تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 2 از 11 اولاول 123456 ... آخرآخر
نمايش نتايج 11 به 20 از 103

نام تاپيک: نانوتکنولوژی |مقالات|

  1. #11
    پروفشنال Bl@sTeR's Avatar
    تاريخ عضويت
    Nov 2005
    محل سكونت
    زیر دست نازی ها
    پست ها
    584

    پيش فرض پوردو؛ هشتمين مركز تحقيقاتي برتر در زمينه فناوري‌نانو درآمريكا

    بر اساس تحقيقي که مجله Small Times انجام داده است مرکز تحقيقاتي پوردو در بين 8 مرکز تحقيقاتي برتر در ايالات متحده آمريکا قرار گرفته است. اين در حالي است اين مرکز در سال گذشته ميلادي در رتبه دهم قرار داشت.

    مرکز پوردو در مرکز فناوري‌نانوي بِرک در پارک ديسکاوري قرار دارد. زماني که مرکز فناوري‌نانوي بِرک با بودجه 58 ميليون دلاري در اکتبر 2005 آغاز به کار نمود، مرکز پوردو نيز با تسهيلات بسيار پيشرفته در حوزه فناوري‌نانو در دانشگاه پوردوآغاز به کار کرد.

    اگرچه بايد نسبت به نتايج اين تحقيقات محتاط بود، اما سرمايه‌گذاري‌هاي کلان پوردو و حمايت‌هاي اين مرکز از تحقيقات فناوري‌نانو، باعث توسعه سريع آن در اين مدت کوتاه شده است. مراکز ديگر که در اين تحقيق رتبه بالاتري داشتند عبارتند از: موسسه فناوري ماساچوست، دانشگاه کرنل، دانشگاه پِن استِيت و دانشگاه کاليفرنيا.

    برخي از ويژگي‌هاي مرکز پوردو که باعث ارتقاي رتبه آن شده است شامل موارد زير است:

     شبکه کامپيوتري اين مرکز، که به عنوان يک مرکز پايه در برک مطرح بوده و بودجه آن توسط بنياد ملي علوم تامين مي‌شود. اين شبکه به محققان اجازه مي‌دهد تا شبيه‌سازي‌هاي کامپيوتري خود را در زمينه نانومواد و فرايندها، انجام دهند.

     آزمايشگاه مترولوژي با ارتعاشات کم که در مقابل اختلالات الکترومغناطيس حمايت مي‌شود.

     اتاق‌هاي تميز داروسازي زيستي و نانوسنتز نيمه‌هادي‌هاي منسجم که تسهيلات اين مرکز را از همتايان خود متمايز مي‌سازد.

    در اين تحقيق مجله Small Times ،26 سوال درباره تسهيلات، ثبت پتنت، تاسيس شرکت، تحقيقات، انتشارات، رشته‌هاي خاص ميکرو و فناوري‌نانو و برنامه‌هاي ارتقا مطرح کرده‌است. همچنين در اين پرسشنامه از پاسخ‌گويان خواسته شده بود تا موسسات همتاي خود را در زمينه تحقيقات و تجاري‌سازي در حوزه فناوري‌نانو رتبه‌بندي کنند.



    منابع
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

  2. #12
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    آيا نانوذرات به سلامتي انسان آسيب مي‌رسانند؟


    فناوري‌هاي نانو در زمينه‌هاي گوناگوني همچون توسعه داروها، آلودگي‌زدايي آب‌ها، فناوري‌هاي ارتباطي و اطلاعاتي توليد مواد مستحكم‌تر و سبك‌تر داراي مزاياي بالقوه مي‌باشند. در حال حاضر شركت‌هاي زيادي نانوذرات را به شكل پودر، اسپري و پوشش توليد مي‌‌كنند كه كاربردهاي زيادي در قسمت‌هاي مختلف اتومبيل، راكت‌هاي تنيس، عينك‌هاي آفتابي ضدخش، پارچه‌هاي ضدلك، پنجره‌هاي خود تميزكن و صفحات خورشيدي دارند.
    اما اثرات افزايش بيش از حد توليد و استفاده از نانومواد در سلامت كاركنان و مصرف كننده‌ها، سلامت عمومي و محيط زيست بايد به دقت مورد توجه قرار گيرد. از آنجايي كه فرآيند رشد و واكنش‌هاي شيميايي كاتاليستي در سطح اتفاق مي‌افتند، يك مقدار مشخصي از ماده در مقياس نانومتري بسيار فعال‌تر از همان مقدار ماده با ابعاد بزرگ‌تر مي‌باشد. اين ويژگي‌ها ممكن است بر روي سلامتي و محيط زيست اثرات منفي داشته و منجر به سميت زياد نانوذرات شوند.

    همزمان با توسعه دانش ما در مورد مواد در مقياس‌نانو و افزايش توانايي كار كردن با ساختارها در اين مقياس، فناوري‌نانو رفته رفته گسترش يافته و سرمايه‌گذاري جهاني در اين زمينه نيز افزايش مي‌يابد. فناوري‌هاي نانو در زمينه‌هاي گوناگوني همچون توسعه داروها، آلودگي‌زدايي آب‌ها، فناوري‌هاي ارتباطي و اطلاعاتي توليد مواد مستحكم‌تر و سبك‌تر داراي مزاياي بالقوه مي‌باشند. در حال حاضر شركت‌هاي زيادي نانوذرات را به شكل پودر، اسپري و پوشش توليد مي‌‌كنند كه كاربردهاي زيادي در قسمت‌هاي مختلف اتومبيل، راكت‌هاي تنيس، عينك‌هاي آفتابي ضدخش، پارچه‌هاي ضدلك، پنجره‌هاي خود تميزكن و صفحات خورشيدي دارند. تعداد اين شركت‌ها روز به روز در حال افزايش است.
    محدوده اندازه ذراتي كه چنين علاقه‌مندي را به خود جلب كرده است، عموما كمتر از 100 نانومتر است. براي داشتن تصوري از اين مقياس لازم به ذكر است كه موي انسان داراي قطر 10000 تا 50000 نانومتر، يك سلول قرمز خوني داراي قطر حدود 5000 نانومتر و ابعاد يك ويروس بين 10 تا 100 نانومتر است. با كاهش اندازه ذرات، نسبت تعداد اتم‌هاي سطحي به اتم‌هاي داخلي افزايش مي‌يابد. به عنوان مثال درصد اتم‌هاي سطحي يك ذره با اندازه 30 نانومتر، 5 درصد است، در حالي كه اين نسبت براي يك ذره با اندازه 3 نانومتر، 50 درصد مي‌باشد.
    بنابراين نانوذرات در مقايسه با ذرات بزرگ‌تر نسبت سطح به وزن بسيار بزرگ‌تري دارند. با كاهش اندازه ذرات به يك دهم نانومتر يا كمتر، اثرات كوانتومي پديدار مي‌شوند و اين اثرات، مي‌تـوانـند به مقـدار زيــادي ويـژگي‌هـاي نــوري، مغـناطيسي و الكتـريكي مواد را تغيير دهند. از طريق پي‌گيري ساختار مواد در مقياس نانو، امكان طراحي و ساخت مواد جديد با ويژگي‌هاي كاملا نو به وجود مي‌آيد. تنها با كاهش اندازه و ثابت نگهداشتن نوع ماده، ويژگي‌هاي اساسي از قبيل هدايت الكتريكي، رنگ، استحكام و نقطه ذوب ماده (كه معمولا براي هر ماده مقدار ثابتي از آنها را در نظر مي‌گيريم) مي‌تواند تغيير كند.
    در حال حاضر نانوذراتي كه به طور ناخواسته، از طريق فرآيندهاي احتراق انجام شده جهت توليد انرژي يا در اتومبيل‌ها، فرآيندهاي خوردگي مكانيكي و يا فرآيندهاي صنعتي معمول به وجود مي‌آيند، بيش از توليد صنعتي نانوذرات بر محيط زيست و زندگي انسان تاثير مي‌گذارند. اما اثرات افزايش بيش از حد توليد و استفاده از نانومواد در سلامت كاركنان و مصرف كننده‌ها، سلامت عمومي و محيط زيست بايد به دقت مورد توجه قرار گيرد. از آنجايي كه فرآيند رشد و واكنش‌هاي شيميايي كاتاليستي در سطح اتفاق مي‌افتند، يك مقدار مشخصي از ماده در مقياس نانومتري بسيار فعال‌تر از همان مقدار ماده با ابعاد بزرگ‌تر مي‌باشد. اين ويژگي‌ها ممكن است بر روي سلامتي و محيط زيست اثرات منفي داشته و منجر به سميت زياد نانوذرات شوند.
    تنفس نانوذرات
    خطرات احتمالي نانوذراتي كه در هوا پخش شده‌اند، يعني آئروسل‌ها از اهميت بيشتري برخوردارند. اين قضيه به دليل تحرك بالاي آنها و امكان جذب آنها از طريق ريه، كه راحت‌ترين مسير ورود به بدن مي‌باشد، اهميت پيدا مي‌كند. اندازه ذرات تا حدزيادي تعيين‌كننده محل نشست اين ذرات در دستگاه تنفسي مي‌باشد. به خاطر راحت‌تر شدن كار، دستگاه تنفسي را به سه قسمت ناحيه‌اي و كاركردي تقسيم مي‌‌كنيم:
    1- مسير‌هاي هوايي بالايي،
    2- ناحيه نايژه‌ها، كه هر دوي آنها به وسيله لايه موكوس حفاظت مي‌شوند. در اينجا ذرات بزرگ‌تر، از طريق نشستن بر روي ديواره مسير هوايي، از هواي ورودي به ريه جدا مي‌شوند. حركات مژه‌هاي اين قسمت، خلط را به سوي گلو بالا برده و از آنجا يا در اثر سرفه خارج و يا بلعيده مي‌شوند. ذرات كوچكتر (كوچكتر از 2.5 ميكرومتر) و نانوذرات ممكن است وارد كيسه‌هاي هوايي شوند، كه ناحيه مبادله گاز در ريه مي‌باشند. جهت تسهيل جذب اكسيژن و دفع دي‌اكسيد كربن، تمام غشاها و سلول‌ها در اين قسمت از ريه، نازك و آسيب‌پذير بوده و هيچ‌گونه لايه حفاظتي ندارند. تنها مكانيسم حفاظتي در اين قسمت از طريق ماكروفاژها مي‌باشد.
    3- ماكروفاژها سلول‌هاي بزرگي هستند كه اشياي خارجي را بلعيده و از طريق جابه‌جا كردن آنها، به عنوان مثال به سوي گره‌هاي لنفاوي، آنها را از كيسه‌هاي هوايي خارج مي‌كنند. نانوذرات تا حد زيادي از اين سيستم حفاظتي رها شده و مي‌توانند وارد بافت‌هاي تنفسي گردند. ذرات و الياف باقي‌مانـده مي‌تواننـد با بافت‌هاي مخاطي ريوي بر هم كنش داده و منجر به ايجاد التهاب شديد، زخم و از بين رفتن بافت‌هاي ريوي گردند. اين وضعيت ريه‌ها شبيه حالت به وجود آمده در بيماري‌هايي همچون بيماري باكتريايي ذات‌الريه، يا بيماري‌هاي ريوي صنعتي مهلك همانند سيليكوسيس يا آزبستوسيس مي‌باشد.
    سيليكوسيس و آزبستوسيس
    با وجودي كه بيماري‌هاي سيليكوسيس و آزبستوسيس از طريق نانوموادي كه به روش تكنيكي توليد شده‌اند به وجود نمي‌‌آيند، اما منشا ايجاد اين بيماري‌ها، تنفس موادي شبيه نانوذرات است كه اطلاعات قديمي در مورد اثرات زيان‌بخش آنها بر روي سلامتي وجود دارد. سيليكوسيس زماني ايجاد مي‌شود كه گرد و غبار حاوي سيليس به مدت طولاتي به درون ريه تنفس شود. سيليس بلوري براي سطح بيروني ريه سمي مي‌باشد. زماني كه سيليس بلوري در تماس با ريه قرار مي‌گيرد اثرات التهابي شديدي به وجود مي‌آيد. در مدت زمان طولاني اين التهاب باعث مي‌شود تا بافت ريه به طور برگشت‌ناپذيري آسيب‌ديده و ضخيم شود كه اين پديده به نام فيبروسيس ناميده مي‌شود.
    سيليس بلوري عموما در ماسه‌سنگ، گرانيت، سنگ لوح، زغال سنگ و ماسه سيليسي خالص وجود دارد. بنابراين افرادي همچون كارگران كارخانه‌هاي ذوب فلزات، سفال‌گران و كارگراني كه با ماسه كار مي‌كنند، در معرض خطر قرار دارند. سيليس بلوري از سوي سازمان بهداشت جهاني به عنوان يك ماده سرطانزا معرفي شده است.
    الياف پنبه نسوز داراي طول چند ميكرومتر مي‌باشند و در نتيجه جزء نانومواد قرار نمي‌گيرند. با اين‌ حال جزء ذرات و الياف مجموعه امراض شغلي قرار مي‌گيرند. پنبه نسوز يك فيبر معدني طبيعي است كه در بيش از 3000 ماده ساختماني و محصول توليد شده به كار گرفته شده است. تمام انواع پنبه نسوز تمايل به خرد شدن به الياف بسيار ريز دارند.
    به دليل كوچك بودن، اين الياف پس از پخش شدن در هوا ممكن است به مدت چند ساعت يا حتي چند روز معلق بمانند. الياف پنبه نسوز تخريب‌پذير نبوده و در طبيعت پايدار مي‌باشند. اين الياف در مقابل مواد شيميايي پايدار هستند، تبخير نمي‌شوند، در آب حل نمي‌شوند و در طول زمان تجزيه نمي‌گردند. پنبه نسوز موجب ايجاد سرطان ريه و مزوتليوما مي‌شود كه نوعي تومور خطرناك غشايي است كه ريه را مي‌پوشاند .
    آلودگي ذره‌اي هوا در مشاغل ديگري همچون توليد و فرآوري كربن سياه و الياف مصنوعي نيز موجب ايجاد نگراني مي‌شود.
    آلودگي ذره‌اي هوا
    آلودگي هوا مخلوط كمپلكسي از تركيبات مختلف در فاز گاز، مايع و جامد است. خود مواد ذره‌اي مخلوطي ناهمگن از ذرات معلق هستند كه تركيب شيميايي و اندازه آنها متفاوت است. در مطالعات اپيدمي‌شناسي، انواع مختلفي از آلودگي‌هاي ذره‌اي هواي معـرفي شـده‌اند كـه از آن جمـله ميـتـوان بـه TPS (مجموع مواد معلق) و PM 10 (مواد ذره‌اي با قطر موثر آئروديناميك كمتر از 10 ميكرومتر) اشاره كرد. در سال‌هاي اخير مطالعات زيادي در زمينه مواد ذره‌اي ريز PM 2.5 (ذراتي با قطر آئروديناميك كمتر از 2.5 ميكرومتر) و فوق ريز (ذرات با قطر كمتر از 100 نانومتر) انجام گرفته است.
    با وجودي كه ميزان خالص آلودگي‌ ذره‌اي هواي شهري (يعني مقدار PM 2.5)، با كم شدن نشر ذرات از صنايع و مراكز توليد انرژي كاهش يافته است، غلظت ذرات فوق‌ريز ناشي از ترافيك افزايش يافته است. هر چند غلظت اين ذرات كوچك معمولاً مهمتر است اما سهم آنها معمولاً پايينتر از غلظت كل است. بنابراين اندازه‌‌گيري توزيع اندازه ذرات تا چند نانومتر ، براي توصيف ذرات پخش‌شده از ترافيك ضروري است.
    با توسعه روش‌هاي اندازه‌گيري آثار روشن‌تري از ذرات با اندازه كوچك‌تر مشاهده گرديد. با اين‌حال، بسياري از مطالعات هنوز ادامه دارند و تعداد بسيار كمي از آنها تاكنون به نتيجه رسيده‌اند. پيشنهاد شده است كه اثرات زيان‌آور آلودگي ذره‌اي هوا به طور عمده به غلظت ذرات كوچك‌تر از 100 نانومتر ارتباط دارد و به غلظت جرمي ذرات بزر‌گ‌تر بستگي چنداني ندارد. بنابراين معقول به نظر مي‌رسد كه اطلاعات به دست آمده از اپيدمي‌شناسي محيطي را با داده‌هاي حاصل از مطالعات سم‌شناسي انجام گرفته بر روي حيوانات و يا ساير داده‌هاي تجربي تركيب نماييم.
    مطالعات اپيدمي‌شناسي زيادي ثابت كرده‌اند كه ارتباط مستقيمي بين افزايش مقطعي مواد ذره‌اي و افزايش بيماري و مرگ و مير ناشي از نارسايي‌هاي قلبي و عروقي وجود دارد. بيماران مسن‌تري كه سابقه بيماري‌هاي قلبي و يا تنفسي دارند و همچنين بيماران ديابتي، در معرض خطر بيشتري قرار دارند.
    مدارك تجربي، مكانيسم‌هاي بيولوژيكي محتملي همچون تحريك دستگاه تنفسي و فشار اكسيدي جهازي را نشان مي‌دهند. در نتيجه اين تحريك‌ها، مجموعه‌اي از پاسخ‌هاي زيستي همانند موارد زير ممكن است ايجاد شوند:
    تغيير جريان خون به نحوي كه موجب ايجاد انعقاد در قسمتي از رگ‌هاي خوني گردد، به هم خوردن آهنگ ضربان قلب، عملكرد نادرست و بحراني رگ‌ها، ناپايداري پلاكت‌هاي خوني، و در طولاني مدت توسعه تصلب شرايين، التهاب مزاجي و ريوي ناشي از ذرات، تصلب شرايين تسريع شده و عملكرد تغيير يافته ارادي قلب.
    اين موارد ممكن است بخشي از عوامل زيستي باشند كه آلودگي ذره‌اي هوا را به مرگ و مير ناشي از بيماري‌هاي قلبي ارتباط مي‌دهند. همچنين نشان داده شده است كه نشست ذرات در كيسه‌هاي هوايي شش‌ها منجر به فعال شدن توليد سيتوكين به وسيله ماكروفاژها و سلول‌هاي اپيتليال كيسه‌هاي هوايي گشته و موجب التهاب سلول‌ها مي‌شود. در نمونه‌هايي كه به طور تصادفي از ميان بزرگسالان سالم در معرض آلودگي ذره‌اي هوا انتخاب شده بودند، افزايش ويسكوزيته پلاسما، فيبرينوژن و پروتئين فعال C مشاهده گرديد.
    خلاصه و چشم‌انداز بحث
    در مجموع مدارك بسيار زيادي حاصل از مطالعات اپيدمي‌شناسي وجود دارد كه اثرات زيان‌آور ذرات فوق‌ريز را بر روي سلامتي نشان مي‌دهند. همچنين از مدت‌ها پيش مدارك زيادي مبني بر زيان‌آور بودن تنفس ذرات قابل تنفس در محيط‌هاي كاري وجود دارد. به طور كامل مشخص نيست كه اين مسائل به نانومواد ساخت بشر مربوط است يا نه. با اين حال منطقي آن است تا زماني كه بر اساس مطالعات بيشتر اپيدمي‌شناسي، همچنين مطالعات انجام شده بر روي حيوانات، اثرات زيان‌آور اين نانومواد كاملا مشخص نشده است، از اين داده‌ها چشم‌پوشي نكنيم.
    در حال حاضر هيچ قانوني در مورد توليد و كاربرد نانومواد براي سلامتي كاركنان و مصرف‌كنندگان و همچنين براي مسائل زيست‌محيطي وجود ندارد. همچنين در زمينه قانون‌گذاري براي مواد شيميايي، هيچ گزينه‌اي براي اندازه ذرات در هنگام ثبت يك ماده مدنظر قرار نمي‌گيرد.
    پيش از انجام هرگونه قانون‌گذاري در زمينه نانومواد، بايد اطلاعات بسيار زيادي راجع به اثرات فرآيندها و محصولات نانو، بر روي سلامتي انسان و همچنين محيط زيست به دست آيد. اما حتي با در نظر گرفتن عدم قطعيت علمي موجود، شواهد كافي براي انجام اقدامات پيشگيرانه در محيط‌هاي كاري و بسته وجود دارد.
    منبع: سايت [ برای مشاهده لینک ، با نام کاربری خود وارد شوید یا ثبت نام کنید ]

  3. #13
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    تعريفي كوتاه از نانو تكنولوزي

    در سالهاي اخير، پيشرفتهاي تكنولوژي وسايل و مواد با ابعاد بسيار كوچك به دست آمده است و به سوي تحولي فوق العاده كه تمدن بشر را تا پايان قرن دگرگون خواهد كرد ، پيش مي رود . براي درك بهتر اندازه هاي مادون ريز ، قطر موي سر انسان را كه يك دهم ميليمتر است در نظر بگيريد ، يك نانومتر صدهزار برابر كوچكتراست . تكنولوژي و مهندسي در قرن پيش رو با وسايل ، اندازه گيريها و توليداتي سروكار خواهد داشت كه چنين ابعاد مادون ريزي دارند . درحال حاضر پروسه هايي در ابعاد چند مولكول قابل طراحي و كنترل است . همچنين خواص مكانيكي ، شيميايي ، الكتريكي ، مغناطيسي ، نوري و... مواد در لايه ها در حدود ابعاد نانومتر قابل درك و تحليل و سنجش است .


    تكنولوژي درقرن گذشته در هرچه ريزتر كردن توليدات تكنولوژيكي پيشرفت چشمگيري داشت ، بطوريكه به مزاح گفته شد كه ديگر كشف ذرات ريز اتمي ( Sub-Atomic ) نه تنها جايزه نوبل ندارد ، بلكه به آن جريمه هم تعلق مي گيرد ! تكنولوژي نو درقرن حاضر مسير عكس را طي مي كند . يعني مواد مادون ريز را بايد تركيب كرد تا دانه هاي بزرگتر كارآمد به وجود آ ورد
    درست همان روشي كه در طبيعت براي توليد كردن حاكم است . مجموعه هاي طبيعي ، تركيبي از دانه هاي مادون ريز قابل تشخيص با خواص مشابه و يا متفاوت با اندازه هاي در حدود نانو است .

    اثر تحقيقات در فناوريهاي مادون ريز هم اكنون در درمان بيماريها و يا دست يافتن به مواد جديد به ظهور رسيده است . موارد بسياري در مرحله تحقيقات كاربردي و آزمايشي است .اكنون ساخت رايانه هاي بسيار كوچكتر و ميليونها بار سريعتر در دستور كار موسسات تحقيقاتي قرار دارد .

    در بياني كوتاه نانوتكنولوژي يك فرايند توليد مولكولي است . همانطور كه طبيعت مجموعه ها را بطور خودكار مولكول به مولكول ساخته و روي هم مونتاژ كرده است ، دانشمندان اين علم هم بايد براي توليد محصولات جديد ، با اين اعتقاد كه هرچه در طبيعت توليد شده قابل توليد در آزمايشگاه نيز هست ، نظير طبيعت راهي پيدا كنند . البته منظور اين نيست كه چند هسته از مواد راپيدا كنند و با رساندن انرژي و خوراك پس از چند سال يك نيروگاه از آن ساخته شود كه شهري را برق دهد . بلكه براي تركيب و تكامل خودكار توليدات مادون ريزكه به نحوي در مجموعه هاي بزرگتر مصرف دارد ، راهيابي شود . در اندازه هاي مادون ريز ، روشها و ابزارآلات متعارف فيزيكي مانند تراشيدن و خم كردن و سوراخ كردن و...جوابگو تيستند .

    براي ساختن ماشينهاي ملكولي بايد روش پروسه هاي طبيعي را دنبال كرد . با تهيه نقشه هاي ساختاري بدن يعني آرايش ژنها و DNA كه ژنم ناميده شده است و به موازات آن دست يافتن به تكنولوژي مادون ريز ، در دراز مدت تحولات بسياري در هستي ايجاد خواهد شد . توليد مواد جديد ، گياهان ، جانداران و حتي انسان متحول خواهد شد . اشكالات ساختاري موجودات در طبيعت رفع مي شود و با تركيب و خواص اورگانيك گياهان و جانوران ، موجودات جديدي با خواص فوق العاده و شخصيتهاي متفاوت بوجود خواهد آمد .آينده علوم و مهندسي كه چندين گرايشي Multi- Disciplinary است ، به طرف توليد ماشينهاي مولكولي سوق داده خواهد شد تا در نهايت بتواند مجموعه هاي كارآيي از پيوندهاي ارگانيك و سايبريك را عرضه نمايد .

    هستي را به رايانه ( سخت افزار ) و برنامه ( نرم افزار ) كه دو پديده مختلف ولي ادغام شده هستند ، مي توان تشبيه كرد . سخت افزار مصداق ماده ( اغلب اتم هيدروژن ) و نرم افزار يا برنامه ، قابليت نهفته در خلقت آن است .

    اتم به نظر ساده و ابتدايي هيدروژن در طي ميلياردها سال با قابليت نهفته در خود توانسته است ميليونها نوع آرايش مختلف را در هستي بوجود آورد . بشر از بوجود آوردن اساس ماده عاجز است . ولي در برنامه ريزيهاي جديد و يافتن اشكال ديگري از آنچه در طبيعت وجود دارد ، پيش خواهد رفت . طبيعت را خواهد شناخت و به اصطلاح ، قفلهاي شگفت آور آن را باز خواهد كرد . احتمالا انسان در شرايط مناسبتري از درجه حرارت و فشار كه درتشكيل طبيعي مواد مختلف از هيدروژن لازم است ، بتواند اتمهاي مورد نباز خود را توليد كند ، سيارات ديگري را در نهايت در اختيار بگيرد و بعيد نيست كه انسانهاي آينده بتوانند در نيمه هاي راه ابديت در اكثر نقاط جهان هستي و كهكشانها سكني گزينند.

    به احتمال زياد قبل از پايان هزاره سوم انسانها در بدن خود انواع لوازم مصنوعي و ديجيتالي راخواهند داشت. . از بيماري ، پيري ، درد ستون فقرات ، كم حافظه اي و... رنج نخواهند برد .قابليت فهم و تحليل اطلاعات در مغز آنها در مقايسه با امروز بي نهايت خواهد شد . در هزاره هاي آينده انسانهاي طبيعي مانند امروز احتمالا براي مطالعات پژوهشي نگهداري شده و به نمونه هاي آزمايشگاهي و بطور حتم قابل احترام تبديل خواهند شد و مردمان آينده از اينهمه درد و ناراحتي كه اجداد آنها در هزاره هاي قبل كشيده اند ، متعجب و متاثر خواهند بود .

    چه انتظاري بايد از نانوتكنولوژي داشت :

    اين تكنولوژي جديد توانايي آن را دارد كه تاثيري اساسي بر كشورهاي صنعتي در دهه هاي آينده بگذارد . در اينجا به برخي از نمونه هاي عملي در زمينه نانوتكنولوژي اشاره مي شود .

    انتظار مي رود كه مقياس نانومتر به يك مقياس با كارايي بالا و ويژگيهاي منحصربفرد ،محصولاتي ساخته مي شود كه روش شيمي سنتي پاسخگوي اين امر نمي تواند باشد .

    · نانوتكنولوژي مي تواند باعث گسترش فروش سالانه بسيار زياد براي صنعت نيمه هاديها و مدارهاي مجتمع ، طي 10 تا 15 سال آينده شود .

    · نانوتكنولوژي ، مراقبتهاي بهداشتي ، طول عمر ، كيفيت و تواناييهاي جسمي بشر را افزايش خواهد داد .

    · تقريبا نيمي از محصولات دارويي در 10 تا 15 سال آينده متكي به نانوتكنولوژي خواهد بود كه اين امر ، خود ميليونها دلار نقدينگي را به گردش درخواهد آورد .

    · كاتاليستهاي نانوساختاري در صنايع پتروشيمي داراي كاربردهاي فراواني هستند كه پيش بيني شده است اين دانش ، سالانه ميليارد ها دلار را طي 10 تا 15 سال آينده تحت تاثير قرار دهد .

    · نانوتكنولوژي موجب توسعه محصولات كشاورزي براي يك جمعيت عظيم خواهد شد و راههاي اقتصادي تري را براي تصويه و نمك زدايي آب و بهينه سازي راههاي استفاده از منابع انرژيهاي تجديد پذير همچون انرژي خورشيدي ارائه مي نمايد . بطور مثال استفاده از يك نوع انباره جريان گذرا با الكترودهاي نانولوله كربني كه اخيرا آزمايش گرديد و از رسانه ها خبر آن را شنيديم، نشان داد كه اين روش 10 بار كمتر آب دريا را نمك زدايي مي كند .

    · انتظار مي رود كه نانوتكنولوژي نياز بشر را به مواد كمياب كمتر كرده و با كاستن آلاينده ها ، محيط زيستي سالمتر را فراهم كند . براي مثال مطالعات نشان مي دهد در طي 10 تا 15 سال آينده ، روشنايي حاصل از پيشرفت نانوتكنولوژي ،مصرف جهاني انرژي را تا 10 درصد كاهش داده ، باعث صرفه جويي سالانه 100 ميليارد دلار و همچنين كاهش آلودگي هوا به ميزان 200 ميليون تن كربن شود.

    در چند سال گذشته بازارچند ميليارد دلاري برپايه نانوتكنولوژي كسترش يافته اند . براي مثال در ايالات متحده ، IBM براي هد ديسكهاي سخت ، يك سري حسگرهاي مغناطيسي را ابداع كرده است .

    Eastern Kodak و 3M تكنولوژي ساخت فيلمهاي نازك نانو ساختاري را به وجود آورده اند . شركت Mobil كاتاليستهاي نانو ساختاري را براي دستگاههاي شيميايي توليد كرده است و شركت Merck ، داروهاي نانوذره اي را عرضه كرده است . تويوتا در ژاپن مواد پليمري تقويت شده نانوذره اي را براي خودروها و Samsung Electronics در كره ، در حال كار بر روي سطح صفحات نمايش توسط نانولوله هاي كربني هستند . بشر درست در ابتداي مسير قرار دارد و فقط چندين محصول تجاري از نانوساختارهاي يك بعدي بهره مي گيرند ( نانو ذرات ، نانو لوله ها ، نانو لايه و سوپر لاستيكها ) . نظزيات جديد و روشهاي مقرون به صرفه توليد نانوساختارهاي دو و سه بعدي از موضوعات مورد بررسي آينده مي باشند.

    نانو تكنولوژي يا كاربرد فناوري در مقياس يك ميليونيم متر، جهان حيرت انگيزي را پيش روي دانشمندان قرار داده است كه در تاريخ بشريت نظيري براي آن نمي توان يافت. پيشرفتهاي پرشتابي كه در اين عرصه بوقوع مي پيوندد، پيام مهمي را با خود به همراه آورده است: بشر در آستانه دستيابي به توانايي هاي بي بديلي براي تغيير محيط پيرامون خويش قرار گرفته است و جهان و جامعه اي كه در آينده اي نه چندان دور به مدد اين فناوري جديد پديدار خواهد شد، تفاوت هايي بنيادين با جهان مالوف آدمي در گذشته خواهد داشت.

    به گزارش ايرنا نانو تكنولوژي نظير هر فناوري ديگري چونان يك تيغ دولبه است كه مي توان از آن در مسير خير و صلاح و يا نابودي و فنا استفاده به عمل آورد. گام اول در راه بهره گيري از اين فناوري شناخت دقيق تر خصوصيات آن و آشنايي با قابليت هاي بالقوه اي است كه در خود جاي داده است. در خصوص نانو تكنولوژي يك نكته را مي توان به روشني و بدون ابهام مورد تاكيد قرار داد: اين فناوري جديد هنوز، حتي براي متخصصان، شناخته شده نيست و همين امر هاله ابهامي را كه آن را در برگرفته ضخيمتر مي كند و راه را براي گمانزني هاي متنوع هموار مي سازد.

    كساني بر اين باورند كه اين فناوري نظير هيولايي فرانكشتين در داستان مري شلي و يا همانند جعبه پاندورا در اسطوره هاي يونان باستان، مرگ و نابودي براي ابناي بشر درپي دارد. در مقابل گروهي نيز معتقدند كه به مدد توانايي هاي حاصل از اين فناوري مي توان عالم را گلستان كرد.

    در حال حاضر 450 شركت تحقيقاتي- تجاري در سراسر جهان و 270 دانشگاه در اروپا، آمريكا و ژاپن با بودجه اي كه در مجموع به 4 ميليارد دلار بالغ مي شود سرگرم انجام تحقيقات در عرصه نانو تكنولوژي هستند. در اين قلمرو اتمها و ذرات رفتاري غيرمتعارف از خود به نمايش مي گذارند و از آنجا كه كل طبيعت از همين ذرات تشكيل شده، شناخت نحوه عمل آنها، به يك معنا شناخت بهتر نحوه شكل گيري عالم است. به اين ترتيب دانشمنداني كه در اين قلمرو به كاوش مشغولند، به يك اعتبار با ذهن و ضمير خالق هستي و نقشه شگفت انگيز او در خلقت عالم آشنايي پيدا مي كنند، اما از آنجا كه دانايي توانايي به همراه مي آورد، شناسايي رازهاي هستي مي تواند توان فوق العاده اي را در اختيار كاشفان اين رازها قرار دهد. تحقيق در قلمرو نانو تكنولوژي از اواخر دهه 1950 آغاز شد و در دهه 1990 نخستين نتايج چشمگير از رهگذر اين تحقيقات عايد گرديد.

    از جمله آنكه يك گروه از محققان شركت آي بي ام موفق شدند35 اتم گزنون را بر روي يك صفحه از جنس نيكل جاي دهند و با كمك اين تك اتمها نامي را بر روي صفحه نيكلي درج كنند. محققان ديگر به بررسي درباره ساختارهاي ريز موجود در طبيعت نظير تار عنكبوت ها و رشته هاي ابريشم پرداختند تا بتوانند موادي نازك تر و مقاوم تر توليد كنند. در اين ميان ساخت يك نوع مولكول جديد كربن موسوم به باكمينسترفولرين يا كربن- 60 راه را براي پژوهشهاي بعدي هموارتر كرد. محققان با كمك اين مولكول كه خواص حيرت انگيز آن هنوز در درست بررسي است، لوله هاي موئينه اي در مقياس نانو ساخته اند كه مي تواند براي ايجاد ساختارهاي مختلف در تراز يك ميليونيم متر مورد استفاده قرار گيرد. بررسي هايي كه در ابعاد نانو بر روي مواد مختلف صورت گرفته و خواص تازه اي را آشكار كرده است. به عنوان مثال ذرات سيليكن در اين ابعاد از خود نور ساطع مي كنند و لايه هاي فولاد در اين مقياس از استحكام بيشتري در قياس با صفحات بزرگتر اين فلز برخوردارند.

    برخي شركتها از هم اكنون بهره برداري از برخي يافته هاي نانوتكنولوژي را آغاز كرده اند. به عنوان نمونه شركت آرايشي اورال از مواد نانو در محصولات آرايشي خود استفاده مي كند تا بر ميزان تاثير آنها بيفزايد. ساخت ديودهاي نوري با استفاده از مواد نانو موجب مي شود تا 80درصد در هزينه برق صرفه جويي شود. توپهاي تنيسي كه با كربن 60 ساخته شده و روانه بازار گرديده سبكتر و مستحكمتر از توپهاي عادي است. شركتهاي ديگر با استفاده از مواد نانو پارچه هايي توليد كرده اند كه با يك بار تكاندن آنها مي توان حالت اتوي اوليه را به آنها بازگرداند و همه چين و چروكهايشان را زايل كرد. با همين يك بار تكان همه گردوخاكي كه به اين پارچه ها جذب شده اند نيز پاك مي شوند. نوارهاي زخم بندي هوشمندي با اين مواد درست شده كه به محض مشاهده نخستين علائم عفونت در مقياس مولكولي، پزشكان را مطلع مي سازند.

    از همين نوع مواد همچنين ليوانهايي توليد شده كه قابليت خود- تميزكردن دارند. لنزها و عدسيهاي عينك ساخته شده از جنس مواد نانو ضد خش هستند و يك گروه از محققان تا آنجا پيش رفته اند كه درصددند با مواد نانو پوششهاي مناسبي توليد كنند كه سلولهاي حاوي ويروسهاي خطرناك نظير ويروس ايدز را در خود مي پوشاند و مانع خروج آنها مي شود. مهمترين نكته درباره موقعيت كنوني فناوري نانو آن است كه اكنون دانشمندان اين توانايي را پيدا كرده اند كه در تراز تك اتمها به بهره گيري از آنها بپردازند و اين توانايي بالقوه مي تواند زمينه ساز بسياري از تحولات بعدي شود. يك گروه از برجسته ترين محققان در حوزه نانوتكنولوژي بر اين اعتقادند كه مي توان بدون آسيب رساندن به سلولهاي حياتي، در درون آنها به كاوش و تحقيق پرداخت. شيوه هاي كنوني براي بررسي سلولها بسيار خام و ابتدايي است و دانشمندان براي شناخت آنچه كه در درون سلول اتفاق مي افتد ناگزيرند سلولها را از هم بشكافند و در اين حال بسياري از اطلاعات مهم مربوط به سيالهاي درون سلول يا ارگانلهاي موجود در آن از بين مي رود.

    يك گروه از محققان كه در گروهي موسوم به اتحاد سيستمهاي زيستي گرد آمده اند، سرگرم تكميل ابزارهاي ظريفي هستند كه هدف آن بررسي اوضاع و احوال درون سلول در زمان واقعي و بدون آسيب رساندن به اجزاي دروني سلول يا مداخله در فعاليت بخشهاي داخلي آن است. ابزاري كه اين گروه مشغول ساخت آن هستند رديف هايي از لوله ها يا سيمهاي بسيار ظريفند كه قادرند وظايف مختلفي را به انجام برسانند از جمله آنكه هزاران پروتئيني را كه به وسيله سلولها ترشح مي شود شناسايي كند. گروههاي ديگر از محققان نيز به نوبه خود سرگرم توليد دستگاهها و ابزارهاي ديگر براي انجام مقاصد علمي ديگر هستند.

    به عنوان نمونه يك گروه از محققان سرگرم تكميل فيبرهاي نوري در ابعاد نانو هستند كه قادر خواهند بود مولكولهاي مورد نظر را شناسايي كنند. گروهي نيز دستگاهي را دردست ساخت دارند كه با استفاده از ذرات طلا مي تواند پروتئين هاي معيني را فعال سازد يا از كار بيندازد. به اعتقاد پژوهشگران براي آنكه بتوان از سلولها در حين فعاليت واقعي آنها اطلاعات مناسب به دست آورد، بايد شيوه تنظيم آزمايشها را مورد تجديدنظر اساسي قرار داد. سلولها در فعاليت طبيعي خود امور مختلفي را به انجام مي رسانند: از جمله انتقال اطلاعات و علائم و داده ها ميان خود، ردوبدل كردن مواد غذايي و بالاخره سوخت و ساز و اعمال حياتي. يك گروه از روش تازه اي موسوم به الگوي انتقال ابر - شبكه استفاده كرده اند كه ساخت نيمه هاديهاي نانومتري به قطر تنها 8 نانومتر را امكان پذير مي سازد. هريك از اين لوله هاي بسيار ريز بالقوه مي توانند يك پادتن خاص يا يك بخش كوچك از رشته دي ان اي بر روي خود جاي دهند.

    با كمك هر تراشه مي توان 1000 آزمايش متفاوت بر روي يك سلول انجام داد. براي دستيابي به موفقيت كامل بايد بر برخي از محدوديتها غلبه شود، ازجمله آنكه درحال حاضر براي بررسي سلولها بايد آنها را در درون مايعي قرار داد كه مصنوعاً محيط زيست طبيعي سلولها را بازسازي مي كند، اما يون موجود در اين مايع مي تواند سنجنده هاي موئينه را از كار بيندازد. براي رفع مشكل، محققان سلولها را درون مايعي جاي مي دهند كه چگالي يون آن كمتر است. گروههاي ديگري از محققان نيز در تلاشند تا ابزارهاي مناسب در مقياس نانو براي بررسي جهان سلولها ابداع كنند. يكي از اين ابزارها چنانكه اشاره شد يك فيبر نوري است كه ضخامت نوك آن 40 نانومتر است و بر روي نوك نوعي پادتن جا داده شده كه قادر است خود را به مولكول مورد نظر در درون سلول متصل سازد. اين فيبر نوري با استفاده از فيبرهاي معمولي و تراش آنها ساخته شده و بر روي فيبر پوششي از نقره اندود شده تا از فرار نور جلوگيري به عمل آورد. نحوه عمل اين فيبر نوري درخور توجه است.

    از آنجاكه قطر نوك اين فيبر نوري، از طول موج نوري كه براي روشن كردن سلول مورد استفاده قرار مي گيرد به مراتب بزرگتر است، فوتونهاي نور نمي توانند خود را تا انتهاي فيبر برسانند، درعوض در نزديكي نوك فيبر مجتمع مي شوند و يك ميدان نوري بوجود مي آورند كه تنها مي تواند مولكولهايي را كه در تماس با نوك فيبر قرار مي گيرند تحريك كند. به نوك اين فيبر نوري يك پادتن متصل است و محققان به اين پادتن يك مولكول فلورسان مي چسبانند و آنگاه نوك فيبر را به درون يك سلول فرو مي كنند. در درون سلول، نمونه مشابه مولكول فلورسان نوك فيبر، اين مولكول را كنار مي زند و خود جاي آن را مي گرد. به اين ترتيب نوري كه از مولكول فلورسان ساطع مي شد از بين مي رود و فضاي درون سلول تنها با نوري كه به وسيله ميدان موجود در فيبر نوري بوجود مي آيد روشن مي شود و درنتيجه محققان قادر مي شوند يك تك مولكول را در درون سلول مشاهده كنند.

    مزيت بزرگ اين روش در آن است كه باعث مرگ سلول نمي شود و به دانشمندان اجازه مي دهد درون سلول را در هنگام فعاليت آن مشاهده كنند. نانو تكنولوژي همچنين به محققان امكان مي دهد كه بتوانند رويدادهاي بسيار نادر يا مولكولهاي با چگالي بسيار كم را مشاهده كنند. به عنوان مثال بلورهاي مينياتوري نيمه هاديهاي فلزي در يك فركانس خاص از خود نور ساطع مي كنند و از اين نور مي توان براي مشخص كردن مجموعه اي از مولكولهاي زيستي و الصاق برچسب براي شناسايي آنها استفاده كرد. به نوشته هفته نامه علمي نيچر چاپ انگلستان يك گروه از محققان دانشگاه ميشيگان نيز توانسته اند سنجنده خاصي را تكميل كنند كه قادر است حركت اتمهاي روي را در درون سلولها دنبال كند و به دانشمندان در تشخيص نقايص زيست عصبي مدد رساند.

    از ابزارهاي در مقياس نانو همچنين مي توان براي عرضه مؤثرتر داروها در نقاط موردنظر استفاده به عمل آورد. در آزمايشي كه بتازگي به انجام رسيده نشان داده شده است كه حمله به سلولهاي سرطاني با استفاده از ذرات نانو 100برابر بازده عمل را افزايش مي دهد. محققان اميدوارند در آينده اي نه چندان دور با استفاده از نانو تكنولوژي موفق شوند امور داخلي هر سلول را تحت كنترل خود درآورند. هم اكنون گامهاي بلندي در اين زمينه برداشته شده و به عنوان نمونه دانشمندان مي توانند فعاليت پروتئينها و مولكول دي ان اي را در درون سلول كنترل كنند. به اين ترتيب نانو تكنولوژي به محققان امكان مي دهد تا اطلاعات خود را درباره سلولها يعني اصلي ترين بخش سازنده بدن جانداران به بهترين وجه كامل سازند


    منبع :
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

  4. #14
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    شمشير 2 لبه نانوذرات



    وقتي براي گشت و گذار به دل كوه ها و كوهپايه ها پناه مي بريد و از شيب تند جاده به سمت پايين حركت مي كنيد، بوي نامطبوعي كه از لنت ترمز خودروي شما خارج مي شود، شما را هشيار مي كند.
    از فرزندتان مي خواهيد آن را تنفس نكند چون شنيده ايد بسيار سمي است. اما فكر كرده ايد چرا؟ فناوري هاي نوين هميشه مثل سكه دو رو دارند، طرفي از آنها كه در جهت رفاه و بهره مندي انسان است و وجهي ديگر كه به طور مستقيم با سلامت جسمي در تضاد است. چند سالي مي شود كه نانوتكنولوژي به عنوان يك كليد در حل بسياري از مشكلات صنايع در قرن اخير گره گشا بوده است و در بسياري موارد به بشر خدمت مي كند؛ اما نبايد از روي ديگر اين سكه غافل بود.
    ذرات نانو در مواردي مي توانند همچون غبار همان آزبست لنت ترمز عمل كنند و مثل يك ذره كاملا غيرطبيعي كه بدون هدف در فضا رها شده است ، از جنبه هاي مختلف ، سلامت انسان را تهديد كنند. البته همچنان كه علم نانو يك علم نو و جديد است ، عوارض جانبي آن هم چندان مشخص نيست ، اما دانشمندان تا حدي توانسته اند روابطي بين بعضي بيماري هاي تنفسي با ذرات نانو را به اثبات برسانند.

    فناوري هاي نانو، در زمينه هاي گوناگوني همچون توسعه داروها، تصفيه آبها و زدودن انواع آلودگي هاي آب ، فناوري هاي ارتباطي و اطلاعاتي ، توليد مواد مستحكم تر و سبك تر داراي مزاياي بالقوه هستند. امروزه بسياري از شركت هاي تجاري ، بر مبناي همين فناوري ها، نانوذرات را به شكل پودر، اسپري و پوشش توليد مي كنند كه كاربردهاي زيادي در قسمت هاي مختلف اتومبيل ، راكت هاي تنيس ، عينك هاي آفتابي ضد خش ، پارچه هاي ضد لك ، پنجره هاي تميز كن خودكار و صفحات خورشيدي دارد و تعداد اين شركت ها با سرعتي باور نكردني رو به افزايش است.
    نانو چه اندازه اي است؟
    محدوده اندازه ذراتي كه اين چنين علاقه مندان را در صنعت به سوي خود جلب كرده است ، معمولا كمتر از 100 نانومتر است. براي اين كه تصوري از مقياس داشته باشيم ، بد نيست به اندازه موي سر انسان كه چيزي حدود 10هزار تا 50 هزار نانومتر است توجه كنيم. يك سلول قرمز خون ، قطري حدود 5 هزار نانومتر دارد و ابعاد يك ويروس بين 10 تا 100 نانومتر است. با كاهش اندازه ذرات ، نسبت تعداد اتم هاي سطحي به اتم هاي داخلي بيشتر مي شود. بر فرض درصد اتم هاي سطحي يك ذره با اندازه 30 نانومتر 5 درصد است ، در حالي كه اين نسبت براي يك ذره با اندازه 3نانومتر 50 است.
    اين طوري است كه نانوذرات در مقايسه با ذرات بزرگتر نسبت سطح به وزن بسيار بيشتري دارند و با كاهش اندازه ذرات به يك دهم نانومتر يا كمتر، اثرات كوانتومي ديده مي شوند و اين اثرات هم مي توانند به مقدار زيادي ويژگي هاي نوري ، مغناطيسي و الكتريكي مواد را تحت الشعاع قرار دهند. با اين ويژگي هاي جديد است كه ساختار مواد در مقياس نانو به ما امكان طراحي و ساخت مواد جديد با ويژگي هاي كاملا نويي را مي دهد. با كم كردن اندازه و ثابت نگه داشتن نوع ماده ، ويژگي هاي اساسي از قبيل هدايت الكتريكي ، رنگ ، استحكام و نقطه ذوب ماده تغيير مي كند.

    نانو و تهديد محيط زيست
    در حين فرآيندهاي احتراق ، براي توليد انرژي يا در اتومبيل ها، فرآيندهاي خوردگي مكانيكي يا فرآيندهاي صنعتي معمول ، نانوذراتي به صورت ناخواسته توليد مي شوند كه تا حد زيادي محيط زيست و زندگي انسان را تحت تاثير قرار مي دهند.
    به نظر مي رسد با گسترش استفاده از اين فناوري ها، اثرات افزايش بيش از حد توليد و استفاده از نانو مواد بر سلامت كاركنان و مصرف كننده ها، سلامت عمومي و محيط زيست ، بيشتر مورد توجه قرار گرفته است.
    از آنجا كه فرآيند رشد و واكنش هاي شيميايي كاتاليستي كه در سطح اتفاق مي افتند، يك مقدار مشخصي از ماده در مقياس نانومتري ، بسيار فعال تر از همان مقدار ماده با ابعاد بزرگتر است ، اين ويژگي ها ممكن است روي سلامت و محيط زيست اثرات منفي داشته و منجر به افزايش سميت نانوذرات شوند.

    ورود از راه تنفس
    خطرات احتمالي نانوذراتي كه در هوا پخش شده اند، يعني آئروسل ها اهميت بالايي دارند. اين مساله به دليل تحرك بالاي آن و امكان جذب از طريق ريه كه راحت ترين مسير ورود به بدن است ، اهميت پيدا مي كند. اندازه ذرات نانو كه به نسبت ساير موادي كه به ريه وارد مي شوند كوچك تر است ، اين امكان را فراهم مي كند كه نشت اين ذرات تا ميزان بالايي روي دستگاه تنفسي ، راحت تر صورت گيرد.دستگاه تنفسي سه قسمت شامل مسيرهاي هوايي بالايي ، ناحيه نايژه ها و ماكروفاژها دارد كه امكان آلودگي آنها با مواد نانو را بررسي مي كنيم.
    وقتي ريه ها ملتهب مي شوند
    مسيرهاي هوايي بالايي و نايژه ها به وسيله لايه موكوس حفاظت مي شوند. ذرات بزرگتر از طريق نشستن روي ديواره مسير هوايي ، از هواي ورودي به ريه ها جدا مي شوند. حركات مژه اي اين قسمت ، خلط را به سمت گلو بالا برده و از آنجا يا در اثر سرفه خارج و يا با عمل بلع ، بلعيده مي شوند. ذرات كوچكتر (كوچكتر از 2.5 ميكرومتر) و نانوذرات ، ممكن است وارد كيسه هاي هوايي شوند كه ناحيه مبادله گاز در ريه هستند و كوچك ترين اجزاي ريه محسوب مي شوند كه در ارتباط با مويرگ ها قرار دارند.
    به منظور دفع دي اكسيدكربن از مويرگ ها به كيسه هاي هوايي و جذب اكسيژن ، تمام غشاها و سلول ها در اين قسمت ها نازك و آسيب پذير هستند و هيچ گونه لايه حفاظتي ندارند. تنها مكانيسم حفاظتي در اين قسمت ، ماكروفاژها هستند. اين ماكروفاژها سلول هاي بزرگي هستند كه اشيائ خارجي را بلعيده و از طريق جابه جا كردن آنها مثلا به سوي گره هاي لنفاوي آنها را از كيسه هاي هوايي خارج مي كنند. نانو ذرات تا حد زيادي از اين سيستم حفاظتي رها شده و مي توانند وارد بافت هاي تنفسي شوند.
    ذرات و الياف باقي مانده مي توانند با بافت هاي مخاطي ريوي بر هم كنش كرده و بافت هاي ريوي را دچار التهاب هاي شديد، زخم و حتي مرگ كنند. اين وضعيت ريه ها در چند بيماري ديگر هم ديده مي شود، از جمله در بيماري باكتريايي ذات الريه يا بيماري هاي صنعتي مهلكي همچون سيليكوسيس يا آزبستوسيس مشاهده مي شوند.

    چه افرادي بيمار مي شوند؟
    از قديم ، اين دو بيماري بر اثر تنفس ذراتي مثل نانوذرات ايجاد مي شده است كه اثرات بسيار مهلكي بر سلامت دستگاه تنفسي دارند. سيليكوسيس وقتي ايجاد مي شود كه گرد و غبار حاوي سيليس براي مدت طولاني به درون ريه تنفس شود. سيليس بلوري براي سطح بيروني ريه سمي است. وقتي سيليس بلوري در تماس با ريه قرار مي گيرد، اثرات التهابي شديد به وجود مي آيند، در تمام مدت اين التهاب باعث مي شود كه بافت ريه به نحو برگشت ناپذيري آسيب ديده و ضخيم شود كه اين پديده با عنوان فيبروسيس معروف است. سيليس بلوري ، معمولا در ماسه سنگ گرانيت ، سنگ لوح ، زغال سنگ و ماسه سيليسي خالص وجود دارد. به همين دليل افرادي مثل كارگراني كه با ماسه كار مي كنند و كارگران كارخانه هاي ذوب فلزات ، سفالگران و... در معرض اين خطر قرار دارند. سيليس بلوري از سوي سازمان بهداشت جهاني به عنوان يك ماده سرطان زا معرفي شده است.
    الياف پنبه نسوز هم ، طولي حدود چند ميكرومتر دارند، كه هرچند جز نانو مواد نيستند، جزو موادي كه آلوده كننده دستگاه تنفسي و بيماري زا هستند، طبقه بندي مي شوند. پنبه نسوز يك فيبر معدني طبيعي است كه در بيش از 3 هزار ماده ساختماني و محصول توليدي به كار مي رود. اين نوع الياف تمايل دارند به الياف بسيار ريزتر خرد شوند. به دليل كوچك بودن ، اين الياف ممكن است بعد از پخش شدن در هوا براي مدت چند ساعت يا چند روز معلق باقي بمانند، الياف پنبه نسوز در طبيعت پايدارند و هرگز تجزيه نمي شوند و حتي در مقابل مواد شيميايي هم پايدارند و تبخير نمي شوند. در آب هم غيرقابل حل هستند. اين مواد باعث ايجاد سرطان ريه و مزوتليوما كه نوعي تومور خطرناك غشايي است و ريه را مي پوشاند مي شوند. آلودگي ذره اي هوا در مشاغل ديگري همچون توليد و فرآوري كربن سياه و الياف مصنوعي هم موجب ايجاد نگراني در اين زمينه مي شود.

    ذراتي كه در شهرها معلق اند
    با وجود اين كه ميزان خالص آلودگي ذره اي هواي شهري ، با كم شدن نشر ذرات از صنايع و مراكز توليد انرژي كاهش يافته است ، غلظت ذرات فوق ريز ناشي از ترافيك ، افزايش پيدا كرده است. اگر دقت كرده باشيد وقتي از شيبي با اتومبيل تان به سمت پايين حركت مي كنيد، لنت هاي ترمز اتومبيل شما و سايرين ، بويي در هوا متصاعد مي كند، كه اغلب مردم از سمي بودن آن مطلع هستند، اما به طور معمول در ترافيك هاي سنگين شهري هم مقادير بالايي از اين مواد وارد هوا مي شود كه معمولا همه ما نسبت به آن بي توجهيم.
    با توسعه روش هاي اندازه گيري ، آثار روشن تري از ذرات با اندازه كوچك تر مشاهده شده است. با اين حال بسياري از مطالعات كماكان ادامه دارند و خيلي كم به نتيجه رسيده اند. دانشمندان بر اين عقيده اند كه اثرات زيان آور آلودگي ذره اي هوا، به طور عمده به غلظت ذرات كوچك تر از 100 نانومتر ارتباط دارد و به غلظت جرمي ذرات بزرگتر چندان بستگي ندارد. به همين دليل به نظر مي رسد تركيب اطلاعات به دست آمده از اپيدمي شناسي در محيطهاي مختلف با داده هاي حاصل از مطالعات سم شناسي انجام گرفته بر روي حيوانات چندان هم دور از واقعيت نيست.

    ذره ها بيماري زا هستند
    بتازگي مطالعات اپيدمي شناسي ثابت كرده اند ارتباط مستقيمي بين افزايش مقطعي مواد ذره اي و افزايش بيماري و مرگ و مير ناشي از نارسايي هاي قلبي و عروقي وجود دارد. بيماران مسن تري كه سابقه بيماري هاي قلبي يا تنفسي دارند و همين طور بيماران ديابتي ، در معرض خطر بيشتري قرار دارند. همچنين ثابت شده است كه نشست ذرات در اندازه هاي نانو در كيسه هاي هوايي شش ها منجر به فعال شدن توليد سيتوكينيني به وسيله ماكروفاژها و سلول هاي كيسه هاي هوايي شده و التهاب سلول ها را به دنبال دارد.
    نمونه هاي تصادفي از ميان بزرگسالان سالم در معرض آلودگي ذره اي هوا، نشان داد كه در پلاسماي خون اين افراد ميزان ويسكوزيته افزايش پيدا كرده است. اما با اين وجود، هنوز هم به طور كامل مشخص نيست كه اين مسائل را مي توان به نانوذرات تعميم داد يا خير و جنبه هاي ديگر آلودگي زاي اين ذرات تا چه طيفي گسترده اند. بررسي و مطالعات بيشتر در اين زمينه بسيار ضروري به نظر مي رسد.


    عاصفه اله وردي
    منبع : جام جم آنلاين


  5. #15
    آخر فروم باز hlpmostafa's Avatar
    تاريخ عضويت
    Aug 2007
    محل سكونت
    کازرون،پایتخت تاریخ و تمدن ایران
    پست ها
    1,026

    پيش فرض نانوفناوری به زبان ساده

    نانوفناوری به زبان ساده



    یک نانومتر چقدر است؟

    یک نانومتر یک میلیاردم متر (10-9 m) است. این مقدار حدودا چهار برابر قطر یک اتم است. مکعبی با ابعاد 2.5 نانومتر ممکن است حدود 1000 اتم را شامل شود. در مقایسه یک جسم نانومتری با اندازه‌ای حدود 10 نانومتر ، هزار برابر کوچکتر از قطر یک موی انسان است.

    امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن (R.Feynnman) مطرح شد. فاینمن طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیزها را رد نمی‌کند. وی اظهار داشت که می‌توان با استفاده از ماشینهای کوچک ماشینهایی به مراتب کوچکتر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد.

    همین عبارتهای افسانه وار فاینمن راهگشای یکی از جذابترین زمینه‌های نانو تکنولوژی یعنی ساخت روباتهایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانو ماشینهایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکزی هستند، هر دانشمندی را به وجد می‌آورد. در رویای دانشمندانی مثل جی استورس هال (J.Storrs Hall) و اریک درکسلر (E.Drexler) این روباتها یا ماشینهای مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی در می‌آیند. شاید در آینده‌ای نه چندان دور بتوانید به کمک اجرای برنامه ای در کامپیوتر ، تخت خوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.

    چرا این مقیاس طول اینقدر مهم است؟


    خواص موجی شکل (مکانیک کوانتومی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر می‌پذیرند. با تولید ساختارهایی در مقیاس نانومتر ، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب ، خواص مغناطیسی ، ظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود می‌آید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارآیی بالا منتهی می‌شود که پیش از این میسر نبود.

    نظام سیستماتیک ماده در مقیاس نانومتری ، کلیدی برای سیستمهای بیولوژیکی است. نانوتکنولوژی به ما اجازه می‌دهد تا اجزاء و ترکیبات را داخل سلولها قرار داده و مواد جدیدی را با استفاده از روشهای جدید خود_اسمبلیخود_اسمبلی به هیچ روبات یا ابزار دیگری برای سرهم کردن اجزاء نیازی نیست.
    ساختارهایی در مقیاس نانو مانند نانو ذرات و نانولایه‌ها دارای نسبت سطح به حجم بالایی هستند که آنها را برای استفاده در مواد کامپوزیت ، واکنشهای شیمیایی و تهیه دارو ایده‌ال می‌سازد. سرامیکهای نانوساختاری غالبا سخت‌تر و غیرشکننده‌تر از مشابه مقیاس میکرونی خود هستند. کاتالیزورهای مقیاس نانو راندمان واکنشهای شیمیایی و احتراق را افزایش داده و به میزان چشمگیری از مواد زائد و آلودگی آن کم می‌کنند. وسایل الکترونیکی جدید ، مدارهای کوچکتر و سریعتر و … با مصرف خیلی کمتر می‌توانند با کنترل واکنشها در نانوساختار بطور همزمان بدست آیند. اینها تنها اندکی از فواید و مزایای تهیه مواد در مقیاس نانومتر است.

    بسازیم. در روش منافع نانوتکنولوژی چیست؟

    مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمده‌اند، شیشه‌هایی که خودبه خود تمیز می‌شوند، مواد دارویی که در مقیاس نانو ذرات درست شده‌اند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها ، هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایه‌ها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و ... .

    برخی کاربردها

    مدلسازی مولکولی و نانوتکنولوژی

    در سازمان ­دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل ‌سازی مولکولی و شبیه سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America می‌گوید:"روشهای تجربی مستلزم بهره‌گیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا می‌سازد که فعالیتهای شیمیایی چندگانه‌ای را در 24 ساعت شبانه ‌روز انجام دهد. شیمیدانها می‌توانند با انجام آزمایشها توسط رایانه ‌، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.

    نتیجه نهایی این امر ، کاهش اساسی در هزینه‌های آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه‌ گذاری اولیه جهت تهیه نرم‌افزار و هزینه‌های وابسته از جمله سخت‌افزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار می‌توان هریک از هزینه‌های اولیه را نه تنها از طریق صرفه‌جویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه ‌سازی فرآیندها و عملکردها می‌شود، جبران ساخت.

    این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیه‌سازی چطور می‌توانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار می‌شود که شگفتی جهان دانشمندان نظری وارد عمل می‌شود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه می‌شود. پیش‌بینی رفتار و خواص در محدوده­ای از ابعاد برای نانوتکنولوژیستها حیاتی است.

    مدل‌سازی رایانه‌ای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیه‌سازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیش‌بینی رفتار در مقیاس نانو و یا حدود آن قادر می‌سازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها می­پردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیه­سازی مولکولی عمل می‌کنند. می‌توان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساخته‌شده در مقیاس نانو و میکرو بکار برد.


    مدل ‌سازی خاک‌ رس محققین دانشگاه لندن در انگلستان و دانشگاه Paris Sud در فرانسه ، شبیه‌سازیهایی بر اساس مکانیک کوانتوم برای مطالعه و کامپوزیتهای خاک ‌رس–پلیمر بکار برده‌اند. امروزه این ترکیبات یکی از موفق‌ترین مواد نانوتکنولوژی هستند، زیرا بطور همزمان مقاومت بالا و شکل‌پذیری از خود نشان می‌دهند؛ خواصی که معمولاً در یکجا جمع نمی‌شوند. نانو کامپوزیتهای پلیمر–خاک رس می‌توانند با پلیمریزاسیون در جا تهیه شوند؛ فرآیندی که شامل مخلوط کردن مکانیکی خاک معدنی با مونومر مورد نیاز است. بنابراین مونومر در لایه درونی جای‌گذاری می‌شود (خودش را در لایه‌های درون ورقه‌های سفال جای می‌دهد) و تورق کل ساختار را افزایش می‌دهد. پلیمریزاسیون ادامه می‌یابد تا سبب پیدایش مواد پلیمری خطی و همبسته گردد.

    دانشمندان با بکارگیری Castep (یک برنامه مکانیک کوانتوم که نظریه کارکردی چگالی را بکار می‌گیرد) تحول کشف شده در این روش را که پلیمریزاسیون میان ‌گذار خود کاتالیست نامیده می‌شود مطالعه کردند. این پروژه ، دانشی نظری در زمینه ساز و کار این فرآیند جدید را بوسیله مشخص کردن نقش سفال در کامپوزیت فراهم نمود. ضروری است که دانش حاصل از شبیه‌سازیها ، جهت کنترل و مهندسی نمودن فعل و انفعالات پلیمر-سیلیکات به کمک دانشمندان آید.

    دانشمندان در شرکت BASF شبیه‌ سازیهای مقیاس میانی را برای بررسی علم و رفتار ریزواره‌ها بکاربردند. ریزواره‌ها ذراتی کروی شکل با ابعاد نانو هستند که به صورت خود به خود در محلولهای کوپلیمری ایجاد می‌شوند و در زمینه‌هایی مانند سنسورها وسایل آرایشی و دارو رسانی کاربرد دارند. دانشمندانBASF با بکار گیری esoDyn ، یک ابزار شبیه ‌سازی برای پیش‌بینی ساختارهای مقیاس میانی مواد متراکم محلولهای تغلیظ ‌شده کوپلیمرهای آمفی‌فیلیک را بررسی کردند.

    شبیه‌سازیها مشخص نمود که کدام شرایط مولکولی و فرمولی به شکل‌گیری "ریزواره‌های معکوس" مانند نانو ذرات آب در یک محیط فعال منتهی‌ می­شود. چنین نتایجی برای درک رفتار عوامل فعال سطحی ضروری هستند. به کمک روشهایی مانند پرتاب محلول در آزمایشگاه می‌توان به نتایجی در این زمینه دست یافت، اما دستیابی به این نتایج ماهها به طول می‌انجامد، درحالی که آزمایشهای شبیه‌سازی شده تنها طی چند روز نتیجه می‌دهند.

    محدودیتهای این روشها چیست؟
    در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافته‌اند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر می‌باشد که بیش از توان عملیاتی منابع محاسبه‌گر فعلی است. همچنین مدلسازی کل وسایل امکان‌پذیر نیست.

  6. #16
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    مطالعة نانوتكنولوژی




    نانوسيستم‌ها :
    متن استاندارد اين رشته، كتاب دكتر اريك دركسلر با نام "نانوسيستمها: ماشين‌آلات ساخت، توليد و محاسبة مولكولي" است. شما مي‌توانيد يك نسخه از آن را خريده، و مطالعه كنيد.


    مكانيك مولكو لي:
    هر فنّاوري توليدي بايد بتواند اتمها را از جايي كه هستند، به جايي كه ما مي‌خواهيم باشند، حركت دهد. بنابراين، چگونه حركت اتمها و نيروهاي اثرگذار روي آنها در طول حركت، رشته‌ا‌ي حياتي در مطالعة نانوتكنولوژي محسوب مي شود. اين رشته، مكانيك مولكولي ناميده مي‌شود. يك بحث خيلي خلاصه در مورد مكانيك مولكولي و اهميتش براي نانوتكنولوژي در وب در "نانوتكنولوژي محاسباتي" موجود است، كه شامل مراجعي براي مطالعات بيشتر است.
    يك مقدّمة كلاسيك به مكانيك مولكولي، كتاب مكانيك مولكولي نوشتة اولريخ بوركرت و نورمن آلينجر، چاپ انتشارات
    American Chemical Society در سال 1982 است، كه هرچند چاپ نمي‌شود، ولي در كتابخانه‌هاي دانشگاهي موجود است.
    كتاب نانوسيستمها مفهوم پاية مكانيك مولكولي را در فصل 3 خود شروع كرده‌است. مزيت بزرگ اين كار دركسلر، پذيرش واحدهاي سازگار
    SI است. مطالعة آهسته و دقيق اين فصل شايستة انجام است.
    پيش‌درآمدهاي بسيار ديگري به مكانيك مولكولي موجود است. بسته‌هاي نرم‌افزاري كه مداخل ورودي خاصي به اين زمينه دارند، موجود بوده و براي درك مفاهيم آن، بسيار مفيد هستند.



    كنترل مكاني، سختي و انعطاف‌پذيري :
    يك ايدة اساسي در نانوتكنولوژي، كنترل مكاني است؛ كه با ابزارهاي رباتيك كاملا" استاندارد قابل حصول است. تفاوت عمدة ابزارهاي رباتيك مرسوم با انواع مولكولي، مسألة نويز حرارتي است. در مقياس مولكولي، ذرّات به دليل حركت براوني درحال جست‌وخيز هستند. براي كنترل اين مسأله، ذرّات را بايستي محكم نگهداشت، يعني يك نيروي برگرداننده بايد وجود داشته‌باشد كه براي بازگرداندن ذرّات به موقعيت تعادلي، در صورت انحراف عمل كند (تعريف موجزي از "كنترل مكاني"، همين وجود نيروي برگرداننده است). نيروي برگرداننده معمولا" به صورت تابع خطي جابجايي فرض مي‌شود :

    نيروي برگرداننده = جابجايي×
    Ks

    ثابت
    Ks
    معياري از سختي سيستم است. هرچه سختي بيشتر باشد، نيروي برگرداننده بزرگتر و انحراف سيستم از موقعيت تعادلي، كوچكتر مي‌شود. رابطة بنياد‌ي سختي و بي‌ثباتي مكاني عبارتست از :

    б2 = kT / Ks

    اين رابطة 4-5 فصل 5 كتاب نانوسيستمها است، كه بايد به‌خاطر سپرده و كاربردهاي اصلي آن را شناخت. براي استفاده از آن، لازم است سختي (
    Ks) مشخص شود. سختي يك ساختار را از هندسه و خواص مواد آن مي‌توان تعيين كرد. اين مفاهيم پايه در فصول 38 و 39 دروس فيزيك فينمن نوشتة فينمن، ليتون و سندز، چاپ انتشارات Addison-Wesley
    سال 1964 موجود است. لذا خواندن اين فصل پيشنهاد مي‌شود.
    كاربرد اين معادلات در بعضي ابزارهاي رباتيك (ازجمله سكّوي استوارت كه به علت سختي بالايش براي مصارف رباتيك مولكولي) مورد توجه است)، در خانوادة جديدي از ابزارهاي مكاني با 6 درجة آزادي، توضيح داده شده‌است. اين كاربردها همچنين در فصل 5 نانوسيستمها و بخش 4-13 آن، كه يك بازوي رباتيك را مورد بحث قرار داده، بيان شده‌است.



    خودهمانندسازي :
    انديشة اساسي دوم در نانوتكنولوژي، خودهمانندسازي است. دانشجو بايد صفحة وبي را بعنوان مقدمة خودهمانندسازي خوانده و چند مرجع موجود در آن را براي مطالعة بيشتر انتخاب كند. تئوري دور و تكرار (recursion theorem) مبناي سيستمهاي خودهمانندساز است. فهم اين تئوري، الزامي است. بعنوان تمرين برنامه‌ا‌ي بنويسيد كه خودش را دقيقا" چاپ كند. نسخه‌اي از مطالعات 1980NASA را مي‌توانيد بخريد، كه داراي بخش باشكوهي در مورد سيستمهاي خودهمانندساز است.



    مطالعات بيشتر :
    البته موضوعات زياد ديگري نيز در زمينة پيشرفت نانوتكنولوژي وجود دارد. به‌نظر مي‌رسد مفيدتر باشد كه ليست كوتاه و فشرده‌ا‌ي از موضوعات اساسي ارائه شود كه بتوان با يك تلاش معقول بر آنها تسلط يافت، تا اينكه ليست آنچنان بلند و سنگين باشد كه هر موضوعي با هر درجة اهميتي را پوشش دهد. دانشجو مي‌تواند مطمئن باشد كه هيچ كمبودي از نظر مفاد مطالعاتي در مورد اين رشتة جديد تحقيقاتي وجود ندارد.

    --------------------------------------


  7. #17
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    معرفي گزارش كميته ي بين المللي فناوري
    نانو در زمينه ي خطرات فناوري نانو
    كميته بين‌المللي فناوري نانو
    (ICON) گزارش كاملي ازمهم‌ترين فعاليت‌هاي دردست اجرا براي توسعه "بهترين روش‌ها" براي كار كردن بانانومواد در محل كار، منتشر كرد. اين گزارش توسط محققان دانشگاه كاليفرنيا در سانتاباربارا (UCSB) انجام شد و بخشي از پروژه دو مرحله‌اي "تهيه فهرست روش‌هاي مديريتخطرات نانوذرات بر سلامت افراد در محيط‌هاي كاري" بود كه اطلاعات مربوط به آن درسايت icon.rice.edu نيز قابل دسترسي است.
    ICON
    كه در انجام هر دو بخش از اينپروژه مشاركت داشت، مجمعي متشكل از سازمانهاي دانشگاهي، صنعتي، دولتي و اجتماعي استكه رياست آن را دانشگاه رايس، مركز تحقيقات فناوري‌نانو محيطي و بيوتكنولوژي (CBEN) بر عهده دارد.
    در فاز اول گزارش، دانش فعلي و فعاليت‌هاي انجام‌شده در زمينهسلامت و بهداشت محيط‌هاي كاري نانو بررسي شده و تحليل كاملي از تلاش‌هاي در دستانجام ارايه شده تا بهترين اقدامات از ميان آنها انتخاب و اجرا شوند. در اين گزارشآمده ‌است كه تلاش‌هاي صورت گرفته براي تهيه فهرست اقدامات لازم‌الاجرا در محيط‌هايكاري نتوانسته‌است فعاليت‌هاي مربوط به امنيت، سلامت و بهداشت محيطي را درموقعيت‌هاي مختلف كاري و جغرافيايي به درستي مستندسازي كند؛ از سوي ديگر مدارك مورداستناد نيز در دسترس عموم قرار ندارند.
    در فاز دوم، اين محققان با طيف وسيعي ازشركت‌هاي بين‌المللي و شركت‌هاي مستقر در ايالات متحده مصاحبه كردند تا يك ديدگاهبين‌المللي درباره اقدامات لازم جهت اعمال در محيط‌هاي كاري در صنايع فناوري نانو،به وجود آورند.
    كريستن كالينوسكي، مدير ICON نيز اظهار داشت: "در اولين گزارشمشخص شد كه بايد اطلاعات بيشتري راجع به نحوه برخورد صنايع مختلف با ناشناخته‌هاينانوذرات جمع‌آوري شود. فاز دوم نيز به فعاليت‌هاي در دست اجرا پرداخته و بستريمناسب براي گفتگوي جهاني در زمينه اقدامات بي‌خطر فراهم خواهدآورد."

    منبع : http://www.nanoarticle.com/


  8. #18
    حـــــرفـه ای Mohammad Hosseyn's Avatar
    تاريخ عضويت
    Apr 2005
    محل سكونت
    ...
    پست ها
    5,651

    پيش فرض

    خلاصه

    به علوم و فناوري‌هاي مربوط يا به كار گيرنده نور وفوتون (ذره بنيادي نور) كه به برهم‌كنش‌هاي بين نور و ماه مي‌پردازند فوتونيك گفتهمي‌شود . بازار جهاني تجهيزات نانوفوتونيك از 421 ميليون دلار در سال 2004 به 3/9ميليارد دلار 2009 خواهد رسيد. كاربردهاي كوتاه مدت نانوفوتونيك به چهار دسته اصلينمايشگرها، ديودهاي نورافشان، سلول‌هاي خورشيدي (دريافت كننده‌هاي انرژي خورشيدي) وحسگرهاي زيست شيميايي تقسيم خواهد شد.
    ادامه متن مقاله در فایل ضمیمه ..

  9. #19
    همکار بازنشسته farbod123's Avatar
    تاريخ عضويت
    Sep 2007
    محل سكونت
    تبريز
    پست ها
    1,370

    پيش فرض محلولهای مغناطیسی نانو

    محلولهای مغناطیسی نانو

    محلول‌های مغناطیسی یکی از شاخه‌های فناوری نانو است که کمتر از دیگر شاخه‌های نانو به آن پرداخته شده‌است، ولی به تازگی کاربردهای جدیدی برای آن یافت شده است.
    محلول‌های مغناطیسی (Ferro fluid) از ذرات بسیار ریز کلوییدی ( درحدود۱۰۰ - ۱۰ نانومتر ( m ۹- ۱۰) ) از جنس فلزاتی که خاصیت مغناطیسی دارند(مانند آهن و کبالت) به حالت سوسپانسیون در مایعی ، ساخته میشوند . پخش‌ کردن ذرات در مایع را می توان به کمک یک واکنش شیمیایی انجام ‌داد. ذرات پخش شده در مایع به علت ریز بودن به صورت کلوئیدی هستند ولی پس از گذشت مدت زمان نسبتاً کوتاهی به هم پیوسته و ذرات بزرگتری را تشکیل می‌دهند ، که در ا ین صورت حالت کلوییدی آن از بین رفته ، ذرات در محلول ته ‌نشین شده و خاصیت مغناطیسی خود را از دست می دهند .
    هر قدر که ذرات ریزتر باشند ، محلول خاصیت مغناطیسی بهتری از خود نشان می‌دهد. به این علت است که در هنگام تولید ، موادی با نام ” سورفاکتانت ” به محلول اضافه می‌شود که روی دیواره‌های آن را می پوشاند و مانع از به هم پیوستن و بزرگ شدن ذرات می‌شود و ذرات با گذشت زمان خاصیت خود را از دست نمی‌دهند.
    سورفکتانت ها :
    کلمه سورفکتانت مخلوطی از “Surface active agent “ می باشد . سورفکتانتها معمولا ترکیباتی آلی هستند که دارای گروههای آبدوست که نقش دم و دنباله را دارد و گروههای آبگریز که نقش سر را دارد می باشند بنابراین معمولا به طور ناچیز در آب و حلالهای آلی حل می شوند.
    وجود طبیعت دوگانه سبب ویژگیهای خاصی در این مولکول ها می شود به طوریکه می توانند در آب حل شده و در سطح مشترک آب – هوا یا بین دو سطح از دوفاز مختلف تجمع یافته و سبب کاهش کشش سطحی شوند. به طور نمونه در مورد بالاسورفکتانت ها ، از یکی از دو سرشان به کلویید متصل شده و از سر دیگر به محلول نزدیک اند، بنابراین سرهایی که در محلول قرار دارند همنام بوده و سبب دافعه بین کلوییدها می شود . در نتیجه از تجمع و به هم پیوستن آنها ممانعت نموده و محلول خاصیت مغناطیسی خود را حفظ می کند.
    سورفکتانتها نقش مهمی در بسیاری از کاربرد ها عملی و محصولات بازی میکند مثلا : شونده ها - امولسیون کننده ها - جوهر سازی - کف سازی و ….سورفکتانتها معمولا بوسیله گروههای باردار تقسیم بندی می شوند . سورفکتانتهای غیریونی در قسمت سر خود بی بار هستند. اگر بار منفی باشد سورفکتانت آنیونی و اگر مثبت بود سورفکتانت کاتیونی داریم .. گاهی قسمت سر دارای هر دو بار منفی و مثبت است که به آن آمفوتریک گوئیم .
    یک Ferro fluid معمولی ، از %۵ جامد مغناطیسی ، %۱۰ سورفاکتانت و % ۸۵ مایع تشکیل شده است. در عصر حاضر نانو تکنولوژی خدمت بسیاری به بشر کرده‌است . در شیمی ، در فیزیک و . . . همچنین در زمینه‌های پزشکی که با ساخت وسایل گوناگون در زمینه‌ی درمان ، انسانها را یاری کرده‌ است . نظریا تی وجود دارد مبنی بر اینکه به کمک این محلول می ‌توان کپسولهایی ساخت و دا روهایی را که برای بخشی از بدن مضر و برای بخشی دیگر مفید است ، به راحتی به محل مورد نظر برسانیم . با این روش که کپسولهایی از این جنس را پراز داروی مورد نظر کنیم و به وسیله‌ی آهنربا به محل مورد نظر برسانیم و در آنجا آنرا تخلیه کنیم .
    در چند ساله‌ی اخیر دانشمندان به این عقیده رسیده‌اند که به کمک وارد کردن ا ین محلول به بدن می‌توان سلولهای سرطانی و یا ویروسها ( مثلا ایدز) را از بدن خارج کرد، به صورتی که ا ین ماده آنتی بادی (Anti body) موجود در خون را ( به وسیله بار مثبت آنها ) جذب کرده و آنتی بادی ها هم ویروسها را جذب میکنند که با خارج کردن Ferro fluid به وسیله آهنربا میتوان ویروسها را خارج کرد. ولی متأسفانه هنوز به مرحله‌ی عملی نرسیده‌است.
    به غیر از استفاده‌های پزشکی ذکر شده در بالا استفاده‌های صنعتی هم برای این ماده ذکر شده‌است. مثلا در چیپهای مخصوص برای حرکت دا دن یک سیال مشکلاتی وجود دارد چون موتورهایی در آن اندازه‌ی ریز وجود ندارد و اگر هم وجود دارد بسیار پرهزینه است. اما با اضافه کردن مقداری از ا ین محلول به آن سیال می‌توان با نیروی مغناطیسی آن سیال را به حرکت در آورد. مورد دیگر استفاده از این ماده در بلند گو های پر قدرت است .این محلول خاصیت خود را در دماهای بالا ، مثلا در °C ۲۰۰ یا در دماهای پایین ، مثلا در °C ۵۰- و یا در برابر امواج هسته ای حفظ می کند .

  10. #20
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض نانو تیوپ های کربنی

    اگر قبول كنيم كه روش‌هاي توليد به كمك فناوري نانو به دوران طلايي خود رسيده است بايد نانولوله‌هاي كربني را بچه‌هاي طلايي اين دوران به شمار آوريم. خواص منحصر به فرد (مكانيكي- الكترونيكي- شيميايي- مغناطيسي- ) اين مواد رويايي موجب شده است كه قابليت‌هاي كاربردي زيادي براي آن ها به وجود آيد. پيش‌بيني يك بازار 12 ميليارد دلاري در مدت 5 سال ( 2002تا 2007) حاكي از آن است نانولوله‌هاي كربني تأثير بيشتري از ترانزيستور در جامعه امروزي خواهند داشت.
    نانولوله‌ هاي كربني‌ كه از صفحات كربن به ضخامت يك اتم و به شكل استوانه‌اي توخالي ساخته شده است در سال 1991 توسط ساميو ايجيما (از شركت NEC ژاپن) كشف شد. خواص ويژه و منحصر به
    فرد آن ازجمله مدول يانگ بالا و استحكام كششي خوب از يك طرف و طبيعت كربني بودن نانولوله‌ها (به خاطر اين كه كربن ماده‌اي است كم وزن، بسيار پايدار و ساده جهت انجام فرايندها كه نسبت به فلزات براي توليد ارزان‌تر مي‌باشد) باعث شده که در دهه گذشته شاهد تحقيقات مهمي در كارايي و پرباري روش‌هاي رشد نانولوله‌ها باشيم. كارهاي نظري و عملي زيادي نيز بر روي ساختار اتمي و ساختارهاي الكتروني نانولوله متمركز شده است. كوشش‌هاي گسترده‌اي نيز براي رسيدگي به خواص مكانيكي شامل مدول يانگ و استحكام كششي و ساز وکار عيوب و اثر تغيير شكل نانولوله‌ها بر خواص الكتريكي صورت گرفته است.مي توان گفت اين علاقه ويژه به نانولوله‌ها از ساختار و ويژگي‌هاي بي‌نظير آن ها سرچشمه مي‌گيرد.
    ويژگي‌هاي نانولوله هاي کربني
    انواع نانولوله هاي‌ کربني
    روش‌هاي توليد نانو لوله هاي کربني
    كاربردهاي نانولوله‌هاي کربني
    چالش هاي فراوري ويژگي‌هاي نانولوله هاي کربني
    ۱-۱) اندازه بسيار كوچك (قطر كوچكتر از 4/0 نانومتر)
    1-2) حالت رسانا و نيمه‌رسانايي آن ها بر حسب شكل هندسي ‌شان نانولوله‌ها بر حسب نحوه رول شدن صفحات گرافيتي سازندۀ‌شان به صورت رسانا يا نيمه‌رسانا در مي‌آيند. به عبارت ديگر از آنجا كه نانولوله‌ها در سطح مولكولي همچون يك باريكه سيمي در هم تنيده به نظر مي‌رسند اتم‌هاي كربن در قالب شش وجهي به يكديگر متصل مي‌شوند و اين الگوهاي شش وجهي ديواره‌هاي استوانه‌اي را تشكيل مي‌دهند كه اندازه آن تنها چند نانومتر مي‌باشد. زاويه پيچش نوعي نانولوله، كه به صورت زاويه بين محور الگوي شش وجهي آن و محور لوله تعريف مي‌شود، رسانا يا نارسانا بودن را تعيين مي‌كند. تحقيقات ديگري نيز نشان داده‌اند كه تغيير شعاع نيز امكان بستن طول باند و عايق نمودن نانولوله فلزي را فراهم مي‌كند. پس مي‌توان گفت دوپارامتر اساسي که در اين بين نقش اساسي بازي مي‌كنند، يكي ساختار نانولوله و ديگري قطر و اندازه آن است. بررسي‌هاي ديگري نشان داده‌اند که خصوصيات الكتريكي نانولوله‌ها بسته به اينكه مولكول C60 در كجا قرار داده شود از يك هادي به يك نيمه‌هادي و يا يك عايق قابل تغيير مي‌باشد. از آنجايي كه نانولوله‌هاي كربني قادرند جريان الكتريسته را به وسيله انتقال بالستيك الكترون بدون اصطكاك از سطح خود عبور دهند- اين جريان صد برابر بيشتر از جرياني است كه از سيم مسي عبور مي‌كند- لذا نانولوله‌ها انتخاب ايده‌آلي براي بسياري از كاربردهاي ميكروالكترونيك مي‌باشند.
    1-3) برخورداري از خاصيت منحصر به فرد ترابري پرتابه‌اي
    1-4) قدرت رسانايي گرمايي خيلي بالا
    1-5) سطح جداره صاف يا قدرت تفكيك بالاسطح جداره صاف نانولوله‌ها باعث مي‌شود كه ميزان عبور گاز از درون آن ها به مراتب بيشتر از غشاهاي ميكروحفره‌اي معمولي كه در جداسازي گازها مورد استفاده قرار مي‌گيرند باشد. لذا مي‌توان گازهايي مانند هيدروژن و دي‌اكسيد كربن را با هدايت در نانولوله از هم جدا كرد. اين كه آيا نانولوله‌ها واقعاً مي‌توانند در خارج از آزمايشگاه نيز گازها را به طور انتخابي از خود عبور دهند يا نه باعث شده كه اميدهاي زيادي به توليد هيدروژن و نيتروژن از هوا باشد.
    1-6) بروز خواص الكتريكي و مكانيكي منحصر به فرد در طول آن ها
    1-7) مدول يانگ بالا
    1-8) حساس به تغييرات كوچك نيروهاي اعمال شده اعمال فشار بر يك نانولوله مي‌تواند ويژگي‌هاي الكتريكي آن را تغيير دهد كه بسته به نوع كشش يك نانولوله مي‌توان رسانايي آن را افزايش يا كاهش داد. اين امر به دليل تغيير ساختار كوانتومي الكترون‌ها صورت مي‌گيرد. لذا اين امكان به فيزيكدان ها داده مي‌شود كه ترانسفورماتور يا دستگاه‌هاي انتقال دهنده بر پايه نانولوله‌ها بسازند كه حساسيت زيادي به اعمال نيروهاي بسيار كوچك دارند. همچنين توانايي نانولوله‌ها در احساس تغييرات بسيار كوچك فشار و باز تبديل اين فشار به صورت يك علامت الكتريكي مي‌تواند در آينده امكان ساخت سوئيچ‌هاي نانولوله‌اي حساس به تغييرات بسيار كوچك فشار را به محققان بدهد.
    1-9)گسيل و جذب نور نانولوله‌ها مي‌توانند نور مادون قرمز را جذب و دفع كنند.
    همچنين تزريق همزمان الكترون از يك سر و تزريق حفره از سر ديگر نانولوله‌كربني، موجب مي‌شود كه نوري با طول موج 5/1 ميكرومتر از نانولوله منتشر شود.
    1-10)ضريب تحرك الكتريسيته بسيار بالانانولوله‌ها در دماي اتاق داراي بالاترين ضريب تحریک الكتريسته نسبت به هر ماده شناخته شده ديگري هستند.
    1-11)خاصيت مغناطيسي، ممان مغناطيسي بسيار بزرگ با قرار دادن يك نانولوله در زير لايه مغناطيسي يا با افزودن الكترون يا حفره به نانولوله مي‌توان خاصيت مغناطيسي در نانولوله ايجاد كرد .اين خاصيت باعث مي‌شود كه بتوان ساخت وسايلي را پيش‌بيني كرد كه در آن ها اتصالات مغناطيسي و الكتريكي از هم جدا شده‌اند. اتصال مغناطيسي را مي‌توان براي قطبي كردن مغناطيسي نانولوله‌ها- دستكاري در اسپين‌ها- به كار برد و از اتصال‌هاي غيرمغناطيسي براي الكترودهاي ولتاژ- جريان استفاده كرد. همچنين ممان مغناطيسي آن ها نيز قابل اندازه‌گيري است (1/0 مگنتون بور در هر اتم كربن).
    1-12) چگالي سطحي بسيار بالانانولوله‌ها داراي چگالي سطحي بسيار بالايي مي‌باشند كه باعث استحكام بالاي نانولوله مي‌شود. مي‌توان گفت اين خاصيت در اثر ريز بودن قابل توجه آن ها پديدار مي‌شود.
    1-13) قابليت ذخيره‌سازي در نانولوله‌ها هر سه اتم كربن قابليت ذخيره يك يون ليتيم را دارند در حالي كه در گرافيت هر شش اتم كربن توانايي ذخيره يك يون ليتيم را دارند. همچنين توانايي ذخيره انرژي در نانولوله‌ها چند برابر حجم الكترودهاي گرافيتي است. لذا محققان اميدوارند بتوانند هيدروژن زيادي را در نانولوله‌ها براي كاربردهاي انرژي و پيل‌هاي سوختي ذخيره كنند.
    1-14) داشتن خاصيت ابررسانايي نانولوله‌ها در دماي زير k ْ15 ابررسانا شده‌اند. شعاع اين نانولوله‌هاي ابررسانا فقط 4/0 نانومتر است. اين كشف در نانولوله‌هاي كربني نه تنها حيرت دانشمندان را به دنبال داشته بلكه قضايايي را كه حدود 40 سال پيش انتقال فاز را در سيستم‌هاي يك يا دو بعدي ممنوع مي‌دانستند، رد كرده است. همچنين دانشمندان دلايلي را ارائه كرده‌اند كه مي‌توان ابررسانايي دماي اتاق را در نانولوله‌هاي كربني يافت. آن ها بيش از 20 دليل ارائه كرده‌اند كه نانولوله‌هاي كربني از خود خواصي را نشان مي‌دهند كه بيانگر ابررسانايي دماي اتاق در آن هاست.
    1-15) توليد ولتاژبا عبور مايع از ميان كلاف‌هايي از نانولوله‌هاي كربني تك جداره، ولتاژ الكتريكي ايجاد مي‌شود. از اين تكنيك براي ساخت حسگرهاي جريان مايع براي تشخيص مقادير بسيار اندك مايعات و نيز براي ايجاد ولتاژ در كاربردهاي زيست پزشكي استفاده مي‌شود. همچنين نشان داده شده است كه مايعات با قدرت يوني بالا ولتاژ بيشتري توليد مي‌كنند.
    1-16) استحكام و مقاومت كششي بالاميزان افزايش نيروي گرمايي و مقاومت نانولوله‌ها با ريشه سوم جرم اتم‌ها و مولكول‌ها متناسب است. همچنين حرارت دادن موجب افزايش استحكام نانولوله شده و مقاومت كششي آن را شش برابر مي‌كند و هدايت آن نيز افزايش مي‌يابد. تحقيقات اخير نشان مي دهد كه در اثر برخورد اتم‌ها يا مولكول‌ها با نانولوله‌ كربني مقاومت الكتريكي آن تغيير مي‌كند.
    انواع نانولوله هاي‌ کربني نانولوله‌ها به دو دسته تك جداره (SWNT) و چند جداره (MWNT) تقسيم مي‌شوند،‌ نانو لوله هاي تك جداره نيز بر حسب آرايش اتم‌هاي كربني مقطع لوله به سه دسته مهم دسته صندلي (Armchair) و كايرال( chiral ) كه داراي خاصيت فلزي هستند و زيگزاگ (Zigzag) كه خاصيت نيمه‌رسانايي دارد، تقسيم مي‌شوند.
    (n,0)
    Zig-Zag
    (n,n)
    armchair
    chiral
    نانولوله‌هاي كربني تك جداره فقط از كربن و يك ساختارساده (ورقه‌اي از شش ضلعي‌هاي منظم) تشكيل شده‌اند. برخي پيش‌بيني‌ها حاكي از آن است كه تك جداره ها مي‌توانند رسانا يا نيمه‌رسانا باشند. اين هدايت الكتريكي بالا بستگي به هندسه دقيق اتم‌هاي كربن دارد. از آغاز كار روي تك جداره ها از آن ها به عنوان يك پديده تك بعدي نام برده مي‌شد تا اين كه اين نظريه مرحله به مرحله پيشرفت كرد. علت علاقه به اين نانولوله‌هاي تك جداره و تلاش براي جايگزين كردن آن ها در صنعت، بر اساس محاسبات نظري و تأثيرات آزمايشگاهي، بر خصوصيات عالي مكانيكي و رسانايي الكتريكي آن ها مانند فلزات مي‌باشد. البته توليد نانو لوله هاي تك جداره داراي هزينه بالايي است و توليد به همراه پايدار كردن خصوصيات آن ها در حين فراوري پليمر- نانولوله مشكل مي‌باشد. هر چند نانولوله‌هايي كه با استفاده از تكنيك لانگهوري- بلاجت كه شامل حركاتي افقي و عمودي شبيه نقاشي سنتي ژاپن مي‌باشد توليد شده‌اند، علاوه بر اين كه ثابت نگه داشته مي‌شوند- توسط ژلاتين و تشكيل نانوژل كربني- از لحاظ نوري نيز يكدست و همگن و از لحاظ ساختاري قابل كنترل مي‌باشند. بر عكس در دسترس بودن و تجاري بودن نانولوله‌هاي كربني چند جداره باعث شده كه پيشرفت‌هاي بيشتري در اين زمينه داشته باشيم تا حدي كه محصولاتي در آستانه تجاري‌شدن توليد شده است. به عنوان مثال از نانولوله‌هاي كربني چند جداره (جايگزين كربن بلك Carbon-black) در پودرهاي رنگ استفاده شده است.يكي از معايب نانولوله‌هاي چند جداره نسبت به تك جداره اين است كه استحكام‌دهي آن ها كمتر مي‌باشد زيرا پيوندهاي صفحات داخلي ضعيف مي‌باشند.
    اما از آنجا كه‌ در حال حاضر كاربردهاي نانولوله‌ها در تقويت پليمرها باعث بهبود خواص گرمايي و الكتريكي مي‌شود تا بهبود خواص مكانيكي، كاربرد نانولوله‌هاي كربني چند جداره بسيار زياد مي‌باشد. ازطرفي تكنيك‌هاي موجود نيز براي توليد نانولوله‌هاي تك جداره به اندازه كافي بازدهي ندارد و خلوص لازم را نيز به همراه نمي آورد. تخليص اين مواد بسيار زحمت‌آور است و در نهايت ممكن است به ساختار نانولوله‌ صدمه نيز بزند.
    روش‌هاي توليد نانو لوله هاي کربني
    بعد از آن كه در سال 1991 ايجيما اولين نانولوله‌ را دركربن دوده‌اي حاصل از تخليه قوس الكتريكي مشاهده كرد، محققان زيادي در جهت بسط و گسترش روش‌هاي رشد برآمده‌اند تا بتوانند مواد خالص‌تر با خواص كنترل شده مورد نظر توليد كنند. اما با آن كه روش‌هاي زيادي براي توليد نانولوله‌هاي كربني ارائه شده است،‌ سنتز آن ها در دماي اتاق تاكنون به صورت مشكلي لاينحل باقي مانده است. دانشمندان تاكنون اين مواد را در محدوده دمايي 200 تا700 درجه سانتيگراد با بازده كمتر از 70 درصد و حتي پس از چندين بار خالص‌سازي با درجهخلوص حداكثر 95 -70 درصد توليد كرده‌اند. در زير چند روش عمده در سنتز نانولوله‌ها مورد بحث اجمالي قرار مي‌گيرد. بدون شك بهينه سازي و كنترل اين روش‌ها مي‌تواند توان بالقوه نانولوله‌ها را پديدار نمايد.
    3-1) روش تخليه قوس
    در اين روش اتم‌هاي كربن به وسيله عبور جريان بالا از دو قطب آندو كاتد در داخل پلاسماي گاز هليم داغ شده و بخار مي‌شوند.
    3-2) روش تابش ليزر
    در اين روش پالس‌هاي قوي شده اشعه ليزر به طرف يك هدف كربني كه شامل 5 درصد اتمي نيكل و كبالت است پرتاب مي‌شوند.
    3-2) رسوب بخار شيميايي (CVD) اين روش شامل حرارت دادن مواد كاتاليزوري تا درجه حرارت هاي بالا در يك كوره لوله‌اي شكل و عبور يك گاز هيدروكربني در سراسر لوله براي يك مدت زمان معين مي‌باشد.
    دو روش تخليه قوس و تابش ليزر براي زمان طولاني، روش‌هاي تقريباً كاملي براي توليد نانولوله‌هاي تك جداره بودند. اما از آنجايي كه هر دو روش مبتني بر بخار اتم‌هاي كربن درون محفظه كوچك هستند اولاً ميزان توليد نانولوله پايين مي‌باشد، ثانياً نانولوله‌هايي كه به صورت تبخيري تهيه مي‌شوند به صورت در هم پيچيده هستند؛در اين صورت براي خالص و تميز كردن آن ها با مشكل مواجه‌اند. روش رسوب بخار نيز با چالش‌هايي مواجه است چرا كه براي توليد نانولوله‌هاي كربني چند جداره چگالي بالايي از عيوب در ساختارشان به وجود مي‌آيد. اين عيوب به خاطر دماي پايين رشد مي‌باشد كه مقدار انرژي لازم براي بازپخت (آنيل) نانولوله‌ و تكميل ساختارش را فراهم نمي‌كند. همچنين اين روش منجر به مداري شامل هر نوع نانولوله‌هاي هادي و نيمه‌هادي مي‌شود. همچنين رشد نانولوله‌ها دلخواه بوده و قطر آن ها بزرگ است در حالي كه نانولوله‌هاي با قطر كمتر در كليد زني مناسب‌ترند. با اين وجود تمركز محققان بر روي روش رسوب‌دهي بخار است زيرا توليد انبوه در حد كيلوگرم را ميسر مي‌سازد و مي‌توان كنترل قابل قبولي بر مكانيزم رشد داشت. كاربردهاي نانولوله‌هاي کربني وجود يك سري مختصات ويژه نانولوله‌هاي كربني، آن ها را به انتخاب ايده آلي براي بسياري از كاربردها تبديل كرده است. امروزه در روند تحقيق درباره نانولوله‌ها توجه و تعمق ويژه‌اي بر روي استفاده از آن ها در ساخت ابزارها متمركز شده است. اكثر پژوهشگراني كه در دانشگاه‌ها و آزمايشگاه‌هاي تحققاتي سرتاسر دنيا بر روي نانولوله‌ها كار مي‌كنند با خوش‌بيني پيش‌بيني مي‌كنند كه در آينده‌اي نزديك نانولوله‌ها كاربردهاي صنعتي وسيعي خواهند داشت.هم‌اكنون امكان ساخت ابزارهاي بسيار جالبي وجود دارد،‌ اما در خصوص موفقيت تجاري‌ آن ها، بايد در آينده قضاوت كرد. تقريباً تمام مقالات به طور ضمني به كاربرد نانولوله‌ها و بهره‌برداري تجاري از آن ها در آينده اشاره دارند. آينده كاربرد نانولوله‌ها در بخش الكترونيك روشن است؛ خواص الكتريكي و پايداري شيميايي بي بديل نانولوله‌ها به طور قاطع ما را به سمت استفاده از اين خواص سوق خواهد‌ داد. بنابراين در ادامه به شرح چند مورد از حوزه‌هاي مهم كاربرد نانولوله‌ها مي پردازيم.
    4-1) ترانزيستورها
    نانولوله‌ها در آستانه كاربرد در ترانزيستورهاي سريع هستند، اما آن ها هنوز هم در اتصالات داخلي استفاده مي‌شوند. بسياري از طراحان دستگاه‌ها تمايل دارند به پيشرفت‌هايي دست يابند كه آن ها را به افزايش تعداد اتصالات داخلي دستگاه‌ها در فضاي كوچك تر، قادر نمايد. ترانزيستورهاي ساخته شده از نانولوله‌ها داراي آستانه مي‌باشند (يعني سيگنال بايد از يك حداقل توان برخوردار باشد تا ترانزيستور بتواند آن را آشكار كند) كه مي‌توانند سيگنال‌هاي الكتريكي زير آستانه را در شرايط اختلال الكتريكي يا نويزآشكار و رديابي نمايند. همچنين از آنجايي كه ضريب تحرك، شاخص حساسيت يك ترانزيستور براي كشف بار يا شناسايي مولكول مجاور مي‌باشد، لذا ضريب تحرك مشخص مي‌كند كه قطعه تا چه حد مي‌تواند خوب كار كند. ضريب تحرك تعيين مي‌كند كه بارها در يك قطعه چقدر سريع حركت مي‌كنند و اين نيز سرعت‌ نهايي يك ترانزيستور را تعيين مي‌نمايد.لذا اهميت استفاده از نانولوله‌ها و توليد ترانزيستورهاي نانولوله‌اي با داشتن ضريب تحرك برابر با 100 هزار سانتيمتر مربع بر ولت ثانيه در مقابل سيليكون با ضريب تحرك 1500 سانتيمتر مربع بر ولت ثانيه و اينديم آنتيمونيد (بالاترين ركورد بدست آمده تا به امروز) با ضريب تحرك 77 هزار سانتيمتر مربع بر ولت ثانيه بيش از پيش مشخص مي‌شود.
    4-2) حسگرها
    حسگرها ابزارهايي هستند كه تحت شرايط خاص، از خود واكنش‌هاي پيش‌بيني شده و مورد انتظار نشان مي‌دهند. شايد دماسنج را بتوان جزء اولين حسگرهاي كه بشر ساخت به حساب آورد. با توجه به وجود آمدن وسايل الكترونيكي و تحولات عظيمي كه در چند دهه اخير و در خلال قرن بيستم به وقوع پيوسته است، امروزه نياز به ساخت حسگرهاي دقيق‌تر، كوچك تر و با قابليت‌هاي بيشتر احساس مي‌شود.حسگرهايي كه امروزه مورد استفاده قرار مي‌گيرند،‌ داراي حساسيت بالايي هستند به طوري كه به مقادير ناچيزي از هر گاز، گرما يا تشعشع حساسند. بالا بردن درجه حساسيت،‌ بهره و دقت اين حسگرها نياز به كشف مواد و ابزارهاي جديد دارد. با آغاز عصر نانوفناوري، حسگرها نيز تغييرات شگرفي خواهند داشت. يكي از نامزدهاي ساخت حسگرها، نانولوله‌ها خواهند بود. با نانولوله‌ها مي‌توان،‌ هم حسگر شيميايي و هم حسگر مكانيكي ساخت. به خاطر كوچك و نانومتر بودن ابعاد اين حسگرها، دقت و واكنش آن ها بسيار زياد خواهد بود، به گونه‌اي كه حتي به چند اتم از يك گاز نيز واكنش نشان خواهند داد.تحقيقات نشان مي‌دهد كه نانولوله‌ها به نوع گازي كه جذب آن ها مي‌شود حساس مي باشند؛ همچنين ميدان الكتريكي خارجي،‌ قدرت تغيير دادن ساختارهاي گروهي از نانولوله‌ها را دارد؛ و نيزمعلوم شده است كه نانولوله‌هاي كربني به تغيير شكل مكانيكي از قبيل كشش حساس هستند. گاف انرژي نانولوله‌هاي كربني به طور چشمگيري در پاسخ به اين تغيير شكل‌ها مي‌تواند تغيير كند. همچنين مي‌توان با استفاده از مواد واسط، مانند پليمرها، در فاصله ميان نانولوله‌هاي كربني و سيستم، نانولوله‌هاي كربني را براي ساخت زيست حسگرها نيز توسعه داد. تحقيق در زمينه كاربرد نانولوله‌ها در حسگرها در حال توسعه و پيشرفت است و مطمئناً در آينده‌اي نه چندان دور شاهد بكارگيري آن ها در انواع مختلف حسگرها (مكانيكي، شيميايي، تشعشي، حرارتي و ..) خواهيم بود.
    4-3) نمايشگرهاي گسيل ميداني بسياري از متخصصان بر اين باورند كه فناوري نمايشگرهاي با صفحه تخت امروزي از نظر هزينه، كيفيت و اندازه صفحه نمايش، براي مصارف خانگي مناسب نيستند.
    آن ها معتقدند كه با استفاده از نمايشگرهايي كه از نانولوله‌هاي كربني به عنوان منبع انتشار استفاده مي‌كنند، مي توانند اين مشكلات را بر طرف ‌كنند . نانولوله‌هاي كربني مي‌توانند عنوان بهترين گسيل كننده ميداني را به خود اختصاص داده و ابزارهاي الكتروني با راندمان وكارايي بالاتري توليد كنند. خصوصيات منحصر به فرد اين نانولوله‌ها، توليدكنندگان را قادر به توليد نوعي جديد از صفحه نمايش‌هاي تخت خواهد ساخت كه ضخامت آن ها به اندازه چند اينچ بوده و نسبت به فناوري‌هاي فعلي از قيمت مناسب‌تري برخوردار باشد. به علاوه كيفيت تصوير آن ها هم به مراتب بهتر خواهد بود.در پديده گسيل ميداني، الكترونها با استفاده از ولتاژ اندك از فيلم‌هاي ضخيم داراي نانولوله به سمت صفحه نمايش پرتاب شده و باعث روشن شدن آن مي‌شوند. هر نقطه از اين فيلم، يك پرتاب كننده الكترون (تفنگ الكتروني) كوچك است كه تصوير را روي صفحه نمايش ايجاد مي‌كند. ولتاژ لازم براي نمايشگر گسيل ميداني از طريق صفحه نمايش صاف متكي بر نانولوله‌ نسبت به آنچه به صورت سنتي در روش اشعه كاتدي استفاده مي‌شد، كمتر مي‌باشد و اين نانولوله‌ها با ولتاژ كمتر، نور بيشتري توليد مي‌كنند.
    4-4) حافظه‌هاي نانولوله‌اي به دليل كوچكي بسيار زياد نانولوله‌هاي كربني ‌(كه در حد مولكولي است)، اگر هر نانولوله‌ بتواند تنها يك بيت اطلاعات در خود جاي دهد، حافظه‌هايي كه از اين نانولوله‌ها ساخته مي‌شوند مي‌توانند مقادير بسيار زيادي اطلاعات را در خود ذخيره نمايند.
    با در نظر داشتن اين مطلب، بسياري از محققان در حال كار بر روي ساخت حافظه‌هاي نانولوله‌اي مي‌باشند؛ بنابراين رؤياي ساخت رايانه‌هاي با سرعت بالا عملي خواهد شد.
    4-5) استحكام‌دهي كامپوزيت‌هاتوزيع يكنواخت نانولوله‌ها در زمينه كامپوزيت و بهبود چسبندگي نانولوله‌ با زمينه در فرآوري اين نانوكامپوزيت‌ها از موضوعات بسيار مهم است.
    شيوه توزيع نانولوله‌ها در زمينه پليمري از پارامترهاي مهم در استحكام‌دهي به كامپوزيت مي‌باشد. آنچه از تحقيقات بر مي‌آيد اين است كه استفاده از خواص عالي نانولوله‌ها در نانوكامپوزيت‌ها وابسته به استحكام پيوند فصل مشترك نانولوله و زمينه مي‌باشد. نكته ديگر آنكه خواص غير همسانگردي نانولوله‌ها باعث مي‌شود كه در كسر حجمي كمي از نانولوله‌ها رفتار جالبي در اين نانوكامپوزيت‌ها پيدا شود.از كاربردهاي ديگر نانو لوله ها مي توان به امكان ذخيره هيدروژن در پيل‌هاي سوختي، افزايش ظرفيت باتري‌ها و پيل‌هاي سوختي، افزايش راندمان پيل‌هاي خورشيدي، جليقه‌هاي ضدگلوله سبك و مستحكم، كابل‌هاي ابررسانا يا رساناي سبك، رنگ‌هاي رسانا،‌ روكش‌‌هاي كامپوزيتي ضد رادار، حصار حفاظتي الكترومغناطيسي در تجهيزات الكترونيكي، پليمرهاي رسانا، فيبرهاي بسيار مقاوم، پارچه هاي با قابليت ذخيره انرژي الكتريكي جهت راه اندازي ادوات الكتريكي، ماهيچه‌هاي مصنوعي با قدرت توليد نيروي 100 مرتبه بيشتر از ماهيچه‌هاي طبيعي، صنايع نساجي، افزايش كارايي سراميك‌ها، مواد پلاستيكي مستحكم، تشخيص گلوكز، محلولي براي اتصال دروني تراشه‌هاي بسيار سريع، مدارهاي منطقي و پردازنده‌هاي فوق سريع، كمك به درمان آسيب‌ديدگي مغز، دارورساني به سلول‌هاي آسيب ديده، از بين بردن تومورهاي سرطاني، تجزيه هيدروژن، ژن‌درماني، تصويربرداري، SPM، FEM، محافظ EMT، حسگرهاي شيميايي ، SET و LED، پيل‌هاي خورشيدي و نهايتاً LSI اشاره كرد. البته در چند مورد اخير بيشتر از نوع تك جداره آن استفاده مي‌شود. لذا اين فناوري با اين گستره كاربردها مي‌تواند در آينده‌اي نه چندان دور بازار بزرگي را به خود اختصاص داده و زندگي بشر را تحت تأثير خود قرار دهد.در پايان در پاسخ به اين سؤال كه چرا دانشمندان به فناوري نانو روي آورده ومي‌خواهند بر تمام مشكلات جابه‌جايي اتم فائق آيند مي‌توان گفت که تغييرات در مقياس نانومتري بر خواص موج گونه الكترون‌هاي درون مواد اثر مي‌گذارد لذا با جابه جا كردن اتم‌ها در اين مقياس مي‌توان خواص اصلي مواد (به عنوان مثال دماي ذوب، اثرات مغناطيسي، ظرفيت بار) را بدون تغيير كلي تركيب شيميايي مواد دگرگون ساخت. بنابر اين پيش‌بيني رفتار و خواص در محدوده‌اي از ابعاد براي نانوتكنولوژيست‌ها حياتي است.جمع بندي
    همانطور كه اشاره شد بعد از ساخت اولين نانولوله ، دانشمندان بر روي روش‌هاي سنتز اين نانولوله فعاليت زيادي انجام داده و توانستند به روش‌هاي مختلفي كه بعضي از مهمترين آن ها در بالا اشاره شد دست يابند و سپس سعي كردند با ارائه روش‌هاي متنوع بر مشكلات موجود نيز فائق بيايند كه بعضي از مشكلات تا حدي مرتفع و بعضي نيز همچنان پابرجاست. با اين وجود امروزه سنتز نانولوله‌ها يك مسأله كاملاً حل شده است لذا كمتر محققي به دنبال سنتز نانولوله با روش‌هاي خاص مي‌باشد. مي‌توان گفت امروزه بعد از گذر از مرحله سنتز به مرحله تجاري‌سازي نانولوله‌ها رسيده‌ايم، مرحله‌اي كه مي‌تواند توان رقابتي بالاي شركت‌ها را نمايان سازد.
    بعضي اوقات تجارت به جهان دارويني شبيه مي‌شود، جهاني كه شركت‌ها براي تسلط بر يكديگر در آن با هم به رقابت مي‌پردازند. در اين فرايند شركت‌هاي ضعيف‌تر مجبور به ترك صحنه سرمايه‌گذاري تجاري مي‌شوند. به نظر مي‌رسد اين ماجرا در مورد يكي از شاخه‌هاي اصلي فناوري نانو يعني نانولوله‌هاي كربني نيز صادق مي باشد.
    شركت‌هايي از سراسر جهان،‌ از جزيره كوچك قبرس گرفته تا جمهوري خلق چين، ادعاي ريسك و سرمايه‌گذاري بر روي نانولوله‌هاي كربني را دارند. محصولاتي كه از فولاد سخت‌تر، از آلومينيوم سبك‌تر و از مس ضريب هدايت بيشتري داشته و نيمه‌هادي خوبي نيز هستند. توليد كنندگان در حال سرمايه‌گذاري جهت پيشبرد اين بخش و كاهش قيمت‌هاي اين فرآورده هستند. اما در واقع بقاي اين شركت‌ها وابسته به نوع نانولوله‌هايي است كه ارائه مي دهند، چه از لحاظ كيفي و چه از لحاظ ثبت اختراعات در اين زمينه.
    درست است كه هنوز سوددهي اقتصادي نانولوله‌ها كاملاً روشن نيست، اما دانشمندان معتقدند چيزي قوي‌تر از فولاد به خوبي مي‌تواند جاي خود را در بازار باز كند. لذا در آينده نه چندان دور شركت‌هايي كه از نانولوله‌ جهت بهتر كردن كيفيت محصولات خود استفاده مي‌كنند بازار آينده را در اختيار خواهند گرفت.
    نانولوله هاي كربني در سال ۱۹۹۱ توسط يك متخصص ميكروسكوپ الكتروني به نام سوميو ايجيما در پي مطالعه مواد حاصل از تبخير كربن تحت جريان الكتريكي، كشف شدند.
    محققان گروه فيزيك دانشگاه شهيد چمران اهواز موفق به توليد نانو لوله هاي كربني و كربن 60 به روش قوس الكتريكي شدند.
    كاظمي‌نژاد استاديار گروه فيزيك دانشگاه شهيد چمران اهواز با اشاره به روند توليد كربن 60 و نانو لوله هاي كربني گفت : پس از ساخت رئاكتور توانستيم با كمك قوس الكتريكي در يك اتمسفر خاص , جريان هايي را از الكترودهاي گرافيتي بگذرانيم و بدين روش كربن 60 و نانو لوله هاي كربني را توليد كنيم .
    وي افزود : نانو لوله‌هاي كربني در انتقال دارو بسيار مفيد است به گونه اي كه با تزريق دارو و قراردادن آن در قرنيه چشم مي‌توان بصورت تدريجي دارو را در موضع بيمار تخليه كرد.اين استاديار در ادامه گفت : نانو لوله هاي كربني 60 برابر فولا‌د استحكام دارد كه بدين ترتيب دراينده جايگزين مناسبي براي فولا‌د در مهندسي عمران خواهد بود.
    وي افزود : همچنين ذخيره سازي هيدروژن براي توليد باطري هاي با طول عمر بالا از ديگر كاربردهاي مهم نانو لوله هاي كربني است



    منبع:هوپا

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •