تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 1 از 13 1234511 ... آخرآخر
نمايش نتايج 1 به 10 از 124

نام تاپيک: انرژی سولار (Solar technology) و ساير انرژی های تجديد شدنی

  1. #1
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض انرژی سولار (Solar technology) و ساير انرژی های تجديد شدنی

    اين تاپيک رو باز کردم تا همه علاقه مندان به انرژی های نو و تجديد شدنی بتونند ازش استفاده و يا مطالبشون رو قرار بدن. سعی ميکنم که مقالات و مطالب رو به زبان اصلی بزارم چون هم منابع فارسی بسيار محدود هستند وهم دوستان به زبان انگليسی بيشتر عادت کنند!!! سپاسگزارم

  2. این کاربر از boomba بخاطر این مطلب مفید تشکر کرده است


  3. #2
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    مقدمه

    امروزه بشر با دو بحران بزرگ روبرو است که بیش از آنچه ما ظاهرا تشخیص می دهیم با یکدیگر ارتباط دارند. از یک طرف جوامع صنعتی و همچنین شهرهای بزرگ با مشکل الودگی محیط زیست مواجهند و از طرف دیگر مشاهده می شود که مواد اولیه و سوخت مورد نیاز همین ماشینها با شتاب روز افزون در حال اتمام است.

    اثرات مصرف بالای انرژِی در زمین و آب و هوا آشکارا مشخص می باشدو ما تنها راه حل را در پایین اوردن میزان مصرف انرژی می دانیم ,حال انکه این امر نمی تواند به طور موثر ادامه داشته باشد.توجه و توصل به انرژی اتمی به عنوان جانشینی برای سوختهای فسیلی نیز چندان موفقیت آمیز نبوده است.

    صرف هزینه های سنگین و همچنین تشعشعات خطر ناکی که ازنیروگاههای اتمی در فضا پخش شده ,نتیجه مثبتی نداشته است و اگر یکی از این نیروگاهها منفجر شود زیانهای فراوان و جبران ناپذیری به بار خواهد اورد.به علاوه به مشکل اساسی که در مورد مواد سوختی نظیر نفت ,گاز و زغال سنگ داشتیم بر می خوریم بدین معنی که معادن اورانیم که سوخت این نیروگاهها را تامین می کند منابع محدودی هستند و روزی خواهد رسیدکه این ذخایر پایان خواهد یافت و ماده ای که جایگزین ان شود وجود نخواهد داشت.


    انرژی خورشیدی :

    خورشید به عنوان یک منبع بی پایان انرژی می تواند حلال مشکلات موجود در مورد انرژی و محیط زیست باشد.انرژی بدون خطر ...
    این انرژی که به زمین می تابد هزاران بار بیشتر از انچه که ما نیاز داریم و مصرف می کنیم ,می باشد.حتی نور کمی که از پنجره به اتاق میتابد دارای انرژی بیشتری از سیم برقی است که به داخل اتاق کشیده شده است.از انرژی خورشیدی می توان استفاده های مهم و کاملا مفید, به عنوان یک انرژی تمیز و قابل دسترس در همه جا استفاده کرد. اما از نور خورشید به طور مستقیم نمی توان به جای سوخت های فسیلی بهره برد بلکه باید دستگاههایی ساخته شود که بتوانند انرژی تابشی خورشید را به انرژی قابل استفاده نظیر انرژی مکانیکی, حرارتی الکتریسیته و ...تبدیل کنند.


    مصارف انرژی خورشیدی :

    1)گرم کننده ها مثل ابگرمکن خورشیدی که برای گرمای خانه ها و کوره های خوشیدی که برای ذوب فلزات حتی با دمای بالا نظیر اهن استفاده می شود و دمایی تا حدود 6000درجه سانتی گراد تولید می کنند.
    2)دستگاههای اب شیرین کن که توسط اینه هایی نور خورشید را روی مخازن اب متمرکز می کنند تا کار تبخیر را انجام دهد.
    3)الکتریسیته خورشیدی در این روش که نسبت به سایر روشها ارجحیت دارد.انرژی الکتریکی به سادگی قابل تبدیل به سایر انرژی ها بوده و می توان ان را ذخیره کرد.


    طریقه دریافت الکتریسیته از انرژی خورشیدی :

    1) نیروگاه های حرارتی که حرارت لازم توسط اینه هایی که نور خورشید را روی دیگ بخار متمرکز میکنند, تولید میشود.
    2} اثر فتوولتایی:در این روش انرژی تابشی مستقیما به انرژی الکتریکی تبدیل میشود.قطعاتی که اثر فتوولتایی از خود نشان میدهند به سلول خورشیدی معروفند .
    و در حال حاظر بیشترین استفاده از انرژی خورشیدی با این روش است.در برخی کشورها نیروگاه های فتوولتائیک ساخته شده که برای تولید برق است.
    اما بیشترین استفاده از سلولهای خورشیدی در نیروگاه(( فتو ولتائیک50مگاواتی جزیره کرت یونان))است.


    اساس کار سلولهای خورشیدی :

    سلول خورشیدی عبارت از قطعات نیمرسانایی هستند که انرژی تابشی خورشید را به انرژی الکتریکی تبدیل میکنند.رسانندگی این مواد به طور کلی به دما ,روشنایی ,میدان مغناطیسی و مقدار دقیق ناخالصی موجود در نیم رسانا بستگی دارد.
    از ویژگی های سلولهای خورشیدی میتوان به این موارد اشاره کرد:
    جای زیادی اشغال نمی کنند .قسمت متحرک ندارند .بازده انها با تغییرات دمایی محیط تغییرات چندانی نمی کنند.نسبتا به سادگی نصب می شوند.به راحتی با سیستمهای به کار رفته در ساختمان جور می شوند.
    همچنین از اشکالات سلولهای خوشیدی می توان به تولید وسایل فتوولتائیک که هزینه زیادی دارد و چگالی انرژی تابشی که بسیار کم است اشاره کرد که در فصول مختلف و ساعات متفاوت شبانه روز تغییر می کند که باید ذخیره شود و همین موضوع بسیار هزینه بر است.


    کاربردهای سلولهای خوشیدی :

    1)تامین نیروی حرکتی ماهواره ها و سفینه های فضایی
    2)تامین انرژی لازم دستگاهایی که نیاز به ولتاژهای کمتری دارند مثل ماشین حساب و ساعت
    3)تهیه برق شهر توسط نیروگاههای فتوولتائیک
    4)تامین نیروی لازم برای حرکت خودروها و قایقهای کوچک

    منبع : عليمران

  4. #3
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    چگونه يک سيستم منبع نوری کار ميکند

    How a Photovolaic (PV) System Works


    Simply put, PV systems are like any other electrical power generating systems, just the equipment used is different than that used for conventional electromechanical generating systems. However, the principles of operation and interfacing with other electrical systems remain the same, and are guided by a well-established body of electrical codes and standards.
    Although a PV array produces power when exposed to sunlight, a number of other components are required to properly conduct, control, convert, distribute, and store the energy produced by the array.
    Depending on the functional and operational requirements of the system, the specific components required, and may include major components such as a DC-AC power inverter, battery bank, system and battery controller, auxiliary energy sources and sometimes the specified electrical load (appliances). In addition, an assortment of balance of system (BOS) hardware, including wiring, overcurrent, surge protection and disconnect devices, and other power processing equipment. Figure 3 show a basic diagram of a photovoltaic system and the relationship of individual components


    Major photovoltaic system components.
    Why Are Batteries Used in Some PV Systems?
    Batteries are often used in PV systems for the purpose of storing energy produced by the PV array during the day, and to supply it to electrical loads as needed (during the night and periods of cloudy weather). Other reasons batteries are used in PV systems are to operate the PV array near its maximum power point, to power electrical loads at stable voltages, and to supply surge currents to electrical loads and inverters. In most cases, a battery charge controller is used in these systems to protect the battery from overcharge and overdischarge

  5. #4
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    چگونه سلولهای سولار ساخته ميشوند



    How PV Cells Are Made The process of fabricating conventional single- and polycrystalline silicon PV cells begins very pure semiconductor-grade polysilicon - a material processed from quartz and used extensively throughout the electronics industry. The polysilicon is then heated to melting temperature, and trace amounts of boron are added to the melt to create a P-type semiconductor material. Next, an ingot, or block of silicon is formed, commonly using one of two methods: 1) by growing a pure crystalline silicon ingot from a seed crystal drawn from the molten polysilicon or 2) by casting the molten polysilicon in a block, creating a polycrystalline silicon material. Individual wafers are then sliced from the ingots using wire saws and then subjected to a surface etching process. After the wafers are cleaned, they are placed in a phosphorus diffusion furnace, creating a thin N-type semiconductor layer around the entire outer surface of the cell. Next, an anti-reflective coating is applied to the top surface of the cell, and electrical contacts are imprinted on the top (negative) surface of the cell. An aluminized conductive material is deposited on the back (positive) surface of each cell, restoring the P-type properties of the back surface by displacing the diffused phosphorus layer. Each cell is then electrically tested, sorted based on current output, and electrically connected to other cells to form cell circuits for assembly in PV modules.

  6. #5
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    چرا بايد از پنلهای سولار بر روی پشت بام استفاده کرد؟

    Why should I put PV on my roof?
    Installing your own solar photovoltaic (PV) system means that you can generate your own electricity from the free and inexhaustible energy from the sun. A photovoltaic system never needs refuelling, emits no pollution, and can be expected to operate for over 30 years while requiring minimal maintenance. A typical PV system on a house roof could prevent over 34 tonnes of greenhouse gas emissions during its lifetime.
    Today photovoltaic systems are recognized by governments, environmental organizations and commercial organizations as a technology with the potential to supply a significant part of the worlds energy needs in a sustainable and renewable manner. Organizations such as Shell and BP have set up large photovoltaic manufacturing plants and environmental organizations such as Greenpeace strongly support the use of solar energy.*
    Installing a photovoltaic system is one of the ways householders and other building owners can contribute towards a sustainable future for everyone.
    With global climate change threatening all our futures, we need to switch to clean, renewable forms of energy and electricity production. Solar electric panels can generate electricity that is free from pollution, fuelled by the natural resource of the sun, which is free, abundant and inexhaustible. Greenpeace strongly supports solar energy.'
    The key benefits of a solar roof are:
    - Your own clean power source that helps reduce global warming
    - Reduces your electricity bills, since daylight is free
    - Increases the value of your property
    - Extremely low maintenance, with a long functional lifetime of 30 years or more
    - Silent in operation
    - Increases your awareness of electricity use and encourages more energy efficient behaviour
    Photovoltaic means electricity from light. Photovoltaic systems use daylight to power ordinary electrical equipment, for example, household appliances, computers and lighting. The photovoltaic (PV) process converts free solar energy - the most abundant energy source on the planet - directly into electricity. Note that this is not the familiar solar thermal technology used for heating and hot water.
    A PV cell consists of two or more thin layers of semi-conducting material, most commonly silicon. When the silicon is exposed to light, electrical charges are generated and this can be conducted away by metal contacts as direct current (DC). The electrical output from a single cell is small, so multiple cells are connected together and encapsulated (usually behind glass) to form a module (sometimes referred to as a "panel"). The PV module is the principle building block of a PV system and any number of modules can be connected together to give the desired electrical output.
    PV equipment has no moving parts and as a result requires minimal maintenance. It generates electricity without producing emissions of greenhouse or any other gases, and its operation is virtually silent. These pages contain information on what PV power is used for, types of PV cell, and a typical system configuration.
    PV systems supply electricity to many applications, ranging from systems supplying power to city buildings (which are also connected to the normal local electricity network) to systems supplying power to garden lights or to remote telecom relay stations.
    The main area of interest today is grid connect PV systems. These systems are connected to the local electricity network. This means that during the day, the electricity generated by the PV system can either be used immediately (which is normal for systems installed on offices and other commercial buildings), or can be sold to one of the electricity supply companies (which is more common for domestic systems where the occupier may be out during the day). In the evening, when the solar system is unable to provide the electricity required, power can be bought back from the network. In effect, the grid is acting as an energy storage system, which means the PV system does not need to include battery storage.
    Grid connect PV systems are often integrated into buildings. PV technology is ideally suited to use on buildings, providing pollution and noise-free electricity without using extra space. The use of photovoltaics on buildings has grown substantially in the UK over the last few years, with many impressive examples already in operation.
    PV systems can be incorporated into buildings in various ways. Sloping rooftops are an ideal site, where modules can simply be mounted using frames. Photovoltaic systems can also be incorporated into the actual building fabric, for example PV roof tiles are now available which can be fitted as would standard tiles. In addition, PV can also be incorporated as building facades, canopies and sky lights amongst many other applications. This is a rapidly growing market in the UK and throughout Europe and it is mainly this type of system which the UK Photovoltaic Demonstration Programme provides funding for.
    Stand-alone photovoltaic systems have been used for many years in the UK to supply electricity to applications where grid power supplies are unavailable or difficult to connect to. Examples include monitoring stations, radio repeater stations, telephone kiosks and street lighting. There is also a substantial market for PV technology in the leisure industry, with battery chargers for boats and caravans, as well as for powering garden equipment such as solar fountains. These systems normally use batteries to store the power, if larger amounts of electricity are required they can be combined with another source of power - a biomass generator, a wind turbine or diesel generator to form a hybrid power supply system.
    PV technology is also widely used in the developing world. The technology is particularly suited here, where electricity grids are unreliable or non-existent, with remote locations often making PV power supply the most economic option. In addition, many developing countries have high solar radiation levels year round.
    Types of PV Cell:
    Monocrystalline Silicon Cells:
    Made using cells saw-cut from a single cylindrical crystal of silicon, this is the most efficient of the photovoltaic (PV) technologies. The principle advantage of monocrystalline cells are their high efficiencies, typically around 15%, although the manufacturing process required to produce monocrystalline silicon is complicated, resulting in slightly higher costs than other technologies.
    Multicrystalline Silicon Cells:
    Made from cells cut from an ingot of melted and recrystallised silicon. In the manufacturing process, molten silicon is cast into ingots of polycrystalline silicon, these ingots are then saw-cut into very thin wafers and assembled into complete cells. Multicrystalline cells are cheaper to produce than monocrystalline ones, due to the simpler manufacturing process. However, they tend to be slightly less efficient, with average efficiencies of around 12%., creating a granular texture.
    Thick-film Silicon:
    Another multicrystalline technology where the silicon is deposited in a continuous process onto a base material giving a fine grained, sparkling appearance. Like all crystalline PV, this is encapsulated in a transparent insulating polymer with a tempered glass cover and usually bound into a strong aluminium frame.
    Amorphous Silicon:
    Amorphous silicon cells are composed of silicon atoms in a thin homogenous layer rather than a crystal structure. Amorphous silicon absorbs light more effectively than crystalline silicon, so the cells can be thinner. For this reason, amorphous silicon is also known as a "thin film" PV technology. Amorphous silicon can be deposited on a wide range of substrates, both rigid and flexible, which makes it ideal for curved surfaces and "fold-away" modules. Amorphous cells are, however, less efficient than crystalline based cells, with typical efficiencies of around 6%, but they are easier and therefore cheaper to produce. Their low cost makes them ideally suited for many applications where high efficiency is not required and low cost is important.
    Other Thin Films:
    A number of other promising materials such as cadmium telluride (CdTe) and copper indium diselenide (CIS) are now being used for PV modules. The attraction of these technologies is that they can be manufactured by relatively inexpensive industrial processes, certainly in comparison to crystalline silicon technologies, yet they typically offer higher module efficiencies than amorphous silicon. New technologies based on the photosynthesis process are not yet on the market

  7. #6
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    فوتو والتک يا انرژی زای نوری چيست؟



    Current PV Technology


    Photovoltaics (PV) or solar cells as they are often referred to, are semiconductor devices that convert sunlight into direct current (DC) electricity. Groups of PV cells are electrically configured into modules and arrays, which can be used to charge batteries, operate motors, and to power any number of electrical loads. With the appropriate power conversion equipment, PV systems can produce alternating current (AC) compatible with any conventional appliances, and operate in parallel with and interconnected to the utility grid.



    History of Photovoltaics


    The first conventional photovoltaic cells were produced in the late 1950s, and throughout the 1960s were principally used to provide electrical power for earth-orbiting satellites. In the 1970s, improvements in manufacturing, performance and quality of PV modules helped to reduce costs and opened up a number of opportunities for powering remote terrestrial applications, including battery charging for navigational aids, signals, telecommunications equipment and other critical, low power needs.


    In the 1980s, photovoltaics became a popular power source for consumer electronic devices, including calculators, watches, radios, lanterns and other small battery charging applications. Following the energy crises of the 1970s, significant efforts also began to develop PV power systems for residential and commercial uses both for stand-alone, remote power as well as for utility-connected applications. During the same period, international applications for PV systems to power rural health clinics, refrigeration, water pumping, telecommunications, and off-grid households increased dramatically, and remain a major portion of the present world market for PV products. Today, the industry’s production of PV modules is growing at approximately 25 percent annually, and major programs in the U.S., Japan and Europe are rapidly accelerating the implementation of PV systems on buildings and interconnection to utility networks

  8. #7
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض


    Can a PV system be installed on my building

    The most important questions to consider in deciding whether or not a PV system can be installed on a building and what type of system should be installed are:
    - is there a suitable place on the building where the solar array could be mounted (taking into account orientation, shade, and available area)
    - what type of photovoltaic system would be suitable
    - is planning permission required Photovoltaic modules can be placed on almost any building surface which receives sunshine for most of the day. Roofs are the usual location for PV systems on houses but photovoltaic modules can also be placed on facades, conservatory or atrium roofs, sun shades, etc.
    The surface on which the PV array is mounted should receive as much light as possible. The more light the solar array receives the more electricity will be generated. The three issues which affect how much light a surface receives are:
    1. Orientation: Due south is the best possible orientation. If the PV is to be mounted on a vertical façade the orientation should preferably be between South East and South West. If the PV is to be mounted at a tilt a wider range of orientations will still give a reasonable energy yield. North facing orientations should be avoided.
    2. Tilt: A tilted array will receive more light than a vertical array. Any angle between vertical and 15o off horizontal can be used. A minimum tilt of 15o off horizontal is recommended to allow the rain to wash dust off the array. The optimal tilt angle is 30o - 60o for a south facing array in Europe. Shallower tilt angles are better for east or west facing arrays.
    3. Shadowing: Shadows cast by tall trees and neighbouring buildings must also be considered. Even minor shading can result in significant loss of energy. If shading is unavoidable, your system designer can advise on how to minimize the effect of shade on the amount of electricity produced.
    The area required for mounting a PV array depends on the output power desired and the type of module used. An area of around 8 m2 will be required to mount an array with a rated power output of 1kW, if monocrystalline modules are used (the most efficient modules type). If multicrystalline modules are used an area of around 10 m2 will be required for a 1kWp system and if amorphous modules are used an area of about 20 m2 will be required. These areas can be scaled up or down depending on the output power desired. 1 - 3 kWp is a typical power output for a domestic system, although smaller or larger systems can be installed.
    There are various ways in which a PV array can be mounted on a building. The various options offer different appearances and vary in cost. The commonest way of mounting an array on a house is to place it on the roof either with modules mounted in a frame above the existing roof tiles or integrated into the roof. If the array is to be integrated into the roof PV roof tiles may be used instead of modules.
    PV arrays can also be mounted on flat roofs, on walls, in conservatory roofs, on sun shades or on other structures such as pergolas or car parking bays.
    PV roofs do not usually require planning permission unless the building is listed or in a conservation area. However you should call your council to check on local policy.
    How much electricity will a system generate?
    A system with a PV array tilted towards the south would generate approximately 750/1500kWh/year per kWp installed (in Europe). So a typical 2 kWp system (around 20 m2 of multicrystalline modules) would generate around 1500/3000 kWh per year. Output will be reduced by shade or non-optimal orientations or tilt angles.


    How much will a system cost?
    A typical price for a grid connected, building integrated PV system is between Euro 6 and Euro 7 per Wp, this works out at Euro 12.000 - Euro 14.000 for a 2 kWp system for a house.
    There are a number of factors that will influence the cost of a system:
    · Whether or not the system is being installed while the building is being built or as a retro-fit to an existing building. If the system is being installed on a new building some savings may be made, eg the number of roof tiles that need to be purchased could be reduced.
    · The number of PV systems being installed at a time. A house builder installing systems on a group of houses can expect a price nearer the bottom of the quoted range than an individual householder.
    · The size of the system being installed, a larger system may be cheaper per kWp while a small system may be more expensive.
    · How difficult or easy it is to access the area where the PV system is being installed. The typical price quoted applies to installation on a typical house roof, if the roof is a complicated shape or requires complicated scaffolding costs will be higher.
    · The module type used will significantly impact on the costs. The typical price quoted is based on standard modules, tile type systems are somewhat more expensive. The most expensive systems use semi-transparent glass modules in facades or conservatory roofs.
    __________________

  9. #8
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    Solar Power Plant


    Solar Power Plant We are going to use the solar power plant as our first study case for the analysis of a complete thermal system. Throughout this class, and the second class as well, we are going to revisit this system over and over again. The main purpose is to provide you an integrated view of the entire system and to show the connectivity between different disciplines in thermal science.
    What is a solar power plant? Go visit SunLab and other Internet links to learn more about it.




    Solar Trough System
    Trough systems predominate among today’s commercial solar power plants. Trough systems convert the heat from the sun into electricity. Because of their parabolic shape, troughs can focus the sun at 30 to 60 times its normal intensity on a receiver pipe located along the focal line of the trough. Synthetic oil captures this heat as the oil circulates through the pipe, reaching temperatures as high as 390°C (735؛F). The hot oil is pumped to a generating station and routed through a heat exchanger to produce steam. Finally, electricity is produced in a conventional steam turbine




    Power Towers

    These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.
    Power towers operate by focusing a field of thousands of mirrors onto a receiver located at the top of a centrally located tower. The receiver collects the sun's heat in a heat-transfer fluid, which is used to generate steam for a conventional steam turbine located at the foot of the tower for production of electricity





    Schematic of electricity generation using molten-salt storage:
    1. sun heats salt in receiver;
    2. salt stored in hot storage tank;
    3. hot salt pumped through steam generator;
    4. steam drives turbine/generator to produce electricity;
    5. salt returns to cold storage tank
    Solar Dish/Engine Systems



    systems, with net solar-to-electric conversion efficiencies reaching 30%, can operate as stand-alone units in remote locations or can be linked together in groups to provide utility-scale power
    Solar dish/engine systems convert the energy from the sun into electricity at a very high efficiency. Using a mirror array formed into the shape of a dish, the solar dish focuses the sun’s rays onto a receiver. The receiver transmits the energy to an engine, typically a kinematic Stirling engine (although Brayton-cycle engines are also being considered), that generates electric power.
    Because of the high concentration ratios achievable with parabolic dishes and the small size of the receiver, solar dishes are efficient at collecting solar energy at very high temperatures. Tests of prototype systems and components at locations throughout the United States have demonstrated net solar-to-electric conversion efficiencies as high as 30%. This is significantly higher than any other solar technology.


    Study Plan for Heat Transfer
    (1) Energy conservation, heat diffusion equation.
    (2) Conduction: thermal resistance concept, extended surface/fin analysis.
    (3) Transient heat transfer: lumped capacitance method, spatial effects, Heisler charts.
    (4) Convection: Newton's cooling law, thermal boundary layer concept, Nusselt/Reynolds/Prandtl numbers, Reynolds analogy, empirical correlations for internal and external flows.
    (5) Free convection: Grashof/Rayleigh numbers, combined modes.
    (6) Radiation: Planck emission, blackbody emission, absorption, transmission & reflection, greenhouse effect, shape factor.
    (7) Heat exchanger design

  10. #9
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    سرمایه‌گذاری دبی برای دستیابی به انرژی خورشیدی


    شرکت فرآورده‌های انرژی سولار تکنولوجیز Solar Technologies به منظور توسعه استفاده از انرژی خورشیدی در دبی، پنجاه میلیون درهم در این شهر سرمایه‌گذاری می‌کند.

    شرکت فرآورده‌های انرژی سولار تکنولوجیز Solar Technologies به منظور توسعه استفاده از انرژی خورشیدی در دبی، پنجاه میلیون درهم در این شهر سرمایه‌گذاری می‌کند. به گزارش جام‌جم‌آنلاین به نقل از گلف نیوز، هدف از این سرمایه‌گذاری 50 میلیون درهمی طراحی و تاسیس نیروگاه‌های برق حرارتی خورشیدی، دستگاه‌های تهویه هوای خورشیدی و سایر پروژه‌ها و سیستم‌های بزرگ و کوچکی است که می‌توان برای آنها ترجیحا از انرژی خورشیدی استفاده کرد. زمینی به مساحت 400 هزار فوت مربع، معادل 130 هزار مترمربع در حوالی تکنوپارک دبی در اختیار شرکت سولار تکنولوجیز قرار خواهد گرفت تا تسهیلات لازم برای توسعه استفاده از انرژی خورشیدی در دبی را فراهم نماید و در همان منطقه نیروگاه‌های برق خورشیدی را تاسیس کند. استفاده از انرژی خورشیدی در بخش‌های مختلفی از دنیا که بیشترین روزهای سال را آفتاب دارند به شدت در حال افزایش است. انرژی خورشیدی به مراتب از انرژی‌های فسیلی و سایر انواع انرژی ارزانتر و به صرفه‌تر است.

    منبع: سايت خبری وزارت نيرو

  11. #10
    پروفشنال boomba's Avatar
    تاريخ عضويت
    May 2006
    پست ها
    782

    پيش فرض

    سرمایه گذاری مشترک "بی پی سولار" در زمینه انرژی خورشیدی در چین



    "بی پی سولار" اقدام به سرمایه گذاری مشترک در چین برای تولید و فروش صفحه های خورشیدی به منظور بدست گرفتن بخش عمده بازار انرژی خورشیدی این کشور کرده است.

    "بی پی سولار" اقدام به سرمایه گذاری مشترک در چین برای تولید و فروش صفحه های خورشیدی به منظور بدست گرفتن بخش عمده بازار انرژی خورشیدی این کشور کرده است. به گزارش "شانا" به نقل از خبرگزاری رویترز از پکن، بی پی سولار هدف از تاسیس "بی پی سان اوسیس" را برقرسانی گسترده به مناطق دورافتاده روستایی این کشور اعلام کرد. کل سرمایه این مشارکت 10 میلیون دلار است و قرار است دو شرکت به مدت 30 سال در این زمینه همکاری کنند. نخستین نیروگاه خورشیدی این شرکت مشترک با ظرفیت سالانه 25 مگاوات در "شیان" ساخته خواهد شد که تلاش می شود ظرفیت آن تا سال 2010 به 100 مگاوات افزایش یابد. هدف این شرکت سرمایه گذاری روی طرح های دولت چین برای افزایش میزان انرژی بدست آمده از منابع تجدیدپذیر، کاهش وابستگی این کشور به ذغال سنگ و واردات نفت است. پکن قصد دارد میزان تولید نیرو از خورشید را تا سال 2020 میلادی با 500 برابر افزایش از 20 مگاوات کنونی به 10 هزارمگاوات برساند. میزان سهام "سان اوسیس" چین در این شرکت51 درصد است و بی پی سولار که از چهار سال پیش در چین گروه فروش و مهندسی داشت مالک 49 درصد سهام آن خواهد بود و مدیرعامل آن را منصوب خواهد کرد. بی پی سولار، سومین شرکت بزرگ انرژی خورشیدی جهان در ماه نوامبر اعلام کرد برای نخستین بار در فعالیت 30 ساله خود به سودآوری رسیده است. "بی پی" (بریتیش پترولیوم) شرکت مادر بی پی سولار روز دوشنبه گذشته اعلام کرد : به دلیل نگرانی از افزایش دمای زمین قصد دارد سرمایه گذاری خود در منابع انرژی سبز را در سه سال آینده دو برابر کند

صفحه 1 از 13 1234511 ... آخرآخر

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •