزن را آنیلین می‌گویند.
    برای نامگذاری خیلی از مشتقات بنزن ، نام گروه یا استخلاف به صورت پیشوند بر کلمه بنزن افزوده می‌شود. مثلا فلوئورو بنزن ، ترسیوبوتیل بنزن ، نیتروبنزن ، سیکلوپروپیل بنزن نمونه هایی از این نوع هستند. جهت نامگذاری مشتقات دو استخلافی بنزن. لازم است که محل استخلافها از پیشوند اورتو ، متا یا پارا استفاده شود؛ به عنوان مثال ، اورتو دی‌متیل بنزن ، متا دی‌متیل بنزن ، پارا دی‌متیل بنزن.
    در مواردیکه دو استخلاف متفاوت روی حلقه بنزن قرار گرفته باشد و هیچکدام از گروهها نام ویژه ای به مولکول نداده باشند، پس از ذکر موقعیت گروهها با پیشوند اورتو و... ، نام گروهها را ذکر نموده ، در پایان ، کلمه بنزن بر آنها افزوده می‌شود. اگر وجود یک گروه ، نام ویژه ای به مولکول بدهد، در آن صورت مولکول به عنوان مشتق آن ترکیب ویژه محسوب می‌شود.

  6. این کاربر از officer بخاطر این مطلب مفید تشکر کرده است


  7. #14
    اگه نباشه جاش خالی می مونه humankhan's Avatar
    تاريخ عضويت
    Jul 2007
    محل سكونت
    قلب نـــفـــس
    پست ها
    493

    پيش فرض

    از تاپیک مفیدتون خیلی تشکر می کنم. ببخشید یه سوال داشتم. اینا رو خودتون آماده می کنین یا از منابع دیگه ای استفاده می کنید؟

  8. #15
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض

    از تاپیک مفیدتون خیلی تشکر می کنم. ببخشید یه سوال داشتم. اینا رو خودتون آماده می کنین یا از منابع دیگه ای استفاده می کنید؟
    سلام ، خواهش میکنم .

    از منابع دیگه مقاله هایی رو اشاعه میدم اینجا .

  9. #16
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض تاثیر ارتعاش کششی c=c در طیف سنجی مادون قرمز





    طیف مادون قرمز برای هر ماده ای در محدوده خاصی قرار دارد. ولی در یک مولکول ، استخلافهای موجود ، محدوده طیف را تحت تاثیر قرار می‌دهند. می‌خواهیم تاثیر ارتعاش کششی C=C را بر طیف سنجی مادون قرمز بررسی کنیم.

    آلکنهای آلکیل استخلاف شده ساده
    فرکانس کششی برای آلکنهای غیر حلقوی ساده ، معمولا بین 1640 و 1670سانتی‌متر به توان 1- ظاهر می‌شود. تعدد گروههای آلکیلی بر روی پیوند دو گانه ، فرکانسهای C=C را افزایش می‌دهد. برای مثال ، آلکنهای تک‌ استخلافی ساده دارای مقادیر حدود 1640سانتی‌متر به توان 1- هستند، آلکنهای 1،1- دو استخلافی در حدود 1650 سانتی متر به توان 1- جذب می‌کنند و آلکنهای سه و چهار استخلافی در نزدیکی 1670 سانتی‌متر به توان 1- جذب می‌دهند.
    آلکنهای ترانس – دو استخلافی در فرکانسهای بالاتری (1670 سانتی‌متر به توان 1- ) نسبت به آلکنهای سیس- دو استخلافی (1658 سانتی‌متر به توان 1- ) جذب می‌دهند. متاسفانه گروه C=C دارای شدت نسبتا ضعیف است که قطعا بمراتب ضعیفتر از گروه C=O است. در بسیاری از موارد همچون آلکنهای چهار استخلافی ، پیوند دو گانه ممکن است آنقدر ضعیف باشد که دیده نشود. اگر گروههای متصل بطور متقارن چیده شده باشند، تغییری در گشتاور دو قطبی در حین ارتعاش کششی رخ نداده ، لذا ، هیچ گونه جذب مادون قرمز مشاهده نمی‌گردد.
    سیس – آلکنها که کم‌متقارن‌تر از ترانس – آلکنها هستند، عموما شدیدتر از مورد دوم جذب می‌کنند. پیوندهای دو گانه موجود در حلقه‌ها (چون غالبا متقارن هستند) ضعیفتر از آنهایی که در حلقه نیستند، جذب صورت می‌دهند. پیوندهای دو گانه انتهایی در آلکنهای تک استخلافی معمولا جذب قوی‌تری دارند.

    اثر مزدوج شدن
    مزدوج شدن یک پیوند دو گانه C=C با یک گروه کربونیل یا پیوند دو گانه C=C دیگر ، خصلت پیوند ساده را در پیوند چند گانه بیشتر کرده ( از طریق رزونانس ) و این امر باعث کاهش ثابت نیرو K و بنابراین کاهش فرکانس ارتعاشی می‌گردد. به‌عنوان مثال ، پیوند دوگانه وینیل در استایرن جذبی در 1630 سانتی‌متر به توان 1- می‌دهد. هرگاه چندین پیوند دو گانه وجود داشته باشد، از روی تعداد جذبهای C=C می‌توان به تعداد پیوندهای دو گانه مزدوج پی برد. مثالی در این مورد 1و3- پنتان دی‌اِن است که جذبهای آن را در 1600 و 1650 سانتی‌متر به توان 1- می‌توان یافت.
    استثنایی که در این قاعده وجود دارد، بوتا دی‌اِن است که تنها یک نوار نزدیک 1600سانتی‌متر به توان 1- می‌دهد. اگر پیوند دو گانه با یک گروه کربونیل مزدوج شود، شدت جذب آن معمولا قدری توسط خاصیت دو قطبی قوی گروه کربونیل افزایش می‌یابد.

    اثر اندازه حلقه در حلقه‌های حاوی پیوندهای دو گانه درونی
    فرکانس جذب پیوندهای دو گانه داخلی در ترکیبات حلقوی به اندازه حلقه بسیار حساس است. با کاهش زاویه داخلی و میل آن به مینیمم مقدار ˚90 در سیکلوبوتن ، فرکانس جذب نیز کاهش می‌یابد. فرکانس جذب هنگامی که زاویه به ˚60 در سیکلوپروپن برسد، مجددا افزایش می‌یابد. این افزایش غیرمنتظره فرکانس ، بدین دلیل رخ می‌دهد که ارتعاش C=C در سیکلوپروپن بشدت با ارتعاش پیوند ساده C-C مجاور ادغام می‌شود. هنگامی که پیوندهای C-C بر محور C=C عمود هستند (همان طور که در سیکلوبوتن است) ، نوع ارتعاش آنها بر ارتعاش پیوند C=C عمود است (روی محور دیگر) و دیگر این ارتعاشات ادغام نمی‌گردند.
    هنگامی که زاویه بزرگتر از ˚90 (˚120 در مثال فوق) باشد، ارتعاش کششی پیوند ساده C-C به دو جزء تقسیم می‌گردد که یکی از آنها منطبق بر جهت ارتعاش کششی C=C است. در دیاگرام ، اجزاء b و a از بردار کششی C-C نشان داده شده‌اند. چون که جزء a در جهت بردار کششی C=C قرار دارد، پیوندهای C=C و C-C ادغام گشته و باعث بالا رفتن فرکانس جذب می‌گردند. طرح مشابهی نیز برای سیکلوپروپن وجود دارد که دارای زاویه کوچکتر از ˚90 است.

    هنگامی که یک یا دو گروه آلکیلی مستقیما به پیوند دو گانه متصل باشند، افزایش قابل ملاحظه ای در فرکانس جذب یک پیوند دو گانه موجود در حلقه مشاهده می‌گردد. این افزایش برای حلقه‌های کوچک ، بویژه سیکلوپروپنها ، بسیار محسوس است. هنگامی که یک گروه آلکیل به پیوند دو گانه متصل گردد، مقدار پایه 1656 سانتی‌متر به توان 1- برای سیکلوپروپن به حدود 1788 سانتی‌متر به توان 1- افزایش می‌یابد؛ با وجود دو گروه آلکیل این مقدار به حدود 1883 سانتی‌متر به توان 1- فزونی می‌یابد.
    فهم این نکته پُر اهمیت است که اندازه حلقه باید پیش از بکارگیری قواعد فوق تعیین گردد. برای مثال ، توجه کنید که پیوندهای دو گانه در 1و2- دی آلکیل سیکلوپنتن و 1و2- دی آلکیل سیکلوهگزن ، تقریبا در یک فرکانس جذب می‌دهند.

    اثر اندازه حلقه در حلقه های حاوی پیوندیهای دو گانه خارجی
    در پیوندهای دو گانه خارجی ، کاهش اندازه حلقه باعث افزایش فرکانس جذب می‌گردد. آلن نمونه بارزی از یک ترکیب دارای پیوند دو گانه خارجی است. حلقه‌های کوچکتر نیاز بیشتری به استفاده از خصلت p در سااخت پیوندهای C-C دارند تا جوابگوی نیاز زوایای کوچک باشند. این مساله باعث از میان برداشته شدن خصلت p از پیوند سیگمای پیوند دو گانه شده ، ولی در عوض به آن خصلت s بیشتری می‌دهد؛ بنابراین قدرت و استحکام پیوند دو گانه افزایش می‌یابد. پس ثابت نیروی K افزایش یافته و فرکانس جذب نیز فزونی می‌گیرد.




  10. این کاربر از officer بخاطر این مطلب مفید تشکر کرده است


  11. #17
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض نفت Oil

    پس از آب ، نفت فراوان ترين مايع در بخش هاي بالايي پوسته زمين است . نفت يک منبع غني از مواد شيميايي است . حدود 87% هر بشکه نفت براي سوزاندن و 13% براي ساخت بکار مي رود . بي توجهي در مصرف نفت باعث ورود مقادير زيادي Co2 در هوا و آلودگي هوا مي شود .
    به زغال سنگ ، نفت خام و گاز طبيعي ، سوخت هاي فسيلي مي گويند . سوخت هاي فسيلي منابعي تجديد ناپذيرند زيرا تشکيل آنها بسيار آهسته است و سرانجام روزي تمام خواهد شد .

    پالايش نفت خام

    نفتي که از چاه بيرون آورده مي شود نفت خام نام دارد . پس از جداکردن نمک ها و اسيد ها ،هيدروکربن هاي باقي مانده را پالايش مي کنند . عمل پالايش با تقطير جزء به جزء نفت خام انجام مي شود . در آغاز نفت خام را در کوره تا Cْ400 گرم مي کنند سپس آن را با پمپ به پائين برج تقطير که بيش از 30 متر ارتفاع دارد مي فرستند . مولکول هاي کوچکتر و سبکتر و زود جوش تر به سوي بالا ستون تقطير مي روند و مولکول ها يسنگين تر و دير جوش تر به سمت پائين برج مي روند .
    برش گازي نفت شامل ترکيبهايي با نقطه جوش پائين است . مولکول هاي اين گازها از ۱ تا ۴ اتم کربن دارند . برش هاي مايع نفت که شامل بنزين ، نفت و روغن هاي سنگين تر هستند شامل مولکول هاي ۵ تا 20 کربن هستند . برش جامد و روغني که حتي در دماهاي بالا بخار نمي شوند مولکول هايي با بيش از 20 اتم کربن هستند .

    شيمي آلي
    بخشي از علم شيمي است که درباره مواد آلي گفتگو مي کند . ويژگي آشکار ترکيب هاي آلي وجود اتمهاي کربن در همه آنهاست . از اين رو شيمي آلي را شيم يترکيب هاي کربن نيز مي گويند .

    هيدروکربن هاي سير شده يا آلکان ها
    در يک آلکان ، هر اتم کربن با چهار پيوند به چهار اتم ديگر متصل شده است . اين ، بيش ترين تعداد اتمي است که مي تواند به يک اتم کربن ديگر متصل شود . به اين علت آلکان ها راهيدروکربنهاي سير شده مي گويند . نام اعضاي اين خانواده از دو بخش تشکيل شده است . بخش اول تعداد اتم هاي کربن و بخش دوم لفظ " ان " است. متان نخستين و ساده ترين عضو اين گروه است . متان – اتان – پروپان – بوتان – نپتان - هگزان – هپتان – اوکتان – نونان – دکان – نام آلکان هاي ۱ کربنه تا 10 کربنه است .
    آلکان ها مي توانند راست زنجير يا شاخه دار باشند . مولکول هايي که فرم مولکولي يکسان دارند ، اما آرايش اتم ها در آنها متفاوت است . هم پارياايزوم مي نامند . آلکان هايي که چهار يا تعداد بيش تري اتم کربن داشته باشند داراي ايزوم هستند . همه ي آلکان ها ، گازها ، مايع ها يا جامدهايي بي رنگ هستند که با افزايش اعداد کربن به نقطه جوش و گرانوري آنها افزايش مي يابد . همه ي آلکان ها در هوا با شعله زرد – آبي تميزي مي سوزند .

    سوختن هيدروکربن ها

    انرژي نوراني و گرمايي + آب + گازکربن دي اکسيد = گاز اکسيژن + هيدروژن

    معادله بالا ، سوختن کامل يک هيدروکربن را نشان مي دهد . انرژي آزاد شده را مي توان بر حسب KG/mol بيان کرد .
    اگر مقدار اکسيژن کافي نباشد ، سوختن ناقص خواهد بود .
    در سوختن ناقص ، افزون بر کربن د ياکسيد آب ، مقداري کربن مونوکسيد (Co) نيز تشکيل مي شود و در صورتي که اکسيژن باز هم کمتر شود ، مقداري دوده به عنوان فرآورده هاي مرغي توليد مي شود .

    بهبود کيفيت سوخت
    در سال ۱۹۱۳ ، شيميدان ها فرآيند کراکينگ را براي شکستن مولکول هاي نفت چراغ به مولکول هاي کوچک تر طراح يمي کردند . در اين فرآيند ، نفت چراغ تا حدود Cْ700 گرم مي شود . برا ينمونه ممکن است يک مولکول با 16 اتم کربن شکسته شود و دو مولکول با ۸ اتم کربن به وجود آيد . در عمل مي توان مولکول هايي را که از ۱ تا 14 يا تعداد بيش تري اتم کربن دارند ، از راه کراکينگ مولکول هاي بزرگ تر بدست آورد . مولکول هاي ۵ تا ۱۲ کربنه براي استفاده در بنزين سودمند هستند . به طور معمول بيش از يک سوم نفت خام کراکينگ مي شود . بازده اين فرآيند را با افزودن کاتاليز گرماي مناسب مانند آلومينيوم اکسيد (AL2O3 ) بالا برده اند . فرايند کراکينگ کاتاليزي از نظر مصرف انرژي کارايي بهتري دارد زيرا به جاي Cْ700 رد دماي Cْ500 انجام مي شود .

    عدد اوکتان و روش هاي بالا بردن آن

    بنزيني که بيشتر از آلکان هاي راست زنجير مانند هگزان ، هپتان ، و اوکتان تشکيل شده است ، به آساني مي سوزد و موجب کوبش (تق تق کردن ) موتور مي شود . آلکانهاي شاخ دار در موتور خودروها بهتر از آلکان هاي راست زنجير مي شوند . مثلاً ايزواوکتان که يکي از همپارهاي اوکتان است . بسيار خوش سوز مي باشد .
    عدد اوکتان ، عددي براي بيان کردن ميزان خوش سوزي يک هيدروکربن است .هرچي عدد اوکتان بزرگتر باشد خواص ضد کوبش بنزين بيشتر است و بنزين مرغوب تر است . يک راه نسبتاً ارزان براي بالا بردن عدد اوکتان افزودن تترا اتيل سرب pb ئ 4(C2H5) به بنزين است .

    هيدروکربن هاي سيرنشده
    در اين نوع هيدروکربن ها حداقل دو اتم کربن مي توان يافت که به جاي چهار اتم ، تنها با سه يا دو اتم پيوند دارد . آلکن ها و آلکين ها و اتين ساده ترين عضو آلکين هاست .واکنش پذيري هيدروکربن هاي سير نشده ، بيشتر از آلکان ها است .




    اتن ( اتیلن)


    اتين (استيلن )
    واکنش پذيري هيدروکربن هاي سير نشده ، بيشتر از آلکان ها است .

    فرآورده هاي پتروشيميايي

    امروزه بسياري از اشياء و مواد متداول ساختني هستند که به وسيله صنايع شيميايي از نفت يا گاز طبيعي به دست مي آيند . اين ترکيب ها را فرآورده هاي پتروشيميايي مي نامند .برخي از اين مواد مثل پاک کننده ، حشره کش ها و مواد دارويي و آرايشي به طور مستقيم استفاده مي شوند و ل يبيشتر اين مواد به عنوان ماده اوليه در توليد ترکيب هاي ديگر به ويژه پلاستيک ها بکار مي روند .

    کاربرد اتن در پتروشيمي
    يکي از آلکن هاي مهم صنعتي اتن است . واکنش پذيري پيوند ده گانه در اتن بسيار زياد است . از اين رو به آساني مي توان آن را به بسياري از فرآورده ها يسودمند تبديل کرد . براي مثل وقتي که يک مولکول آب با پيوند دوگانه ي يک مولکول اتن واکنش مي دهد اتانول که يک ترکيب سيرشده است و کاربردهاي بسيار زيادي دارد تشکيل مي شود .





    همچنين از اتن براي تهيه پلاستيک ، پل يتن (پلي اتيلن ) استفاده مي شود که از آن در ساخت کيسه هاي پلاستيکي و ورقه ها يبسته بندي استفاده مي کنند .
    پلي تن يکي از بسپارهاي (پليمرهاي ) مهم صنعتي است.

  12. این کاربر از officer بخاطر این مطلب مفید تشکر کرده است


  13. #18
    پروفشنال Ramana's Avatar
    تاريخ عضويت
    Aug 2009
    محل سكونت
    تو قلب یه عاشق
    پست ها
    971

    پيش فرض آلکین ها

    آلکین ها

    آلکین‌ها هیدروکربن‌هایی هستند که دست کم یک پیوند سه‌گانه بین دو اتم کربن دارند. از آن‌جا که کوچک‌ترین آلکین که نام آیوپاک آن اتین (C2H2) است، پیشتر به نام استیلن شناخته می‌شده است؛ آلکین‌ها به نام استیلن‌ها یا گروه اسیتیلنی نیز نامیده می‌شوند.
    نامگذاری آلکین‌ها

    روش سنتی

    • در نامگذاری معمولی ، آلکین‌ها به عنوان مشتقات استیلنی نامگذاری می‌شوند. معمولاً برای نامگذاری استیلن‌های کوچک از این روش بهره گرفته می‌شود.
    روش آیوپاک

    روش جامع برای نامگذاری آلکین‌ها روش آیوپاک(IUPAC) است و اصول آن ، مشابه نامگذاری آلکنهاست و با رعایت نکات زیر انجام می‌شود:
    • درازترین زنجیری را که پیوند سه گانه در آن قرار دارد، مشخص و کربنهای زنجیر اصلی را از طرفی شماره گذاری می‌کنیم که اولین کربن پیوند سه‌گانه شماره کوچک‌تری را داشته باشد.
    • نام گروه‌ها و شماره کربن محل آنها را معین و به ترتیب الفبای انگلیسی مرتب می‌کنیم.
    • با ذکر شماره کربن محل پیوند سه‌گانه و تغییر نام آخر زنجیر از ane به yne نامگذاری به پایان می‌رسد.
    خواص فیزیکی

    خواص فیزیکی آلکینها ، مشابه آلکنهای هم کربن است. آلکین‌ها ، ترکیباتی با قطبیت بیشتر هستند که در حلالهای با قطبیت کمتر مثل تتراکلرید کربن ، بنزن و اترها بخوبی حل می‌شوند، ولی در آب نامحلولند. همانند سایر هیدروکربنها سبکتر از آب هستند. بررسی و مقایسه نقطه ذوب و نقطه جوش این مواد نشان می‌دهد که با افزایش تعداد کربن نقطه جوش افزایش می‌یابد و با شاخه‌دار شدن کاهش می‌یابد.
    فرآوری

    به طور کلی دو روش زیر برای فرآوری آلکین‌ها به کار می‌رود:
    1. تبدیل یک آلکین به آلکینهای دیگر است که با تغییر و بزرگ کردن آلکین‌های کوچک امکان‌پذیر می‌باشد.
    2. به وجودآوردن پیوند سه‌گانه کربن-کربن در مولکول می‌باشد که با انجام واکنشهای شیمیایی مناسب انجام پذیر می‌باشد.
    تقسیم بندی استیلن‌ها

    استیلن‌های حقیقی یا انتهایی (terminal acetylenes)

    به ترکیباتی از این گروه اطلاق می‌شود که حداقل یک اتم هیدروژن متصل به کربن sp در آنها وجود داشته باشد. مثلا پروپن (متیل استیلن) یک استیلن حقیقی است. به همین ترتیب ، فنیل استیلن و ترسیوبوتیل استیلن از استیلن‌های حقیقی می‌باشند.
    استیلن‌های داخلی (internal acetylenes)

    هرگاه پیوند سه گانه کربن به کربن درجایی از مولکول قرار گرفته باشد که کربنهای با هیبرید sp به استخلاف متصل باشند، استیلنی را داخلی می‌نامند، مثل دی‌متیل استیلن ، دی‌فنیل استیلن و دی‌ترسیوبوتیل استیلن.
    آلکینها با چند روش نامگذاری می‌شوند:
    در نامگذاری معمولی ، آلکینها به عنوان مشتقات استیلنی نامگذاری می‌شوند. معمولا برای نامگذاری استیلن‌های کوچک از این روش استفاده می‌شود. روش جامع برای نامگذاری آلکین‌ها روش (IUPAC) است و اصول آن ، مشابه نامگذاری آلکنهاست و با رعایت نکات زیر انجام می‌شود:
    1. طولانی ترین زنجیری را که پیوند سه گانه در آن قرار دارد، مشخص و کربنهای زنجیر اصلی را از طرفی شماره گذاری می‌کنیم که اولین کربن پیوند سه‌گانه شماره کوچکتری را داشته باشد.
    2. نام گروهها و شماره کربن محل آنها را معین و به ترتیب الفبای انگلیسی مرتب می‌کنیم.
    3. با ذکر شماره کربن محل پیوند سه‌گانه و تغییر نام آخر زنجیر از ane به yne نامگذاری به پایان می‌رسد.
    ساختمان استیلن

    اتین یا استیلن ، کوچکترین عضو خانوده بزرگ آلکینها (استیلنی‌ها) می‌باشد. به طریق کوانتوم مکانیکی ، اگر بخواهیم با دو اتم هیدروژن ، مولکولی را ایجاد کنیم، لازم است کربن‌ها با یک پیوند سه‌گانه به یکدیگر متصل شوند. برای ایجاد مولکولی اتمهای کربن باید هیبرید sp داشته باشند. یکی از این اوربیتالهای هیبریدی به کربن و دیگری به هیدروژن متصل و اوربیتالهای py و Pz نیز دو پیوند π را ایجاد می‌کنند.
    با شناختی که از دو پیوند دوگانه کربن به کربن و کربن به هیدروژن آلکنها داریم، انتظار می‌رود که طول پیوند سه گانه کربن- کربن و کربن- هیدروژن در استیلنی‌ها کوتاهتر باشد. طول پیوند سه گانه کربن- کربن 1,20 آنگستروم و کربن- هیدروژن 1,60 آنگستروم اندازه گیری شده است.
    خواص فیزیکی آلکینها

    خواص فیزیکی آلکینها ، مشابه آلکنهای هم کربن است. آلکینها ، ترکیباتی با قطبیت کمتر می‌باشند که در حلالهای با قطبیت کمتر مثل تتراکلرید کربن ، بنزن و اترها بخوبی حل می‌شوند، ولی در آب نامحلولند. همانند سایر هیدروکربنها سبکتر از آب هستند. بررسی و مقایسه نقطه ذوب و جوش این مواد نشان می‌دهد که با افزایش تعداد کربن نقطه جوش افزایش می‌یابد و با شاخه‌دار شدن کاهش می‌یابد.
    دو روش کلی برای تهیه آلکینها وجود دارد:
    1. تبدیل یک آلکین به آلکینهای دیگر است که با تغییر و بزرگ کردن آلکینهای کوچک امکان‌پذیر می‌باشد.
    2. ایجاد پیوند سه گانه کربن- کربن در مولکول می‌باشد که با انجام واکنشهای شیمیایی مناسب انجام پذیر می‌باشد.
    روشهای صنعتی تهیه استیلن

    استیلن ، کوچکترین عضو خانوده استیلنی‌هاست و در صنعت از اهمیت ویژه‌ ای برخوردار است. به عنوان ماده اولیه و پیش ماده در سنتز و تهیه مواد شیمیایی مختلف مورد نیاز می‌باشد. از این رو ، روشهای صنعتی زیادی برای تولید انبوه این ماده ابداع شده است.
    • کاربید کلسیم از واکنش آهک و زغال کک و در دمای بالا (با استفاده از کوره های الکتریکی) تهیه می‌شود. حسن این ماده در این است که قابل نگهداری و به سهولت قابل حمل می‌باشد و لذا در هر جا و مکانی تهیه استیلن امکان‌پذیر می‌باشد.
    CaO + 3C → C2Ca + H2O→ H-C≡C-H

    • از اکسید شدن جزئی و محدود متان در دمای بالا نیز استیلن در اشل صنعتی تولید می‌شود. با این روش صنعتی ، ضمن این که استیلن سنتز می‌شود، گازهای با ارزش هیدروژن و منوکسید کربن نیز تولید می‌شود که اهمیت سنتزی فراوان دارد (به عنوان مثال در سنتز متانول مورد استفاده قرار می‌گیرند).
    CH4 + O2 → 2CO + 10H2+ 2H-C≡C-H

    • از اکسید شدن متان در دمای حدود 1500 درجه سانتی‌گراد و در مدت زمان بسیار کوتاه 0.1 ثانیه نیز استیلن و هیدرژن تولید می‌گردد.
    2CH4 → H-C≡C-H + 3H2

  14. #19
    پروفشنال Ramana's Avatar
    تاريخ عضويت
    Aug 2009
    محل سكونت
    تو قلب یه عاشق
    پست ها
    971

    پيش فرض شیمی آلی

    شیمی آلی





    شیمی آلی بخشی از دانش شیمی است که بررسی هیدروکربن‌ها می‌‌پردازد. به همین دلیل به آن شیمی ترکیبات کربن نیز گفته می‌شود . پسوند «آلی» یادگار روزهایی است که مواد شیمیایی را بسته به این که از چه منبعی به دست می‌آمدند، به دو دسته معدنی و آلی تقسیم می‌کردند.
    مواد معدنی آنهایی بودند که از معادن استخراج می‌شدند و مواد آلی آنهایی که از منابع گیاهی یا حیوانی یعنی از موادی که توسط موجودات زنده تولید می‌شدند، به دست می‌آمدند.
    در واقع تا پیرامون سال ۱۸۵۰ بسیاری از شیمیدانان معتقد بودند، که خاستگاه مواد آلی باید موجودات زنده باشند و در نتیجه این مواد را هرگز نمی‌توان از مواد معدنی سنتز نمود.
    موادی که از منابع آلی به دست می‌آیند، در یک خصوصیت مشترکند: همه آنها دارای عنصر کربن هستند.
    حتی پس از آن که مشخص شد این مواد لزوماً نبایستی از منابع زنده به دست آیند و می‌توان آنها را در آزمایشگاه سنتز کرد، باز هم مناسبت داشت تا نام آلی برای توصیف آنها و موادی همانند آنها حفظ شود. این تقسیم‌بندی بین مواد معدنی و آلی تا به امروز حفظ شده است.
    امروزه اگر چه هنوز بسیاری از ترکیبات کربن به آسانی از منابع گیاهی و جانوری بدست می‌آیند، ولیکن بسیاری از آنها نیز سنتز می‌شوند. از ترکیبات گاهی از مواد معدنی مانند کربناتها و سیانیدها سنتز می‌شوند ولی غالباً از سایر مواد آلی تهیه می‌گردند.
    دو منبع بزرگ مواد آلی که از آنها مواد آلی ساده تأمین می‌شوند، نفت و ذغال سنگ است. (هر دو اینها از مفهوم قدیمی «آلی» بوده و فراورده تجزیه (کافت) گیاهان و جانوران هستند). این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگ‌تر و پیچیده‌تر مصرف می‌شوند.
    نفت و زغال سنگ سوختهای فسیلی هستند که در طی هزاران سال بر روی هم انباشته شده وغیر قابل جایگزینی هستند. این مواد — بویژه نفت — جهت رفع نیازهای انرژی که به طور دایم در حال افزایش است، با سرعت خطرناکی مصرف می‌گردند. امروزه کمتر از ۱۰٪ نفت برای ساختن مواد شیمیایی مصرف می‌شود و قسمت اعظم آن برای تولید انرژی سوزانده می‌شود. خوشبختانه منابع دیگری برای ایجاد نیرو از قبیل منبع خورشیدی، گرمای زمین، باد، امواج، جزر و مد و انرژی هسته‌ای وجود دارد.
    اما چگونه می‌توان منبع دیگری به جای مواد آلی پیدا نمود؟ البته در نهایت باید به جایی که سوختهای سنگواره‌ای از آنجا ناشی می‌شوند یعنی توده زیستی برگشت نمود، اما این بار به طور مستقیم و بدون دخالت هزاران سال. توده زیستی قابل تجدید است و چنانچه به طور مناسب مصرف شود، تا زمانی که ما بر روی این سیاره بتوانیم وجود داشته باشیم آن هم باقی می‌ماند. در ضمن می‌گویند که نفت با ارزش‌تر از آن است که سوزانده شود.
    چه خصوصیتی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز می‌سازد؟ لااقل قسمتی از این جواب به نظر می‌رسد که چنین باشد: تعداد بسیار زیادی از ترکیبات کربن وجود دارند که مولکولهای آنها می‌توانند بسیار بزرگ و پیچیده باشد.
    تعداد ترکیباتی که دارای کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. این مواد آلی در خانواده‌های مختلف قرار می‌گیرند، و معمولاً در بین مواد معدنی، همتایی ندارند.
    مولکولهای آلی شامل هزاران اتم شناخته شده‌اند، و ترتیب قرار گرفتن اتمها حتی در مولکولهای نسبتاً کوچک بسیار پیچیده است. یکی از مسایل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتمها در مولکولها و یا تعیین ساختمان ترکیبات است.
    راه‌های زیادی برای شکستن این مولکولهای پیچیده و یا نوآرایی آنها برای ایجاد مولکولهای جدید وجود دارد؛ روشهای مختلفی برای اضافه نمودن اتمهای جدید به این مولکولها و یا جایگزین نمودن اتمهای جدید به جای اتمهای قدیم وجود دارد. بخش کلان شیمی آلی به پژوهش در مورد این واکنشها اختصاص دارد، یعنی تشخیص این که این واکنشها کدامند، چگونه انجام می‌شوند و چگونه می‌توان از آنها برای سنتز یک ترکیب دلخواه استفاده نمود.
    اتمهای کربن می‌توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر بپیوندند. اتمهای کربن می‌توانند زنجیرهایی شامل هزاران اتم و یا حلقه‌هایی با اندازه‌های متفاوت ایجاد نمایند؛ زنجیرها و حلقه‌ها می‌توانند دارای شاخه و پیوندهای عرضی باشند. به اتمهای کربن این زنجیرها و حلقه‌ها، اتمهای دیگری که عمدتاً هیدروژن و همچنین فلویور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتمهای گوناگون میپیوندد.
    هر آرایش مختلف از اتمها مربوط به ترکیب متفاوتی است، و هر ترکیب یک رشته ویژگیهای شیمیایی و فیزیکی ویژه خود را دارد. از این رو غیرمنتظره نیست که امروزه بیشتر از ده میلیون ترکیب شناخته شده کربن وجود داشته باشد و هر سال به این تعداد نیم میلیون ترکیب تازه افزوده گردد. تعجب‌آور نیست که بررسی این ترکیبات، رشته ویژه‌ای را در شیمی به خود اختصاص دهد.
    شیمی آلی اهمیت فوق‌العاده زیادی در تکنولوژی دارد و در واقع، شیمی رنگدانه‌ها و داروها، کاغذ و جوهر، رنگهای نقاشی و پلاستیکها، بنزین و تایرهای لاستیکی است؛ همچنین، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.
    شیمی آلی شالوده زیست‌شناسی و پزشکی است. ساختمان موجودات زنده، به غیر از آب، عمدتاً از مواد آلی ساخته شده‌اند؛ مولکولهای مورد بحث در زیست‌شناسی مولکولی همان مولکولهای آلی هستند. زیست‌شناسی در مقیاس مولکولی همان شیمی آلی است.
    شاید دور از انتظار نباشد که بگوییم ما در عصر کربن زندگی می‌کنیم. هر روزه، روزنامه‌ها ذهن ما را متوجه ترکیبات کربن نظیر کلسترول و چربیهای اشباع نشده، هورمونها و استروییدها، حشره‌کشها و فرومونها، عوامل سرطانزا و شیمی درمانی، DNA و ژنها می‌نمایند. به خاطر نفت، جنگها به راه افتاده است.
    وقوع دو فاجعه بشریت را تهدید می‌کند و هر دو ناشی از تجمع ترکیبات کربن در جو است؛ یکی نازک شدن لایه ازون که عمدتاً به واسطه وجود کلروفلویورو کربنها است و دیگری پدیده گلخانه که به خاطر حضور متان، کلروفلویور و کربنها و سرآمد همه کربن دی‌اکسید است.
    شاید به همین مناسبت بوده است که مجله Science در سال ۱۹۹۰، الماس را که یکی از فرمهای آلوتروپی کربن است به عنوان مولکول سال انتخاب کرده است. و مولکول آلوتروپ تازه‌یاب فولرن باکمینستر کربن ۶۰ (buckminsterfullerene-C۶۰) است که هیجان بسیاری را در دنیای شیمی ایجاد کرده است، هیجانی که از «زمان ککوله تاکنون» دیده نشده است.
    در بحث شیمی آلی، آموختن اعداد یونانی و پیشوندهای اعداد یونانی به عنوان یک پیش نیاز مطرح می‌گردد. این اعداد در نام گذاری انواع هیدرو کربن‌ها مصرف دارند.

  15. #20
    پروفشنال Ramana's Avatar
    تاريخ عضويت
    Aug 2009
    محل سكونت
    تو قلب یه عاشق
    پست ها
    971

    پيش فرض فولرن ها

    فولرن ها




    در سال ۱۹۸۵ رابرت اف ،هارولد دبلیو . کورتو و ریچارد ای، اسمالی ، شکل جدیدی از کربن را کشف کردند که امروز به نام توپ باکی بال معروف است . این کشف نشان داد که ۶۰ ، ۷۰ یا تعداد بیشتری اتم کربن میتوانند با هم بصورت خوشه تجمع کنند و مولکولی قفس مانند بسازند .
    فولرنها به شدت الکترون خواه هستند و به آسانی با هسته دوستها واکنش میدهند ، از واکنشهای آنهای میتوان :
    ۱- واکنش افزایشی :
    تشکیل برون وجهی با افزایش هسته دوستها یا رادیکالها ، حلقه زایی ، و ایجاد کمپلکس با فلزات واسطه .
    ۲- واکنشهای انتقال الکترون :
    کاهش شیمیایی فولرنها به راحتی بوسیله واکنش با فلزهای قلیایی و قلیایی خاکی الکتروپوزیتیو یا مولکولهای آلی اکترون دهنده امکان پذیر است،
    ۳-تشکیل ناجور فولرنها :
    جانشین کردن اتمهایی مانند نیتروژن یا بور به جای اتم کربن در اسکلت فولرن
    ۴-واکنشهای باز شدن حلقه :
    تولید یک حفره در اسکلت با شکستن تعداد مشخصی از پیوندها
    ۵-تشکیل درون وجهیها :
    وارد کردن و به تله انداختن اتمها در داخل قفس کروی شکل
    نیمرسانایی با مقاومت الکتریکی بسیار بالاست ، اما با وارد کردن فلزات قلیایی ، قلیایی خاکی یا گونه های الکترون دهنده دیگر درون ، انتقال بار حاصل ، مقاومت الکتریکی را به شدت کاهش میدهد که در برخی موارد میتواند منجر به رسانایی فلزی شود .
    به این مواد متافولرنها گفته میشود .
    نانو لوله های کربنی به دلیل داشتن قطر بسیار کوچک در حدود ۰.۷ نانومتر نخستین نمونه از استوانه های توخالی معروف به سیمهای کوانتومی هستند ، اینها هم به صورت فولرنهای تک لایه هم به صورت فولرنهای چند لایه تو در تو قابل تهیه اند ، در طول دهه گذشته دانشمندان به این نتیجه رسیده اند که نانولوله های کربنی قادرند الکتریسیته را به دو صورت هدایت کنند ، با مقاومت کم ، مانند فلز ، و با مقاومت متغیر ، مانند نیم رسانا .اکنون پژوهشگران دانشگاه برکلی این نظریه را مطرح کرده اند که نانو لوله ها میتوانند در شرایط مناسب ابر رسانا هم باشند ، بلاخره در سال ۱۹۹۹ دانشمندان نانو لوله هایی بسیار کوچک به قطر کمتر از نیم نانومتر و طول ۱۰۰۰ آنگستروم {۳۰۰۰ بار کوتاهتر از دیگر نانولوله ها، جهت اجتناب از نقصهای ساختاری }تولید کردند که پایینتر از ۲۰ درجه کلوین ابر رسانا میشوند.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •