تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




صفحه 13 از 18 اولاول ... 391011121314151617 ... آخرآخر
نمايش نتايج 121 به 130 از 172

نام تاپيک: مقالات علمي رياضي

  1. #121
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    ستاره داوود توسعه يافته


    همانطور كه قبلا توضيح داده شد ، در نماي ايزومتريك مكعب ، يك شش ضلعي و ستاره داوود مشخص و معلوم است ، اينك مجموعه اين دو رسم را در روي يك صفحه به يك دوازده ضلعي منتظم توسعه مي‌دهيم . به انيميشن و رسم زير توجه نماييد .



    لازم به توضيح است كه اضلاع دوازده ضلعي را رسم نكرده‌ايم ولي راس‌هاي دوازده ضلعي منتظم مشخص است . براي توسعه رسم فوق در فضاي سه بعدي ، ابتدا آن را حول محور يا قطر عمودي ، در محيط 360 درجه ، شش بار و هر بار 30 درجه دوران مي‌دهيم ( يعني رسم شماره 4 تصوير زير ) تا كل محيط به دوازده قسمت مساوي تقسيم شود ، سپس اين رسم را به نسبت اندازه خطوط افقي كوچك كرده و پنج بار روي هم مي‌چينيم ( يعني رسم شماره 1 تصوير زير )

    رسم شماره 5 تركيب دو رسم 4 و 1 را نشان ميدهد . رسم شماره 3 كمكي بوده و رسم شماره 2 ، نماي رسم كلي را از بالا نشان ميدهد .

  2. #122
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    معرفی یک دنباله جالب در به هم رساندن اعداد طبیعی به یکدیگر در حالت حدی با استفاده از یک ذره واسط


    شرح طرح:
    به دنباله زیر توجه کنید:
    1,n^n,1/(n^n),(n^2n),1/(n^3n),(n^5n),1/(n^8n),……. (n€IN) ^IS THE SYMBOL OF POWER
    به غیر از دو جمله اول که مقادیر ثابت دنباله هستند از جمله سوم به بعدجمله nام از تقسیم دو جمله قبلی بدست می آید.
    U(n)=u(n-2)/u(n-1)
    اینک به بررسی خصوصیات این دنباله می پردازیم:
    الف)واگرایی یا همگرایی دنباله:این دنباله به ازای n=1دنباله ثابت 1خواهد شدودر این حالت خاص به خود 1 همگرا ست.در غیر این صورت و به ازایn>1دنباله به دو تکه نزولی اکید و صعودی اکید تقسیم می شود.در واقع یک زیر دنباله به ∞و دیگری به صفر همگرا می شود.ولی چون یک زیر دنباله واگرا دارد لذا کل دنباله نیز واگرا می شود(اثبات به عهده خواننده)
    ب)رابطه بین توان های ایجاد شده در دنباله:اگر کمی با دقت به توان های دنباله نگاه کنیم متوجه خواهیم شدکه از جمله دوم به بعد توان های جملات پیرو دنباله فیبوناتچی هستند.در واقع این دنباله را می توان دنباله ای توان ساز از جملات دنباله فیبوناتچی دانست.
    جملات فرد این دنباله کسری و جملات زوج آن صحیح است.
    U(2n€IN),U(2n+1€Q)
    مثال)جمله یازدهم این دنباله چند برابر جمله دوم است؟
    U(11)=1/(n^59n) ,u(2)=n^n →u(11)/u(2)=1/n^60n
    ج)تقابل ازدیاد وکاهش ناگهانی جملات دنباله:جملات زوج این دنباله ازدیاد وحشتناکی دارند به گونه ای که مثلا جمله دهم دنباله(n^34n) n^33n برابر جمله دوم(n^n)است.به این شکل جملات زوج سیر صعودی ناگهانی دارندواگر n عدد بزرگی فرض شود با تعداد مراحل اندک می توان اعداد بزرگی ساخت و دامنه بزرگی از اعداد را تحت پوشش قرار داد.درجملات فرد هم دایما به اعداد کوچک وبسیار کوچکی می رسیم واین تقابلی زیبا بین رشد وکاهش ناگهانی جملات است.
    د)عضو کاتالیزور در دنباله:گفتیم در ازای n=1دنباله تبدیل به دنباله ثابت 1 می شود.در غیر این صورت به ازای هیچ nای 1 پدید نمی آید.در حالی که 1 عامل بوجود آمدن دنباله می شود درپایان نیز بدون تغییر باقی می ماند و عضوی خنثی در دنباله محسوب می شودکه نقش کاتالیزور در دنباله را داراست.(کاتالیزور عاملی است که سرعت یک فرآیند را افزایش می دهد بدون آنکه در فرآیند مصرف شود).
    حذف این جمله در پایان خللی به دنباله وارد نمی کند.
    ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــــــ
    "یک بحث نرم افزاری برای این دنباله":
    یافتن جملات دنباله فیبوناتچی نقش مهمی در این دنباله در یافتن توان ها ایفا می کند.در برنامه زیر که قابل اجرا در نرم افزار mathematica است با دادن nبه برنامه فیبوناتچی آن یافت می شود:
    F[0]=0 ;
    F[1]=1 ;
    F[n-integer]:=f[n-1]+f[n-2]

  3. #123
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    بررسی یک مسئله از "آنی شئنفلد"درآموزش هنر مسئله حل کردن واستنتاج یک قانون کلی از آن


    مسئله نهم مقاله ای که "آنی شئنفلد"در باب آموزش هنر حل مسئله بیان می کندکمی برای کسی که اولین بار با این مساله برخورد می کند مغالطه آمیز است.درواقع چگونگی حل آن کمی سردرگم کننده است.این مساله به صورت زیر بیان می شود:
    فرض کنید pوq وr و s اعداد حقیقی مثبتی باشند نامساوی زیررا اثبات کنید:
    P2+1)(q2+1)(r2+1)(s2+1)/pqrs≥16 )
    دراین مقاله آمده است دانشجویان سعی می کردند طرفین نامساوی را در pqrs ضرب کنند واکثرا ناموفق بوده اند.
    معمولا این گونه مسایل نیاز به انتخاب یک استراتژی اصولی در ابتدای حل و پی گیری آن تا مراحل پایانی مسئله دارد.
    استراتژی های جامع حل مسئله در زیر آمده است:
    1)درک صورت مساله
    2)تحلیل خود مساله
    3)طراحی ابتدایی برهان
    4)اجرای مرحله به مرحله برهان
    5)بررسی موضعی
    6)حل موقت
    7)تعمیم حل موقت به حالت کلی
    هدف اصلی ما در طرح ریزی این مساله انتخاب شیوه ای جدید برای حل این مساله است و از این شیوه جدید به نام"شبیه سازی پارامترها" نام می بریم.
    به مساله باز می گردیم.باکمی دقت در مساله می توان دریافت مقادیر به کاررفته در صورت ومخرج کسر قابل برنامه ریزی واستراتژی بندی هستند.
    برای حل مساله به شیوه ای نوین ابتدا لازم است یک نامساوی را مورد بحث قرار دهیم:
    (p2+1)n/pn≥2n
    این نامساوی را می توان با استقرا روی n اثبات کرد.(اثبات برعهده خواننده)
    حال می خواهیم ببینیم چگونه از این نامساوی می توان در حل این مساله استفاده کرد.اگر در نامساوی فوق قرار دهیم n=1 اولین جمله طبیعی نامساوی برابر با 2 خواهد شد که خود اثباتی است از اتحاد اول.
    اولین مولد طبیعی نامساوی یعنی 2را هسته نامساوی می گیریم.
    اگر مساله را تجزیه کنیم داریم:
    (p2+1)/p2 ,(q2+1)/q2 ,(r2+1)/r2 ,(s2+1)/s2
    که همگی درهم ضرب شده اند و حاصل را بزرگتر –مساوی 24 ساخته اند.
    می بینیم که در این نامساوی 4 جمله همگن در هم ضرب شده وحاصلی همگن با خود پدید آورده اند.
    ملاحظه می شود که جملات ناشی از تجزیه سوال, جمله اول نامساوی مذکور ما است. لذا حاصل ضرب آنها به این معناست که گویی 4 بار 2 رادرخودش ضرب کنیم که همان 24است و مسئله اثبات می شود.
    در حالت کلی می توان گفت حل این گونه مسایل شگردهای خاص خودرادارد وممکن است از چندین راه حل شوند. ولی این راه حل ابتکاری که توسط نگارنده مقاله مورد استفاده قرار گرفته است حالات کلی تری را شامل می شود واین می تواند به زیبایی حل بیا فزاید.
    منبع:مجموعه مقالات ریاضی-باشگاه دانش پژوهان جوان

  4. #124
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    معرفی یک دنباله اعداد در نمایش اعداد طبیعی و ویژگی های آن


    "IN THE NAME OF GOD"
    " Introduction of a sequence of digits for displaying natural numbers "
    Numbers theory branch
    AUTHOR:
    AMIN DANESHMAND MALAYERI
    STUDENT OF COMPUTER ENGINEERING(HARD WARE)
    HAMEDAN UNIVERSITY OF TECHNOLOGY
    THIS PAPER INCLUDE A SEQUENCE OF DIGITS THAT CAN BE DISPLAY A SCROOL BAR OF NATURAL NUMBERS AND IT HAS SOME INTERESTING PROPERTIES AND IT IS USEFULL FOR LOGICAL GATES ,BINARY CODING.

    بسمه تعالی
    "بررسی یک دنباله اعداد که می تواند یک مجموعه از اعداد طبیعی را بسازد"

    نگارنده مقاله:امین دانشمند ملایری
    دانشجوی رشته مهندسی کامپیوتر(گرایش سخت افزار)
    دانشگاه صنعتی همدان
    دانشکده مهندسی کامپیوتر
    پست الکترونیکی:admalayeri@yahoo.com
    دنباله اعداد طبیعی در حالت کلی دنباله ای آشنا است.ولی بسته به این که چه نوع آرایشی از اعداد طبیعی را درنظر داشته باشیم می توان دنباله های متنوعی ایجاد کرد که همگی به نوعی معرف یک ویژگی از اعداد طبیعی هستند.
    در مقالات اخیر حالتی رابررسی کردیم که در یک حالت حدی اعداد طبیعی را شامل می شد.دراین مقاله قصدداریم دنباله ای را معرفی کنیم که می تواند نواری از اعداد طبیعی را به مادهد و بدین وسیله ما می توانیم به سرعت کل دنباله را تشکیل دهیم .
    به دنباله زیر توجه کنید:
    N,n-1,2n-1,2n,4n-1,4n,8n-1,8n,………….. nЄIN
    این دنباله دوجمله مولددارد که دوجمله اولی دنباله یعنیn و n-1 هستند.از جمله سوم به بعد دراین دنباله یک نظم خاص پدید می آید که در ذیل به آن و ویژگی هایش اشاره می شود.
    دراین دنباله جملات به دودسته افراز می گردند.جملات مرتبه فرد دنباله یعنی جملات سوم وپنجم وهفتم و... وجملات مرتبه زوج یعنی جملات چهارم وششم وهشتم و...(فراموش نشود جملات اول ودوم را درنظر نگرفته ایم(جملات مولد)).
    جملات مرتبه فرد از قانون زیر پیروی می کنند:
    Ao=2kn-1
    وجملات مرتبه زوج از قانون زیر:
    AE=2kn
    که در هردو قاعده k عضوی از IN است ولی تحت شرایطی که در زیر بدان اشاره می کنیم.
    اگر دو جمله اول دنباله را کنار بگذاریم جملات سوم با چهارم, پنجم با ششم, هفتم با هشتم ودر کل n ام راباn+1 ام را "همسایه" می گوییم.
    K برای هر همسایگی منحصر بفرد و ترتیبی است.
    برای همسایگی اول k=1 و برای همسایگی دوم k=2 و برای همسایگی n ام k=n خواهد بود.
    مثال)جمله دهم دنباله فوق را بیابید:
    برای جمله دهم همسایگی چهارم را داریم و این جمله زوج است لذا:
    A10=24n=16n
    حال شرایطی را درنظر بگیرید که ما بخواهیم یک دسته اعدا طبیعی را به صورت ستون وار (نمایش ماتریسی)نشان دهیم.
    بسته به این که به چند ستون ماتریسی نیاز داریم به n عدد می دهیم.n همان تعداد ستون های ماست.
    درزیر نمایش ستونی برای n=5 آمده است:
    5 4 3 2 1
    10 9 8 7 6
    15 14 13 12 11
    20 19 18 17 16
    25 24 23 22 21
    .
    .
    اگر به اعداد مندرج به ستون های چهارم نگاه کنیم متوجه می شویم این اعداد همان اعداد دنباله ما هستند به ازای n=5 و جمله اول دنباله اولین مقدار ستون آخر است.
    به ازای هر n ای این ماتریس را میتوان به همین ترتیب ساخت و نواره ای از اعداد طبیعی را ایجاد کرد.
    سایر اعضای طبیعی نیز از روی جدول ساخته می شوند.
    در این بین مهم ترین کاربرد این شیوه را می توان در "کدینگ" و "مارکینگ" اعداد نشان داد. در ضمن اگر برنامه کامپیوتری اعداد طبیعی را به کامپیوتر بدهیم و این شیوه را درخلال آن پیاده سازی کنیم پیچیدگی زمانی و مرتبه ای برنامه را می توان کاهش داد.
    این نوع عدد ریزی یک ویژگی جالب دارد که در زیربدان اشاره می کنیم:
    جمع درایه های متناظر در سطرهای ستون هایm ام وm-1یعنی جمع سطر های n ام ستون های m وm-1در سطر 2n ام ستون m-1 ام نمایان می شود.مثلا در مثال بالا 9در سطر2 , 19در سطر22و به همین ترتیب قرار دارد که این مساله موقعیت یابی اعداد را دراین نواره آسان تر می کند.
    ویژگی های جالب تر این دنباله را وقتی متوجه می شویم که این دنباله را به صورت باینری در آوریم(باینری=دودویی).
    این حالت که درزیر بدان اشاره می کنیم درتمام جدول های m*n جواب می دهد.
    بایک مثال حالت مذکوررا بررسی کرده و آن راتعمیم می دهیم:
    به دنباله زیر توجه کنید:
    N-1,n,2n-1,2n,4n-1,4n,…
    این دنباله را درازای n=5 اجرا می کنیم و جدول اعداد زیر را بدست می آوریم:
    5 4 3 2 1
    10 9 8 7 6
    15 14 13 12 11
    20 19 18 17 16
    25 24 23 22 21
    مطابق روش ارایه شده در ابتدای مقاله اعداد 9و19 را درنظر می گیریم:
    اگر این اعداد رادر مبنای 2 تبدیل واحد کنیم داریم:
    2 (1001)=9
    2 (10011)=19
    برای اطمینان بیشتر 39 رانیز در نظر می گیریم:
    2 (100111)=39
    ملاحظه می شود یک نظم و ترتیبی بین اعداد ایجاد شده در مبنای 2 دراین اعدا د وجود دارد.
    دراین حالت یک پایه مبنای عملگر تعیین می کنیم و بقیه تغییر مبنا ها را براین اساس ایجاد می نماییم:
    این پایه مبنا را"عملگر مخصوص" گوییم
    در این حالت (حالت مثال فوق)پایه مبنا را به صورت زیر در نظر می گیریم:
    (x1001)را پایه مبنا (عملگر مخصوص) این جدول در نظر می گیریم که x در ازای هر واحد که دنباله جلو می رود یک 1 اضافه می کند.
    یعنی (1001)برابر 9 , (10011) برابر19 و به همین ترتیب سایر جملات دنباله به صورت باینری (دو دویی) نگاشته می شود.
    در مثال های مختلف این موضوع را بهتر جلوه می دهیم:
    مثال)Γ مارکینگ را برای جدول 4*5 (5 سطرو4ستون) اعداد طبیعی انجام داده و کد باینری آن را مشخص کنید:
    4 3 2 1
    8 7 6 5
    12 11 10 9
    16 15 14 13
    20 19 18 17
    2 (111)=7
    2 (1111)=15
    2 (x111)=کد باینری مخصوص
    نام این تبدیل را به خاطر نوع قرار گیری اعداد دنباله در جدول (شبیهΓ) تبدیل Γ می نامیم و به خاطر کاربردی که این سبک در عملیات کدینگ و مارکینگ اعداد دارد "Γ مارکینگ"نام گرفته است.
    مثال)Γ مارکینگ را برای دنباله زیر در ازای n=3 انجام دهید و کد باینری آن را بدست آورید:
    n-1,n,2n-1,2n,4n-1,4n,8n-1,8n
    2 (101)=5
    2 (1011)=11
    2 (10111)=23
    2 (x101)=کد باینری مخصوص
    عکس این عمل نیز صادق است .یعنی ازروی کد مخصوص باینری می توان دنباله و در نتیجه آرایش اعداد را تعیین کرد.
    درست عکس اعمال انجام شده چاره کار است.
    اکتت(8 تایی)سازی مبناها در این دنباله:
    در روش اکتت کردن مبناها (بردن عدد به مبنای 8) دراین نواره(دنباله)ترتیب خاص و جالبی بدست می آید.البته لازم به ذکر است که این روش زمانی عملی می شود که حداقل 5 ستون در جدول اصلی داشته باشیم.
    اگر "گاما مارکینگ" را برای جدولی با حداقل 5 ستون انجام دهیم (جدول شماره 1)دنباله زیر در نواره هاپدید می آید:
    n-1,n,2n-1,2n,4n-1,4n,… nЄIN
    که دراین حالت N=5 خواهد بود.
    اگر اعداد پدید آمده در نواره که برای ما اهمیت دارند(9و19..) را به مبنای 8 ببریم داریم:
    8 (11)=9
    8 (23)=19
    واگر به همین ترتیب ادامه دهیم می بینیم اعدادی که از اکتت سازی n ستون بدست می آیند اعداد مبنای 10 در گاما مارکینگ n+1 ستون می باشند که این ویژگی جالب تر این روش در دنباله های سازنده این نواره ها می باشد.

  5. #125
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    حساب


    حساب قدیمی‌ترین شاخه ریاضیات است. احتمالاً پیدایش این فن ناشی از نیاز انسان به شمارش اشیا و دارایی‌ها بوده است. پایه‌ای‌ترین عملیات حساب جمع و تفریق و ضرب و تقسیم است. آموزش حساب از گذشته‌های دور جزو برنامه آموزشی کودکان دبستانی بوده است. ریاضی‌دانان معمولاً حساب را با نظریه اعداد مترادف می‌دانند.
    ● واژهٔ حساب
    واژه حساب از محاسبه می‌‌آید. در زبانهای اروپایی، به آن “آریتمه تیک” (Arithmetic) می‌گویند که از واژه یونانی “آریتموس”(به معنای عدد) می‌آید. در زبان فارسی، دو کتاب از محمد فرزند ایوب طبری، اهل آمل مازندران، به نام‌های “شمارنامه” و “مفتاح المعاملات” در دست است که در سده چهارم و پنجم هجری نوشته شده است. محمد ایوب طبری “شمار” را به جای حساب و “شمار نامه” را به معنای “کتاب حساب” گرفته است.
    “شمار” یا “شُمَر” از زبان پهلوی ساسانی آمده که گاهی هم “مَر” میگفته اند. بنابراین می‌توان در زبان فارسی واژه نادرست “ریاضیات” را که از واژه “ریاضت” آمده است و از مضمون این دانش، هیچ نشانی ندارد، به “راز و مر” تبدیل کرد. “راز” که در واژه‌های “تراز” و “ترازو” آمده است، به معنای مقایسه کردن و “مَر” به معنای محاسبه کردن است، که روی هم، مضمون و جوهر “ریاضیات” (دست کم به معنای نخست آن) را میرساند.
    از ابوریحان بیرونی هم کتابی باقی مانده (به زبانهای فارسی و عربی) به نام “التفهیم” که گرچه درباره اخترشناسی است، ولی در پیش در آمد آن، عمل‌های مربوط به حساب شرح داده شده است. این کتابها (شمار نامه، التفهیم و مفتاح المعاملات)، بجز آشنایی با دانش ریاضی، ما را با برخی اصطلاحات فارسی مانند افزوذن (به جای جمع)، کاستن (به جای تفریق)، زدن (به جای ضرب) و جز آن آشنا می‌کند.
    ● تاریخچه
    حساب، دانش عدد، عملهای مربوط به آن و بیان ویژگیهای عدد است. در زندگی روزانه، در هر گامی که بر میداریم، به حساب نیازمندیم. فرهنگ انسانی را بدون “حساب” و “عدد” نمی‌توان تصور کرد، به این دلیل است که هر انسانی باید دست کم، از مقدمه‌های دانش حساب، آگاه باشد. حساب کهن‌ترین بخش از دانش ریاضی است و سرچشمه‌های آن را باید در ژرفای تاریخ بشر جست و جو کرد.
    بسیاری از قوم‌ها و ملت‌های باستانی، از جمله ایرانی ها، مصری‌ها و چینی ها، بابلی‌ها و عیلامی‌ها (که در جنوب و جنوب غربی ایران زندگی می‌کردند و امپراتوری بزرگی را تشکیل دادند) و حتی قوم‌هایی از ساکنان بومی امریکا مانند مایاها و آزتک ها، با حساب کار می‌کردند. آنها، به حساب، برای شمردن و اندازه گرفتن چیزها (از هر نوعی که باشد) نیازمند بودند. از جمله، مصری‌ها برای محاسبه تعداد و اندازه سنگهایی که در ساختن هرمها به کار می‌بردند، نیاز داشتند، همچنین ارتفاع هرم، سطح قاعده آن و حجم هرم را محاسبه می‌‌کردند.

  6. #126
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    فرکانس در آنالیز مودال


    ● آنالیز مودال :
    شناسایی خواص دینامیكی سازه می‎باشد.
    ● خواص دینامیكی :
    فركانس‎های طبیعی، شكل مودها و میرایی هرموداست
    در ارتعاشات هر سیستم یك تركیب خطی از شكل مودهای آن است مانند سری فوریه كه هر تابعی را می‎توان به صورت سری فوریه ( تركیبی از توابع سینوس و كسینوس ) نوشت.
    مدل مودال یك سیستم، یك مدل ریاضی است كه میرائی، سختی و شكل مود سیستم را نشان میدهد. اگر برای سیستمی ماتریسهای جرم و سختی و دمپینگ ([C], [K], [M]) مشخص باشند مدل فضایی (Spatial Model) را داریم.
    Spatial ModelModal Model Response Model ولی معمولاً این ماتریس‎ها را نداریم. مخصوصاً به دست آوردن ماتریس میرایی سخت است رسیدن از مدل فضایی به مدل مودال آنالیز مودال تئوری است.
    رسیدن از مدل پاسخ به مدل مودال همان Model Testingاست كه با تحریك یك درجه آزادی و گرفتن پاسخ در همان یا یك درجه آزادی دیگر انجام می‎شود مدل پاسخ به صورت جملات FRF (Frequency Response Function) است. اندازه‎گیری FRF مستلزم اندازه‎گیری همزمان تحریك و پاسخ است. اندازه‎گیری نیروی تحریك در خیلی از موارد غیر ممكن یا سخت است. در سازه هایی كه تحریكدر اثر نیروی داخلی، تحریك آلوستیك و …باشد FRFقابل اندازه‎گیری نیست.
    تعداد پیك‎ها نشان دهنده تعداد درجات آزادی سیستم است.
    ▪ در اندازه‎گیری دو محدودیت وجود دارد:
    ۱) تمام فركانس‎های طبیعی را نمی‎توان اندازه گرفت.
    ۲) به بعضی درجات آزادی دسترسی نداریم.
    پس ماتریس‎های ما معمولاً مربعی نیستند.
    ماتریس‎های مودال، قطری و ساده‎اند پس می‎توان از مدل مودال در كنترل یك PLANT استفاده كرد.
    ● مراحل یك تست مودال :
    ۱) آماده سازی برای تست
    ۲) اندازه‎گیری مناسب
    ۳) تحلیل اطلاعات
    ● كاربردهای آنالیز مودال:
    الف) عیب یابی
    ب) مقایسه مدل ریاضی و نتایج تجربی به منظور اصلاح مدل
    ج) اصلاح ساختاری (با داشتن مدل می‎توان اصلاح را روی مدل انجام داد)
    د) حساسیت‎یابیSensitivityAnalysis (بر عكس قبلی است یعنی مثلاً می‎خواهیم یك فركانس طبیعی سیستم را به تأخیر بیندازیم چه تغییراتی در مدل فیزیكی باید اعمال شود تا به خواسته خود برسیم.)
    ذ) كاهش مدل ModelReduction
    درجات آزادی را Master (اندازه‎گیری شده) وSlave (اندازه‎گیری نشده) تقسیم می‎كنیم و درجات آزادیSlave را در Masterمخفی می‎كنیم و درجات آزادی را كم می‎كنیم.
    ● تعریف (Operative Deflection Shape) ODS در آنالیز مودال:
    (تغییر شكلهای حین كار یك سازه یا شكل مودهای در حال كار )
    ODS كمیتی مربوط به شكل مود است. با استفاده ازODSاطلاعات بسیار مفیدی از دینامیك مطلق سازه یا قسمتی از آن به دست می‎آید. ODS به صورت پاسخ سازه در یك زمان یا فركانس خاص تعریف می‎شود.
    تعریف معمولODS یعنی خیز یا تغییر شكل سازه در یك فركانس خاص می‎باشد.
    ▪ اندازه‎گیری ODS :
    اندازه‎گیریODSممكن است جهت پاسخگویی به سئوالات زیر انجام گیرد.
    ۱) سازه یا ماشین چقدر حركت می‎كند؟
    ۲) بیشترین حركت كجا و در چه جهتی اتفاق می‎افتد؟
    ۳) حركت یك نقطه نسبت به سایر نقاط چگونه است؟
    ۴) آیا رزنانس تحریك می‎شود؟ شكل مود مربوطه چگونه است؟
    ۵) آیا در سازه نویز تولید شده است؟
    ۶) آیا كاهش نویز یا ارتعاش درست انجام شده است؟
    ▪ برای تحریك رزنانس دو شرط لازم است:
    ۱) نیروی تحریك باید در نقطه‎ای كه روی گره مود قرار ندارد وارد شود.
    ۲) فركانس تحریك باید نزدیك فركانس رزنانس باشد.
    در صورت برقراری این دو شرط و كم بودن رزنانس میرایی، دامنه پاسخ سازه یا ODS تقویت می‎شود.ODS صرفنظر از اینكه تحریك چیست قابل اندازه‎گیری است.
    ODS شامل هر دو نوع ارتعاش اجباری و رزنانسی است یعنی مجموع حركت اجباری و رزنانسی سازه را در خود دارد. ارتعاش اجباری ممكن است در اثر نیروهای داخلی ایجاد شده، نامیزانی‎ها، نیروهای خارجی یا تحریك محیط ایجاد شده باشد.
    ارتعاش رزنانسی، شدت ارتعاش را آنقدر تقویت می‎كند كه از حد تحمل طراحی استاتیكی بالاتر می‎رود. ارتعاش رزنانسی یكی از دلایل مشكلات مربوط به ارتعاش سازه است.یك ODSرا می‎توان از حركت اجباری در یك لحظه از زمان یا در یك فركانس خاص به دست آورد.
    بطور كلیODS در هر نقطه از سازه با یك دامنه و فاز نمایش داده می‎شودODS را می‎توان از یك دسته پاسخ حوزه زمان یا از یك دسته پاسخ محاسبه شده حوزه فركانس به دست آورد. همه پارامترهای تجربی مودال از ODS‎های اندازه‎گیری شده به دست آمده‎اند. گر چه همه شكل مودهای تجربی از ODS‎‎های اندازه‎گیری شده به دست آمده‎اند ولی شكل مود با ODSتفاوتهایی به شرح زیر دارد :
    الف ) هر مود به فركانس طبیعی خاصی اختصاص دارد در حالی كه ODS را می‎توان برای هر فركانس تعریف كرد.
    ب ) مود را فقط برای سازه‎های پایا و خطی تعریف می‎كنند در حالی كه ODSرا می‎توان هم برای سازه‎های غیر پایا و غیر خطی تعریف كرد.
    ج ) مود برای مشخص كردن ارتعاش رزنانسی بكار می‎رود در صورتیكه ODS را می‎توان هم برای ارتعاش رزنانسی و هم غیر رزنانسی بكار برد.
    د) مود بستگی به نیرو یا بار ندارد، در واقع مود جزء خواص ذاتی سازه است در صورتیكه ODS بستگی به بار دارد و با عوض شدن بار تغییر می‎كند.
    ذ) مودها وقتی تغییر می‎كنند كه خواص ماده یا شرایط مرزی عوض شوند در صورتیكه ODS وقتی تغییر می‎كند كه مود یا بار عوض شود.
    ر) شكل مود مقدار یكتایی ندارد در صورتیكه ODS مقدار یكتا دارد.
    ز) مود پاسخگوی این سؤال است كه حركت نسبی یك درجه آزادی نسبت به دیگری چگونه است ؟ ODS پاسخگوی این سؤال است كه حركت واقعی یك درجه آزادی نسبت به دیگری چیست؟
    استفاده از ODS در برخی صنایع رایج است به عنوان مثال:
    PAI و YOUNG در سال ۲۰۰۱ با استفاده از ODS به دست آمده از LaserScanningتركیكتیر را بررسی كردند و نیز در سال ۲۰۰۳ Sundaresanو همكارانش برای عیب یابی یك بال هواپیما از ODS استفاده كردند.

  7. این کاربر از sajadhoosein بخاطر این مطلب مفید تشکر کرده است


  8. #127
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    نكات آمار و احتمال


    آمار رشته وسیعی از ریاضی است كه راههای جمع آوری، خلاصه سازی و نتیجه گیری از داده ها را مطالعه می كند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیك و علوم اجتماعی گرفته تا انسان شناسی و همچنین تجارت، حكومت داری و صنعت كاربرد دارد.
    هنگامی كه داده ها جمع آوری شدند چه از طریق یك شیوه نمونه گیری خاص یا به وسیله ثبت پاسخ ها در قبال رفتارها در یك مجموعه آزمایشی ( طرح آزمایشcf ) یا به وسیله مشاهده مكرر یك فرایند در طی زمان ( سری های زمانی ) خلاصه های گرافیكی یا عددی را می توان با استفاده از آمار توصیفی به دست آورد.
    الگوهای موجه در داده ها سازمان بندی می شوند تا استنباط در مورد جمعیت های بزرگتر به دست آید كه این كار با استفاده از آمار استنباطی صورت می گیرد و تصادفی بودن و عدم حتمیت در مشاهدات را شناسایی می كند. این استنباط ها ممكن است به شكل جوابهای بله یا خیر به سؤالات باشد ( آزمون فرض )، مشخصه های عددی را برآورد كند ( تخمین ) ، پیش گویی مشاهدات آتی باشد، توصیف پیوند ها باشد ( همبستگی ) ویا مدل سازی روابط باشد ( رگرسیون ).
    شبكه توصیف شده در بالا گاهی اوقات به عنوان آمار كاربردی اطلاق می شود. در مقابل، آمار ریاضی ( یا ساده تر نظریه آماری ) زیر رشته ای از ریاضی كاربردی است كه از تحلیل و نظریه احتمال برای به كارگیری آمار برروی یك پایه نظری محكم استفاده می كند.
    ● احتمال
    كلمه احتمال از كلمه لاتین probare ( به معنی اثبات یا آزمایش كردن ) منشأ می گیرد. در زبان محاوره، احتمال یكی از چندین لغتی است كه برای دانسته یا پیشامدهای غیر حتمی به كار میرود و كم و بیش با لغاتی مثل مشابه، با ریسك، خطرناك، نامطمئن، مشكوك و بسته به متن قابل معاوضه می باشد. شانس، بخت و شرط بندی از لغات دیگری هستند كه نشان دهنده برداشت های مشابهی هستند. همانگونه كه نظریه مكانیك تعاریف دقیقی از عبارات متداولی مثل كار و نیرو دارد، نظریه احتمال نیز تلاش دارد تا برداشت های احتمال را كمیت سازی كند.
    ● روش های آماری
    ۱) مطالعات تجربی و مشاهداتی
    ـ هدف كلی برای یك پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه گیری روی تأثیر تغییرات در مقادیر شاخص ها یا متغیر های مستقل روی یك پاسخ یا متغیر وابسته است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد : مطالعات تجربی و مطالعات مشاهداتی . در هر دو نوع از این مطالعات، اثر تغییرات در یك یا چند متغیر مستقل روی رفتار متغیر های وابسته مشاهده می شود. اختلاف بین این دو شیوه درچگونگی مطالعه ای است كه عملاً هدایت می شود.
    ـ یك مطالعه تجربی در بردارنده روش های اندازه گیری سیستم تحت مطالعه است كه سیستم را تغییر می دهد و سپس با استفاده از روش مشابه اندازه گیری های اضافی انجام می دهد تا مشخص سازد كه آیا تغییرات انجام شده، مقادیر شاخص ها را تغییر می دهد یا خیر. در مقابل یك مطالعه مشاهداتی، مداخلات تجربی را در بر نمی گیرد. در عوض داده ها جمع آوری می شوند و روابط بین پیش بینی ها و پاسخ بررسی می شوند.
    ـ یك نمونه از مطالعه تجربی، مطالعات Hawthorne مشهور است كه تلاش كرد تا تغییرات در محیط كار را در كمپانی الكتریك غربی Howthorne بیازماید. محققان علاقه مند بودند كه آیا افزایش نور می تواند كارایی را در كارگران خط تولید افزایش دهد. محققان ابتدا كارایی را در كارخانه اندازه گیری كردند و سپس میزان نور را در یك قسمت از كارخانه تغییر دادند تا مشاهده كنند كه آیا تغییر در نور می تواند كارایی را تغییر دهد. به واسطه خطا در اقدامات تجربی، به ویژه فقدان یك گروه كنترل، محققان در حالی كه قادر نبودند آنچه را كه طراحی كرده بودند، انجام دهند توانستند كه محیط را با شیوه Hawthorne آماده سازند.
    ـ یك نمونه از مطالعه مشاهداتی، مطالعه ایست كه رابطه بین سیگار كشیدن و سرطان ریه را بررسی می كند. این نوع از مطالعه به طور اختصاصی از یك آمار گیری ( پیمایش ) استفاده می كند تا مشاهدات مورد علاقه را جمع آوری كند و سپس تجزیه و تحلیل آماری انجام دهد. در این مورد، محققان مشاهدات افراد سیگاری و غیر سیگاری را جمع آوری می كنند و سپس به تعداد موارد سرطان ریه در هر دو گروه توجه می كنند.
    مراحل پایه برای انجام یك تجربه عبارتند از :
    ـ برنامه ریزی تحقیق شامل تعیین منابع اطلاعاتی، انتخاب موضوع تحقیق و ملاحظات اخلاقی برای تحقیق و روش پیشنهادی.
    ـ طراحی آزمون شامل تمركز روی مدل سیستم و اثر متقابل متغیر های مستقل و وابسته.
    ـ خلاصه سازی از مجموعه مشاهدات برای جامعیت بخشیدن به آنها با حذف جزئیات ( آمار توصیفی ).
    ـ رسیدن به اجماع در مورد آنچه مشاهدات درباره دنیایی كه مشاهده می كنیم به ما می گویند ( استنباط آماری ).
    ـ ثبت و ارائه نتایج مطالعه.
    ۲) سطوح اندازه گیری
    چهار نوع یا مقیاس اندازه گیری در آمار استفاده می شود. چــهار نوع یا سطح اندازه گیری ( ترتیبی، اسمی، بازه ای و نسبی ) دارای درجات متفاوتی از سودمندی در تحقیقات آماری دارند. اندازه گیری نسبی در حالی كه هم یك مقدار صفر و فاصله بین اندازه های متفاوت تعریف می شود بیشترین انعطاف پذیری را در بین روش های آماری دارد كه می تواند برای تحلیل داده ها استفاده شود. مقیاس تناوبی با داشتن فواصل معنی دار بین اندازه ها اما بدون داشتن میزان صفر معنی دار ( مثل اندازه گیری IQ یا اندازه گیری درجه حرارت در مقیاس سلسیوس ) در تحقیقات آماری استفاده می شود.
    ۳) تكنیك های آماری
    بعضی از آزمون ها و روش های آماری برای مشاهدات تحقیقی آماری شناخته شده عبارتند از :
    ▪ آزمون تی استیودنت
    ▪ آزمون توان دوم كای ( خی دو )
    ▪ آنالیز واریانس ( ANOVA)
    ▪ آزمون Mann-Whitney U
    ▪ تحلیل رگرسیون
    ▪ همبستگی
    ▪ آزمون كمترین تفاوت معنی دار ( LSD ) فیشر
    ▪ ضریب همبستگی حاصل ضرب گشتاوری پیرسون
    ▪ ضریب همبستگی رتبه ای اسپیرمن
    نظریه عمومی احتمال به دو اصل وابسته تقسیم می شود :
    ▪ احتمال كتّره ای : كه نشان دهنده احتمال پیشامدهای آینده است كه به وسیله بعضی از پدیده های فیزیكی تصادفی هدایت می شود. این اصل را می توان به پدیده های فیزیكی كه با اطلاعات كافی اصولاً قابل پیش بینی اند و پدیده هایی كه اساساً قابل پیش بینی نیستند تقسیم بندی كرد. نمونه هایی از نوع اول شامل پرتاب تاس یا بازی رولت در قمار است و یك مثال از نوع دوم از بین رفتن ماده رادیو اكتیویته است.
    ▪ احتمال شناختیك : كه نشان دهنده عدم قاطعیت ما در مورد گزاره ای است وقتی كه فرد آگاهی كامل از شرایط اتفاقی ندارد. چنین گزاره هایی ممكن است در مورد پیشامدهای گذشته یا آینده باشد اما نیاز به آن نیست. بعضی مثال ها از احتمال شناختیك آنهایی هستند كه در آن ها یك احتمال به گزاره ای داده می شود كه در آن یك قانون پیشنهادی فیزیك به وقوع پیوسته است و تعیین اینكه چقدر احتمال است كه یك مظنون بر اساس شواهد موجود مرتكب جنایت شده باشد.
    یك سؤال كلی وجود دارد كه آیا احتمال كتره ای به واسطه عدم توانایی ما در پیش بینی دقیق نیروهایی كه ممكن است وقوع مرگ را متأثر سازند به احتمال شناختیك تبدیل شود یا اینكه چنین عدم اطمینانی در ماهیت خود واقعیت وجود دارد به ویژه در پدیده های كوانتومی كه توسط اصل عدم حتمیت هایزنبرگ بیان شده است.هرچند قوانین ریاضی مشابهی صرفنظر از تفسیر انتخاب شده اعمال می شوند، گزینه انتخابی از نظر احتمال مورد استفاده دارای معانی مهمی است كه برای مدل سازی دنیای واقعی به كار می رود.
    ● فرموله سازی احتمال
    مانند سایر نظریه ها، نظریه احتمال نمادی از اصول احتمال در عبارات رسمی - عباراتی كه جدا از معنیشان كاربرد داشته باشند – است. این عبارات رسمی به واسطه قوانین ریاضی و منطق متأثر می شوند و هر نتیجه ای از آن بر اساس دامنه مسئله تفسیر و برداشت می شود.
    حداقل دو تلاش موفق برای فرموله كردن احتمال انجام شده است كه به نام فرمول بندی كلموگروف و كاكس نامیده می شوند. در فرمول بندی كلموگروف، مجموعه ها به صورت پیشامدها و احتمال خود به عنوان معیاری روی یك سری از مجموعه ها تفسیر می شود. در فرمول بندی كاكس، احتمال به عنوان یك مقدمه اولیه قلمداد می شود ( به این معنی كه بعداً آنالیز نمی شود ) و تأكید بر روی ساخت یك رابطه سازگار از مقادیر احتمال برای گزاره ها می باشد.
    در هر دو مورد، قوانین احتمال مشابه هستند به جز در مورد جزئیات عملی :
    ▪ احتمال عددی بین 0 و 1 می باشد.
    ▪ مجموع احتمال یك پیشامد یا گزاره و مكمل آن برابر 1 است؛ و
    ▪ احتمال مشترك دو پیشامد یا گزاره برابر با حاصل ضرب احتمال یكی از آن ها و احتمال دومی است به شرطی كه اولی رخ دهد.
    ● نمایش و تفسیر مقادیر احتمال
    احتمال یك پیشامد عموماً به صورت یك عدد حقیقی بین 0 و 1 نمایش داده می شود. یك پیشامد غیر محتمل دارای یك احتمال دقیقاً 0 و یك پیشامد حتمی دارای یك احتمال 1 است، اما عكس آن همیشه صادق نیست؛ پیشامدهای با احتمال 0 همیشه غیر ممكن نیستند و همچنین پیشامدهای با احتمال 1 همیشه واقعیت نمی پذیرند.
    اغلب احتمالاتی كه عملاً رخ می دهند اعدادی بین 0 و 1 هستند كه نشان دهنده موقعیت پیشامد روی پیوستگی بین غیر ممكن و حتمیت است. هر چه احتمال پیشامد به 1 نزدیكتر باشد، احتمال وقوع آن بیشتر است.
    مثلاً اگر احتمال وقوع دو پیشامد متقابلاً ناسازگار یكسان تصور شود مثل رو یا پشت در پرتاب سكه، ما می توانیم احتمال هر پیشامد را به صورت 1 از 2 یا %50 یا ½ نمایش دهیم.
    احتمالات مشابهاً به صورت بخت ها هم نمایش داده می شوند كه نسبت احتمال یك پیشامد به احتمال سایر پیشامدهاست. بخت رو شدن در پرتاب سكه (1/2)/(1 - 1/2) است كه مساوی با 1/1 است كه به صورت بخت 1 به 1 نمایش داده می شود و اغلب به صورت 1:1 نوشته می شود.
    بخت های a:b برای یك پیشامد معادل با احتمال a/(a+b) است. مثلاً بخت 1:1 معادل با احتمال ½ است و نمایش 3:2 معادل با احتمال 3/5 است.
    این سؤال عملاً باقی می ماند كه از احتمال چه انتظاری می توان داشت و چگونه از اعداد و ارقام می توان استفاده كرد. این سؤال همان تفاسیر و برداشت های از احتمال است. افرادی هستند كه مدعیند احتمال را می توان بر هر نوع از گزاره های منطقی غیر حتمی به كار برد كه همان استنباط بیزی است. در مقابل، افرادی هستند كه با این ایده توافق دارند كه احتمال برای پیشامدهای تصادفی همانند برآمد بعضی آزمایش های تصادفی خاص كاربرد دارد؛ به عنوان مثال نمونه گیری از یك جمعیت كه این تفسیر فراوانی گراست. چندین تفسیر دیگر نیز وجود دارد كه فرم اصلاح شده ای از یكی از این دو تفسیر هستند و در حال حاضر از مقبولیت كمتری برخوردار هستند.
    ● توزیع ها
    توزیع احتمال، تابعی است كه احتمال را به پیشامدها یا گزاره ها تخصیص می دهد. برای هر مجموعه از پیشامدها یا گزاره ها راه های مختلفی برای تخصیص احتمالات وجود دارد به طوری كه شانس یك توزیع یا دیگری معادل با داشتن تصورات متفاوت درباره پیشامدها یا گزاره های مورد سؤال می باشد.
    راه های گوناگون معادلی برای نمایش توزیع احتمال وجود دارد. شاید متداولترین آن ها تابع چگالی احتمال باشد؛ به این معنی كه احتمال پیشامد یا گزاره به وسیله انتگرال تابع چگالی به دست می آید. تابع توزیع را می توان همچنین مستقیماً نمایش داد. از یك بعد، تابع توزیع، تابع توزیع تجمعی نامیده می شود. توزیع های احتمال را می توان از طریق گشتاورها یا تابع مشخصه یا به روش های دیگر نیز نمایش داد.
    یك توزیع، توزیع گسسته نامیده می شود اگر آن روی یك مجموعه گسسته شمارش پذیر مثل زیر مجموعه ای از اعداد صحیح تعریف شود. یك توزیع، توزیع پیوسته نامیده می شود اگر دارای یك تابع توزیع پیوسته باشد مثل تابع چند جمله ای یا تابع نمایی. اغلب توزیع های با اهمیت كاربردی از نوع گسسته یا پیوسته هستند اما نمونه هایی از توزیع ها هستند كه شامل هیچكدام از اینها نمی شوند.
    توزیع های مهم گسسته شامل توزیع گسسته یكنواخت، توزیع پواسون،‍ توزیع دو جمله ای، توزیع دو جمله ای منفی و توزیع ماكسول-بولتزمن می باشند.
    توزیع های مهم پیوسته شامل توزیع نرمال، توزیع گاما، توزیع تی استیودنت و توزیع نمایی هستند.
    ▪ احتمال در ریاضیات
    اصول موضوع احتمال، اساس نظریه احتمال ریاضیات را تشكیل می دهند. محاسبه احتمالات را اغلب می توان با استفاده از تركیبات یا مستقیماً با كاربرد اصول موضوع تعیین كرد.كاربردهای احتمال حتی بیشتر از آمار است كه معمولاً بر روی ایده توزیع های احتمال و قضیه حد مركزی پایه ریزی شده است.
    برای به دست آوردن یك مفهوم ریاضی از احتمال، پرتاب یك سكه را در نظر بگیرید. بدیهی است كه احتمال آن كه در هر پرتاب سكه رو بیاید %50 است اما این وضعیت به تنهایی فاقد صلابت ریاضی است؛ به این معنی كه ما باید چنین انتظار داشته باشیم كه با پرتاب 10 بار سكه 5 رو و 5 پشت به دست آید اما هیچ تضمینی كه این رخ دهد وجود ندارد. برای مثال این احتمال است كه پشت سر هم 10 بار رو بیاید. پس مفهوم %50 در این متن چیست ؟
    یك راه، استفاده از قانون اعداد بزرگ است. در این مورد، ما تصور می كنیم كه می توانیم هر تعداد پرتاب سكه را انجام دهیم و هر پرتاب سكه مستقل است یعنی كه برآمد هر پرتاب سكه به وسیله پرتاب قبلی تحت تأثیر قرار ندارد. اما ما N مرتبه پرتاب سكه داشته باشیم و اگر Nн تعداد مرتبه هایی باشد كه رو بیاید پس ما می توانیم برای هر N نسبت Nн/N را در نظر بگیریم.
    هر قدر N بزرگ و بزرگ تر شود، ما انتظار داریم كه نسبت Nн/N به ½ نزدیك و نزدیك تر شود. این به ما اجازه می دهد كه احتمال Pr(H)


    رو های سكه را به صورت حد ( ریاضی ) تعریف كنیم، هنگامی كه N به سمت بی نهایت میل میكند :
    البته در كاربرد عملی، ما نمی توانیم یك سكه را به تعداد بی نهایت پرتاب كنیم بنابراین عملاً این فرمول باید در موقعیت هایی به كار گرفته شود كه در آن ها از قبل یك احتمال اولیه ای برای یك برآمد خاص تعیین كرده ایم ( در این مورد فرض ما این است كه سكه سالم است ). قانون اعداد بزرگ به ما می گوید كه Pr(H) داده شده و یا به ازای هر عدد كوچـك اختیاری є، عدد n ای وجود دارد كه برای تمام N > nداریم :

    به عبارت دیگر، منظور ما از گفتن « احتمال رو ها ½ است » این است كه اگر ما سكه را به اندازه كافی پرتاب كنیم نهایتاً تعداد رو ها نسبت به تعداد كل پرتاب به ½ نزدیك می شود و سپس به هر اندازه كه تعداد بیشتری پرتاب انجام دهیم ما به ½ نزدیك تر می شویم.
    توجه كنید كه یك تعریف كامل، مستلزم نظریه اندازه است كه قادر به حذف مواردی است كه مقادیر بالاتر از محدوده جواب درست نمی دهند یا حتی با نمایش مواردی كه دارای میزان صفر هستند نیز محدود نشده است.
    جنبه اولیه این روش كاربرد احتمال، گاهی در هنگام مواجهه با موقعیت های دنیای واقعی با مشكل روبه رو می شود. برای مثال اگر شما یك سكه را پرتاب كنید و پشت سر هم رو بیاید برای صد مرتبه شما نمی توانید تصمیم بگیرید كه آیا این تنها یك پیشامد تصادفی محض است اگر چه ممكن است ( هرچند بعید ) كه یك سكه سالم این نتیجه را بدهد یا اینكه تصور شما این خواهد بود كه سكه سالم دچار اشكال می باشد.
    ▪ نكات قابل توجه در محاسبات احتمال
    سختی محاسبات احتمال در تعیین تعداد پیشامدهای ممكن، شمارش رخدادهای هر پیشامد و شمارش تعداد كل پیشامدهای ممكن است. اشكال خاص در به دست آوردن نتایج معنی دار از احتمالات محاسبه شده است. یك معمای سرگرم كننده احتمال به نام مسئله Monty Hall به زیبایی چالش های موجود را نشان می دهد.
    ▪ كاربرد های نظریه احتمال در زندگی روزمره
    یك تأثیر مهم نظریه احتمال در زندگی روزمره در ارزیابی ریسك پذیری و در تجارت در مورد خرید و فروش اجناس می باشد. حكومت ها به طور خاص روشهای احتمال را در تنظیم جوامع اعمال می كنند كه به عنوان « آنالیز خط مشی » نامیده می شود و غالباً سطح رفاه را با استفاده از متدهایی كه در طبیعت تصادفیند اندازه می گیرند و برنامه هایی را انتخاب می كنند تا اثر احتمال آن ها را روی جمعیت به صورت كلی از نظر آماری ارزیابی كنند. این گفته صحیح نیست كه آمار، خود در مدل سازی درگیر هست زیرا كه ارزیابی های میزان ریسك وابسته به زمان هستند و بنابراین مستلزم مـدل های احتمال قوی تر هستند؛ مثلاً « احتمال9/11 دیگری »؛ قانون اعداد كوچك در جنین مواردی اعمال می شود و برداشت اثر چنین انتخاب هایی است كه روش های آماری را به صورت یك موضوع سیاسی در می آورد.
    یك مثال خوب اثر احتمال قلمداد شده از مجادلات خاورمیانه بر روی قیمت نفت است كه دارای اثرات متلاطمی از لحظ آماری روی اقتصاد كلی دارد. یك ارزیابی توسط یك واحد تجاری در مورد این كه احتمال وقوع یك جنگ زیاد است یا كم باعث نوسان قیمت ها می شود و سایر تجار را برای انجام كار مشابه تشویق می كند. مطابق با این اصل، احتمالات به طور مستقل ارزیابی نمی شوند و ضرورتاً به طور منطقی برخورد صورت نمی گیرد. نظریه اعتبارات رفتاری، به وجود آمده است تا اثر این تفكرات گروهی را روی قیمت ها، سیاست ها و روی صلح و مجادله توضیح دهد.
    به طور استدلالی می توان گفت كه كشف روش های جدی برای ارزیابی و تركیب ارزیابی های احتمالی دارای اثر شدیدی روی جامعه مدرن داشته است. یك مثال خوب كاربرد نظریه بازی ها كه به طور بنیادین بر پایه احتمال ریخته شده است در مورد جنگ سرد و دكترین انهدام با اطمینان بخشی متقابل است. مشابهاً ممكن است برای اغلب شهروندان دارای اهمیت باشد كه بفهمند چگونه بخت ها و ارزیابی های احتمال صورت می گیرد و چگونه آن ها می توانند در تصمیم گیری ها به ویژه در زمینه دموكراسی دخالت كنند.
    كاربرد مهم دیگر نظریه احتمال در زندگی روزمره، اعتبار است. اغلب تولیدات مصرفی مثل اتومبیل و وسایل الكترونیكی در طراحی آن ها از نظریه اعتبار استفاده می شود به نحوی كه احتمال نقص آن ها كاهش یابد. احتمال نقص با مدت ضمانت فرآورده معمولاً ارتباط نزدیك دارد.
    ● رشته های اختصاصی
    بعضی علوم آن چنان به طور وسیع از آمار كاربردی استفاده می كنند كه برای خود دارای اصطلاحات خاص شده اند. این رشته ها عبارتند از :
    ▪ زیست آمار
    ▪ آمار بازرگانی
    ▪ داده كاوی ( كاربرد آمار و شناسایی الگوها برای كشف علم از داده ها )
    ▪ آمار اقتصادی ( اقتصاد سنجی )
    ▪ آمار مهندسی
    ▪ فیزیك آماری
    ▪ جمعیت شناسی
    ▪ آمار روان شناسی
    ▪ آمار اجتماعی ( برای تمام علوم اجتماعی )
    ▪ سواد آموزی آماری
    ▪ آنالیز فرایند و شیمی سنجی ( برای تحلیل داده ها از شیمی تحلیلی و مهندسی شیمی)
    ▪ مهندسی اعتبار
    ▪ آمار در ورزش های گوناگون به ویژه بیسبال و كریكت
    آمار یك ابزار پایه ای كلیدی در تجارت و تولید است و برای درك تغییر پذیری سیستم های اندازه گیری، فرایند های كنترل ( مثلاً در كنترل آماری فرایند یا SPC )، برای خلاصه سازی داده ها و برای ساخت تصمیمات بر اساس داده ها مورد استفاده قرار می گیرد. در این نقش ها به آمار یك ابزار كلیدی و شاید تنها ابزار مورد اعتماد باشد.
    ● نرم افزار
    ▪ آمار مدرن برای انجام بعضی از محاسبات خیلی پیچیده و بزرگ به وسیله كامپیوترها استفاده می شود.
    ▪ تمامی شاخه های آمار با استفاده از محاسبات كامپیوتری انجام پذیر شده اند، به عنوان مثال شبكه های عصبی.
    ▪ انقلاب كامپیوتری با یك توجه نو به آمار « آزمایشی » و « تجربی » رویكردهایی برای آینده آمار داشته است .
    شبیه سازی نسخه ای از بعضی وسایل واقعی یا موقعیت های كاری است. شبیه سازی تلاش دارد تا بعضی جنبه های رفتاری یك سیستم فیزیكی یا انتزاعی را به وسیله رفتار سیستم دیگری نمایش دهد.
    شبیه سازی در بسیاری از متون شامل مدل سازی سیستم های طبیعی و سیستم های انسانی استفاده می شود. برای به دست آوردن بینش به كاركرد این سیستم ها و همچنین در تكنولوژی و مهندسی ایمنی كه هدف، آزمون بعضی سناریوهای عملی در دنیای واقعی است از شبیه سازی استفاده می شود. در شبیه سازی با استفاده از یك شبیه ساز یا وسیله دیگری در یك موقعیت ساختگی می توان اثرات واقعی بعضی شرایط احتمالی را بازسازی كرد.
    ▪ شبیه سازی فیزیكی و متقابل
    ـ شبیه سازی فیزیكی ، به شبیه سازی اطلاق می شود كه در آن اشیای فیزیكی به جای شی حقیقی جایگزین می شوند و این اجسام فیزیكی اغلب به این خاطر استفاده می شوند كه كوچكتر یا ارزان تر از شی یا سیستم واقعی هستند.
    ـ شبیه سازی متقابل كه شكل خاصی از شبیه سازی فیزیكی است و غالباً به انسان در شبیه سازی های حلقه ای اطلاق می شود یعنی شبیه سازی های فیزیكی كه شامل انسان می شوند مثل مدل استفاده شده در شبیه ساز پرواز.
    ▪ شبیه سازی در آموزش
    شبیه سازی اغلب در آموزش پرسنل شهری و نظامی استفاده می شود و معمولاً هنگامی رخ می دهد كه استفاده از تجهیزات در دنیای واقعی از لحاظ هزینه كمرشكن یا بسیار خطرناك است تا بتوان به كارآموزان اجازه استفاده از آن ها را داد . در چنین موقعیت هایی كارآموزان وقت خود را با آموزش دروس ارزشمند در یك محیط مجازی « ایمن » می گذرانند. غالباً این اطمینان وجود دارد تا اجازه خطا را به كارآموزان در طی آموزش داد تا ارزیابی سیستم ایمنی– بحران صورت گیرد.
    شبیه سازی های آموزشی به طور خاص در یكی از چهار گروه زیر قرار می گیرند :
    ـ شبیه سازی زنده ( جایی كه افراد حقیقی از تجهیزات شبیه سازی شده ( یا آدمك ) در دنیای واقعی استفاده می كنند. )
    ـ شبیه سازی مجازی ( جایی كه افراد حقیقی از تجهیزات شبیه سازی شده در دنیای شبیه سازی شده ( یا محیط مجازی ) استفاده می كنند. ) یا
    ـ شبیه سازی ساختاری ( جایی كه افراد شبیه سازی شده از تجهیزات شبیه سازی شده در یك محیط شبیه سازی شده استفاده می كنند. ) شبیه سازی ساختاری اغلب به عنوان بازی جنگی نامیده می شود زیرا كه شباهتهایی با بازی های جنگی رومیزی دارد كه در آن ها بازیكنان، ارتش سربازان و تجهیزات را اطراف یك میز هدایت می كنند .

  9. #128
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    پیدایش مثلثات


    تاریخ علم به آدمی یاری می رساند تا «دانش» را از «شبه دانش» و «درست» را از «نادرست» تشخیص دهد و در بند خرافه و موهومات گرفتار نشود. در میان تاریخ علم، تاریخ ریاضیات و سرگذشت آن در بین اقوام مختلف ، مهجور واقع شده و به رغم اهمیت زیاد، از آن غافل مانده اند. در نظر داریم در این فضای اندك و در حد وسعمان برخی از حقایق تاریخی( به خصوص در مورد رشته ریاضیات) را برایتان روشن و اهمیت زیاد ریاضی و تاریخ آن را در زندگی روزمره بیان كنیم.
    برای بسیاری از افراد پرسش هایی پیش می آید كه پاسخی برای آن ندارند: چه شده است كه محیط دایره یا زاویه را با درجه و دقیقه و ثانیه و بخش های شصت شصتی اندازه می گیرند؟ چرا ریاضیات با كمیت های ثابت ادامه نیافت و به ریاضیات با كمیت های متغیر روی آوردند؟ مفهوم تغییر مبناها در عدد نویسی و عدد شماری از كجا و به چه مناسبت آغاز شد؟ یا چرا در سراسر جهان عدد نویسی در مبنای ۱۰ را پذیرفته اند، با اینكه برای نمونه عدد نویسی در مبنای ۱۲ می تواند به ساده تر شدن محاسبه ها كمك كند؟ ریاضیات از چه بحران هایی گذشته و چگونه راه خود را به جلو گشوده است؟ چرا جبر جانشین حساب شد، چه ضرورت هایی موجب پیدایش چندجمله ای های جبری و معادله شد؟ و… برای یافتن پاسخ های این سئوالات و هزاران سئوال مشابه دیگر در كلیه رشته ها، تلاش می كنیم راه را نشان دهیم، پیمودن آن با شماست…
    ● پیدایش مثلثات
    از نامگذاری «مثلثات» می توان حدس زد كه این شاخه از ریاضیات دست كم در آغاز پیدایش خود به نحوی با «مثلث» و مسئله های مربوط به مثلث بستگی داشته است. در واقع پیدایش و پیشرفت مثلثات را باید نتیجه ای از تلاش های ریاضیدانان برای رفع دشواری های مربوط به محاسبه هایی دانست كه در هندسه روبه روی دانشمندان بوده است.
    در ضمن دشواری های هندسی، خود ناشی از مسئله هایی بوده است كه در اخترشناسی با آن روبه رو می شده اند و بیشتر جنبه محاسبه ای داشته اند. در اخترشناسی اغلب به مسئله هایی بر می خوریم كه برای حل آنها به مثلثات و دستورهای آن نیازمندیم. ساده ترین این مسئله ها، پیدا كردن یك كمان دایره (بر حسب درجه) است، وقتی كه شعاع دایره و طول وتر این كمان معلوم باشد یا برعكس، پیدا كردن طول وتری كه طول شعاع دایره و اندازه كمان معلوم باشد. می دانید سینوس یك كمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن كمان است. همین تعریف ساده اساس رابطه بین كمان ها و وترها را در دایره تشكیل می دهد و مثلثات هم از همین جا شروع شد.
    كهن ترین جدولی كه به ما رسیده است و در آن طول وترهای برخی كمان ها داده شده است متعلق به هیپارك، اخترشناس سده دوم میلادی است و شاید بتوان تنظیم این جدول را نخستین گام در راه پیدایش مثلثات دانست. منه لائوس ریاضیدان و بطلمیوس اخترشناس (هر دو در سده دوم میلادی) نیز در این زمینه نوشته هایی از خود باقی گذاشته اند. ولی همه كارهای ریاضیدانان و اخترشناسان یونانی در درون هندسه انجام گرفت و هرگز به مفهوم های اصلی مثلثات نرسیدند.
    نخستین گام اصلی به وسیله آریابهاتا، ریاضیدان هندی سده پنجم میلادی برداشته شد كه در واقع تعریفی برای نیم وتر یك كمان _یعنی همان سینوس- داد. از این به بعد به تقریب همه كارهای مربوط به شكل گیری مثلثات (چه در روی صفحه و چه در روی كره) به وسیله دانشمندان ایرانی انجام گرفت.
    خوارزمی نخستین جدول های سینوسی را تنظیم كرد و پس از او همه ریاضیدانان ایرانی گام هایی در جهت تكمیل این جدول ها و گسترش مفهوم های مثلثاتی برداشتند. مروزی جدول سینوس ها را تقریبا ۳۰ درجه به ۳۰ درجه تنظیم كرد و برای نخستین بار به دلیل نیازهای اخترشناسی مفهوم تانژانت را تعریف كرد.
    جدی ترین تلاش ها به وسیله ابوریحان بیرونی و ابوالوفای بوزجانی انجام گرفت كه توانستند پیچیده ترین دستورهای مثلثاتی را پیدا كنند و جدول های سینوسی و تانژانتی را با دقت بیشتری تنظیم كنند. ابوالوفا با روش جالبی به یاری نابرابری ها توانست مقدار سینوس كمان ۳۰ دقیقه را پیدا كند و سرانجام خواجه نصیرالدین طوسی با جمع بندی كارهای دانشمندان ایرانی پیش از خود نخستین كتاب مستقل مثلثات را نوشت.
    بعد از طوسی، جمشید كاشانی ریاضیدان ایرانی زمان تیموریان با استفاده از روش زیبایی كه برای حل معادله درجه سوم پیدا كرده بود، توانست راهی برای محاسبه سینوس كمان یك درجه با هر دقت دلخواه پیدا كند. پیشرفت بعدی دانش مثلثات از سده پانزدهم میلادی و در اروپای غربی انجام گرفت. یك نمونه از مواردی كه ایرانی بودن این دانش را تا حدودی نشان می دهد از این قرار است: ریاضیدانان ایرانی از واژه «جیب» (واژه عربی به معنی «گریبان») برای سینوس و از واژه «جیب تمام» برای كسینوس استفاده می كردند.
    وقتی نوشته های ریاضیدانان ایرانی به ویژه خوارزمی به زبان لاتین و زبان های اروپایی ترجمه شد، معنای واژه «جیب» را در زبان خود به جای آن گذاشتند: سینوس. این واژه در زبان فرانسوی همان معنای جیب عربی را دارد. نخستین ترجمه از نوشته های ریاضیدانان ایرانی كه در آن صحبت از نسبت های مثلثاتی شده است، ترجمه ای بود كه در سده دوازدهم میلادی به وسیله «گرادوس كره مونه سیس» ایتالیایی از عربی به لاتینی انجام گرفت و در آن واژه سینوس را به كار برد. اما درباره ریشه واژه «جیب» دو دیدگاه وجود دارد: «جیا» در زبان سانسكریت به معنای وتر و گاهی «نیم وتر» است.
    نخستین كتابی كه به وسیله فزازی (یك ریاضیدان ایرانی) به دستور منصور خلیفه عباسی به زبان عربی ترجمه شد، كتابی از نوشته های دانشمندان هندی درباره اخترشناسی بود. مترجم برای حرمت گذاشتن به نویسندگان كتاب، «جیا» را تغییر نمی دهد و تنها برای اینكه در عربی بی معنا نباشد، آن را به صورت «جیب» در می آورد. دیدگاه دوم كه منطقی تر به نظر می آید این است كه در ترجمه از واژه فارسی «جیپ»- بر وزن سیب- استفاده شد كه به معنی «تكه چوب عمود» یا «دیرك» است. نسخه نویسان بعدی كه فارسی را فراموش كرده بودند و معنای «جیپ» را نمی دانستند، آن را «جیب» خواندند كه در عربی معنایی داشته باشد.
    منبع:سازمان آموزش و پرورش استان خراسان

  10. #129
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    واژه ریاضیات و بهترین واژه جایگزین آن


    واژه ریاضیات ، به جای واژه یونانی (( ماته ماتیکه )) Mathematike گذاشته شده است که خود از (( ماته ما )) Mathema به معنای (( دانش )) و (( دانایی )) آمده است.اغلب ، واژه (( ریاضیات )) را ، برگرفته از واژه (( ریاضت )) دانسته اند ؛ چرا که (( ریاضت )) تنها به معنای (( پرهیزکاری بدنی )) نیست و (( در خود فرو رفتن )) و (( فهمیدن )) و (( رسیدن به رازها )) را هم می رساند.
    دیدگاه های دیگری هم وجود دارد. بسیاری از زبانشناسان، با بحث های زبان شناختی نتیجه می گیرند ، (( ماته ما )) همان واژه ایرانی (( مزدا )) است که همان معنای واژه یونانی را دارد : (( دانا )) و (( آگاه )).دیدگاه سوم ، معتقد است که واژه (( ریاضی )) از واژه فارسی (( راز )) به معنای (( اندازه گرفتن )) آمده است. این واژه هنوز در واژه های (( تراز )) و (( ترازو )) با حفظ معنای خود باقی مانده است. در واژه (( ترازو )) ، (( ترا )) به معنای (( از این سو و آن سو )) ، (( راز )) به معنای (( اندازه گیری )) است . پسوند (( او )) در بسیاری جاها در زبان فارسی ، به معنای (( بسیار )) به کار رفته است. به این ترتیب ، (( ترازو )) یعنی : (( اندازه گیری و مقایسه بسیار )) . در ضمن ، واژه (( مر )) در زبان فارسی ( که در واژه های (( شمر )) و (( شمردن )) وجود دارد ) ، به معنای (( شمردن )) و (( محاسبه کردن )) است.بدین ترتیب ، اینان ، به جای واژه (( ریاضیات )) ، واژه (( رازومَر )) را پیشنهاد می کنند که درست به معنای (( اندازه گرفتن و شمردن )) است و اگر ریاضیات را (( دانش رابطه های کمیتی و شکل های فضایی )) بدانیم ، واژه (( رازومر )) می تواند انتخاب درستی باشد.
    اگر واژه (( ریاضیات )) را ( که نه در ترکیب زیباست و نه بروشنی معرف یکی از دانش هاست ) ، برگرفته از واژه (( ریاضت )) فرض کنیم ، می تواند اثری منفی در علاقه مندان به این دانش بگذارد؛ زیرا همگان (( ریاضت )) را به معنای (( سختی کشیدن )) ، (( در انزوا فرو رفتن )) و (( فشار بیش از اندازه به خود می دانند )) ، که با ماهیت دانش ریاضی سازگاری ندارد. این تعبیر ، شبیه تعبیری است که برخی بر واژه (( جبر )) می آورند و آن را به معنای (( زور و فشار )) می دانند ، در حالی که خوارزمی ، واژه (( جبر )) را به معنای (( جبران کردن )) گرفته است؛ چرا که به تعبیر خوارزمی و به زبان امروزی ، می توان عدد منفی را از یک طرف معادله ، به طرف دیگری برابری برد تا مقداری مثبت شود ( یعنی جبران شود ). در مصراع : “که جبر خاطر مسکین بلا بگرداند ” ، واژه (( جبر )) درست به همین معنای (( جبران کردن )) به کار رفته است.جدا از این بحث که (( ماته ما )) از (( مزدا )) گرفته شده است یا ریاضیات از واژه (( راز )) آمده است، به نظر می رسد ، اگر قرار باشد واژه ای فارسی به جای واژه (( ریاضیات )) انتخاب شود ، بهترین پیشنهاد ، همان واژه (( رازومَر ))باشد که هم زیباست و هم از نظر معنا ، با واژه (( ریاضیات )) سازگار است.
    علی رضا نادری منبع : برگرفته شده از کتاب “فرهنگ ریاضیات ” - ( انتشارات مدرسه )

  11. #130
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    مقیاس و عدم حتمیت



    ما در جهانی زندگی می کنیم که اشیا و حوادث پیرامونمان از کفیت های گوناگونی بخوردارند. اموری که هرروزه با آنها مواجه می شویم هرگز از حتمیت برخوردار نیستند. به عنوان مثال در اندازه گیری فاصله ی بین دو نقطه اگر فاصله ی بین دو شهر یا کشور مطرح است از مقیاس کیلومتر و مایل استفاده می شود اما برای اندازه گیری فاصله ی دو نقطه در دستگاه مختصات دکارتی در صفحه ی دفترمان از مقیاس سانتی متر بهره می گیریم و یا در اندازه گیری ضخامت یک برگ کاغذ مقیاس میلی متر را مورد استفاده قرار می دهیم. همان طور که می بینید از هر مقیاس متناسب با زمینه ی کاری خود استفاده می کنیم . از طرف دیگر هر اندازه یک مقیاس را کوچک کنیم باز هم کمیت های قابل اندازه گیری موجوداند که به مقیاسی کوچکتر نیاز دارند به همین ترتیب کمیت هایی وجود دارد که برای سنجش آن ها مقیاس بزرگتری مورد نیاز است مثلا در علوم کامپیوتری از مقیاس های کیلوبایت ، مگا بایت و … استفاده می شود. بدین ترتیب اندازه گیری های ما هرگز از حتمیت برخوردار نیستند و زمانی که عدد حاصل از یک اندازه گیری ۱۲ است بدون دانستن مقیاس به کار رفته در اندازه گیری هیچ اظهار نظری نمی توان داشت.البته این عدم حتمیت در علومی که مفاهیم مربوط به آن ها قابلیت کمی شدن ندارند بیشتر به چشم می خورد. به عنوان مثال می توان از علوم جامعه شناسی و روانشناسی که در رابطه ی مستقیم با انسان و رفتار های انسانی قرار دارند نام برد. تا کنون تلاش های بسیاری جهت استخراج قوانین علمی دقیق برای برای انسان و جامعه به عمل آمده است که هیچ یک قادر به محو کردن عدم حتمیت نبوده اند. به این ترتیب باید به دنبال راهی باشیم تا در استدلال های منطقی خود عدم حتمیت را به حداقل برسانیم.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •