تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




مشاهده نتيجه نظر خواهي: -

راي دهنده
0. شما نمي توانيد در اين راي گيري راي بدهيد
  • -

    0 0%
  • -

    0 0%
صفحه 12 از 32 اولاول ... 2891011121314151622 ... آخرآخر
نمايش نتايج 111 به 120 از 315

نام تاپيک: «««تـازه های دنیـــای شیـــــمی »»»

  1. #111
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    کلوییدها - نانوذرات قدیمی
    یک روش خوب برای درک مفاهیم نانویی، مطالعه‌ی نقاط شروع این فناوری در دنیای علم است. در قرن بیستم، به دنبال کشف قابلیت‌های گسترده‌ی مولکول‌ها در ساختن مواد جدید، دانش‌های مرتبط با ذرات ریز توسعه یافتند. یکی از این یافته‌ها که امروزه توسعه‌ی چشمگیری پیدا کرده، کلویید و انواع مختلف آن است.
    کلویید چیست؟
    اگر در یک لوله‌ی آزمایش تا یک‌سوم گنجایش آن الکل معمولی بریزیم و به آن نصف قاشق چایخوری گَرد گوگرد اضافه کنیم و سپس مخلوط حاصل را به‌ملایمت داخل یک بِشِر آب داغ گرما بدهیم و هم بزنیم، می‌بینیم که گوگرد در الکل حل می‌شود. اما اگر چنین محلولی را در یک ظرف سرد خالی کنیم، می‌بینیم که پدید‌ه‌ی دیگری به وجود می‌آید. در مخلوط جدید، گوگرد به صورت ذرات ریزی درمی‌آید و هر ذره با آن‌که خیلی ریز است، از صدها و گاه هزاران اتم تشکیل شده است. این ذرات را «کلویید» می‌نامند.
    کلویید چگونه کشف شد؟
    در سال ۱۸۶۱، توماس گراهام، عبور موادّ مختلف را از درون غشای تراوا آزمایش کرد. او دریافت که گروهی از اجسام به‌آسانی از درون غشا عبور می‌کنند و گروه دیگر به هیچ وجه از آن نمی‌گذرند. این دانشمند، اجسام گروه اول را کریستالوئید (شبه بلور) وگروه دوم را کلویید (شبه چسب) نامید.
    کلوییدها محلول نیستند
    کلوییدها ظاهری محلول‌مانند دارند. یعنی به‌ظاهر همگن و شفاف‌اند و مانند محلول‌ها از سوراخ‌های کاغذ صافی می‌گذرند. با وجود این، چهار تفاوت اساسی میان کلوییدها و محلول‌ها دیده می‌شود:
    ۱ - درکلوییدها، اندازه‌ی ذراتِ پخش‌شده، از اندازه‌ی ذرات حل‌شده در محلول‌ها، یعنی مولکول‌ها و یون‌ها، بزرگتر و بین ۱۰-۷ و۱۰-۸ سانتی‌متر است؛ در حالی که اندازه‌ی ذرات حل‌شده در محلولها در حدود ۱۰-۹ متر (نانومتر) است، یعنی ابعاد یونها.
    ۲ - اگرچه معمولاً اندازه‌ی ذرات سازنده‌ی کلوییدها آن‌ اندازه کوچک است که از سوراخ‌های کاغذ می‌گذرند، اما آن اندازه بزرگ‌ هم هست که وقتی در مسیر نور قرار ‌گیرند، بتوانند نور را به اطراف بپراکنند. اگر در یک جای تاریک، دو ظرف، یکی شامل محلولی مانند آب نمک و دیگری شامل کلوییدی مانند FeCl3 در آب جوش را در کنار یکدیگر قرار دهید و باریکه‌ی نوری به آن بتابانید و از پهلو به آن دو نگاه کنید، می‌بینید که مسیر عبور نور در داخل محلول مشخص نیست، ولی ‌در داخل کلویید کاملاً مشخص است؛

    ۳ - کلوییدها برخلاف محلول‌ها حالت پایدار ندارند، بلکه با گذشت زمان تغییر می‌کنند؛
    ۴ - ذرات سازنده‌ی کلوییدها بر خلاف ذرات سازنده‌ی محلول‌ها، در شرایط معین، مثلاً بر اثر سرد کردن یا گرم کردن یا در مجاورت با برخی ذرات دیگر، به یکدیگر متصل می‌شوند و ذرات بسیار بزرگتری را تشکیل می‌دهند. در این ‌صورت، کلویید حالت «نیمه‌جامد» یا «ژله» به خود می‌گیرد، یا اینکه لخته می‌شود.
    اندازه‌های کلوییدی
    اگر جسمی را که نرم ساییده شده است در آب بریزیم، یکی از سه حالت زیر پیش می‌آید:
    ۱/ ممکن است یک «محلول حقیقی» تشکیل شود که نتیجه‌ی پراکنده شدنِ اتم‌ها، مولکول‌ها یا یون‌های آن جسم در یک حلاّل است. اندازه‌ی ذرات در این محلول از حدود ۱nm تجاوز نمی‌کند؛
    ۲/ این امکان وجود دارد که ذراتِ بزرگتر از حدود ۱۰۰nm باقی بمانند. این ذرات میکروسکوپی، به‌تدریج ته‌نشین می‌شوند. از آنجا که این ذرات به طور موقت معلق‌اند و بر اثر ماندن ته‌نشین می‌شوند، به مخلوط حاصل، «مخلوط معلق» یا «سوسپانسیون»‌ می‌گویند؛
    ۳/ ذراتی که اندازه‌ی آنها از ۱nm تا حدود ۱۰۰nm تغییر می‌کند، معمولاً به صورت پراکنده در همه‌جای محیط باقی می‌مانند. این نوع مخلوط «کلویید» نامیده می‌شود. به عبارت دیگر، در یک مخلوط کلوییدی با «نانوذرات» سروکار داریم.
    کلوییدها در میانه‌ی سوسپانسیون‌ها و محلول‌ها قرار می‌گیرند، ولی ناهمگن به شمار می‌روند. محیط‌های پیوسته ــ همچون آب یا الکل ــ و جسم پراکنده، هرکدام وضعیت جداگانه‌ای به وجود می‌آورند.
    چند نکته
    الف ـ حرکت براونی ذرات کلوییدی
    اگر یک قطره شیر را با میکروسکوپ نوری به‌دقت نگاه کنید، ذرات تشکیل‌دهنده‌ی آن را در حال حرکت دائم می‌بینید. این ذرات پیوسته و به طور نامنظم تغییر جهت می‌دهند. ذرات کلوییدی هنگامی‌که به هم می‌رسند، در برخورد با یکدیگر تغییر مسیر می‌دهند. به این حرکت دائمی و نامنظم ذرات کلوییدی «حرکت براونی» می‌گویند.
    ب ـ دستگاه الکتروفورِز
    دستگاهی است که برای مطالعه‌ی حرکت ذرات کلوییدی در میدان الکتریکی مورد استفاده قرار می‌گیرد.
    ج ـ دیالیز
    فرایند جدا کردن یون‌ها از ذرات کلوییدی «دیالیز» نامیده می‌شود. این کار معمولاً به کمک یک غشای مناسب صورت می‌گیرد. امروزه از دیالیز به طور گسترده برای تصفیه‌ی خون استفاده می‌شود.

  2. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  3. #112
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    حالات ماده از جامد تا پلاسما
    مایعاتو گازها شارههستند، یعنی جریان می‌یابند. این اجسام شکل معینی ندارند و شکلظرفی را که در آن قرار دارند به خود می‌گیرند، در حالی که مقدار معینی دارند. مثلامقدار آب ، دی اکسید کربن ، هوا ، شیر و غیره جرم قابل اندازه گیری و معینی دارند،اما نمی‌توانند همانند جامدات با اعمال نیروی پس زنی کشانی ، در مقابل تغییر شکل ،مقاومت کنند.
    اندیشه اولیه تئوری مولکولی مربوط بهرابرت براوانبوده و بر پایه عقاید خودچندین نوع آزمایشات را انجام داد از جمله در یک لیوان شیشه‌ای پر از آب یک قطرهجوهر ریخته و حرکت جوهر را بررسی کرد. این حرکت نامنظم و زیگ زاگ و در هم و بر هممولکولی راحرکت براونیگویند. ولی اینهاتمام حالات ماده نیستند. اشکال ماده بطور کلی عبارتند از: جامد،مایع،گاز،پلاسماوماده چگال بوز - انیشتینوحالت تازه کشف شده یعنیماده چگال فرمیونی.

    مواد جامد
    مواد جامد در برابر تغییر شکل مقاومت می‌کنند و آنها سفت وشکننده هستند. برای درک چگونگی این موضوع می‌توان جامدات را اینگونه تعریف کنیم: درحالت جامد ، نیروهای بین مولکولی ، به قدری قویتر ازانرژیجنبشیهستند که باعث سخت شدن جسم در نتیجه عدم جاری شدن آن می‌گردند. جامداتشکل و حجم معینی دارند. در جامدات فاصله مولکولها مانند فاصله آنها در مایع است. جامدات نمی‌توانند مانند وضعیتی که حالات مایع و گاز دارند، آزادانه به اطراف حرکتکنند. بلکه ، در جامد ، مولکولها در مکانهای خاصی قرار می‌گیرند و فقط می‌توانند دراطراف این مکانها حرکت نوسانی رفت و برگشتی بسیار کوچک انجام دهند. این حرکت نوسانی، بخصوص در جامدات بلورین ، کاربردهای صنعتی و علمی زیادی را برای این دسته از موادبه دنبال دارد.


    جامدات بلورین: وقتی مایع به آرامی سرد شود مولکولهای مایع فرصت پیدامی‌کنند که شکل منظم و ثابتی به خود بگیرند، مثل فلزات.
    جامدات بی شکل: وقتی مایعی به سرعت سرد شود مولکولهای مایع دیگر فرصتندارند که شکل منظم و ثابتی به خود بگیرند،مانند: چوب ، پنبه، عاج، شیشه.

    مواد مایع
    در حالت مایع ، مولکولها به هم نزدیکتر بوده ، بطوری که نیروهایمابین آنها قویتر از انرژی جنبشی آنان می‌باشد. از طرف دیگر ، نیروها آنقدر قوینیستند که قادر به ممانعت از حرکت مولکولها گردند. از این روست که جریان مایع ازظرفی به ظرف دیگر شدنی است، اما نسبت سرعت جاری شدن آب در مقایسه با مایعات دیگر ازقبیل روغنها وگلسیرینبسیار متفاوت است که این تفاوت در سرعت جاری شدن ، میزان مقاومت یک مایع در مقابلجاری شدن ، یعنیویسکوزیتهآن خوانده می‌شود که خود تابعی از شکل ، اندازه مولکولی ، درجه حرارت و فشارمی‌باشد. بنابراین مایعات حجم معین و شکل نامعینی دارند. فاصله مولکولها در مایعاتدر مقایسه با گازها بسیار کم است. در مایعات مولکولها به اطراف خود حرکت می‌کنند وبه سهولت روی هم می‌لغزند و راحت جریان (شارش) پیدا می‌کنند. مواد مایع با قابلیتشکل پذیری و جریان یافتن در شبکه‌های ریز ، کاربردهای زیادی در صنعت پیدا کرده‌اند.
    گاز
    بطور کلی می‌توان گازها را اینگونه تعریف کرد؛ گاز ها کم چگالند وساده متراکم می‌شوند و نه تنها شکل ظرف خود را می‌گیرند، بلکه آنقدر منبسط می‌شوندتا ظرف را کاملا پر کنند. اما اگر بخواهیم گازها را بهتر بشناسیم می‌توانیم بگوییمکه؛ حالت فیزیکی مواد در شرایطفشارو درجه حرارت طبیعی ، بستگی به اندازه مولکولی و نیروهای فی‌مابین آن دارد. اگرمقدار کمی از یک گاز ، در یک تانک نسبتا بزرگی قرار گیرد، مولکولهای آن با سرعت درسرتاسر تانک پخش می‌شوند. پخش سریع مولکولهای گاز دلالت بر آن میکند که نیروهایموجود فیمابین مولکولها ، بمراتب ضعیفتر از انرژی جنبشی آن است و از آنجایی که ممکناست مقدار کمی از یک گاز در سرتاسر تانک یافت شود، نشان دهنده آن است که مولکولهایگاز باید نسبتا از هم فاصله گرفته باشند. بنابراین گازها شکل و حجمشان بستگی بهظرفی دارد که در آن جای دارند.
    در حالت گازی ، مولکولها آزادانه به اطرافحرکت کرده و با یکدیگر و نیز با دیواره ظرف برخورد می‌کنند. فاصله مولکولها در حالتگازی در حدود چند ده برابر فاصله آنها در حالت مایع و جامد است. اگر در یک ظرفنوشابه پلاستیکی را بسته و آنرا متراکم کنید و سپس آنرا با آب پر کرده و دوباره سعیکنید که آنرا متراکم کنید، در حالت اول به علت فاصله زیاد بین مولکولی در گاز ،متراکم کردن سنگینتر و سختتر صورت می‌گیرد، در صورتی که در حالت دوم چنین نیست.

    پلاسما
    حالت چهارم مادهپلاسماشبیه گاز است و ازاتمهاییتشکیل شده است که تمام یا تعدادی از الکترونهای خود را از دست داده‌اند (یونیدهشده‌اند). بیشتر مواد جهان در حالت پلاسما هستند مانندخورشیدکه از پلاسما تشکیل شده است. پلاسما اغلب بسیار گرم است و می‌توان آن را درمیدان مغناطیسیبه دام انداخت. اما درتعریفی کلی از پلاسما باید گفت که؛ پلاسما حالت چهارمی از ماده است که دانش امروزینتوانسته آنها را جزو سه حالت دیگر پندارد و مجبور شده آنرا حالت مستقلی به حسابآورد. این ماده باماهیت محیط یونیزه، ترکیبی از یونهای مثبتو الکترون با غلظت معین می‌باشد که مقدار الکترونها و یونهای مثبت در یک محیطپلاسما تقریبا برابر است و حالت پلاسمای مواد ، تقریبا حالت شبه خنثایی دارد. پدیده‌های طبیعی زیادی از جمله آتش ، خورشید ، ستارگان و غیره در رده حالت پلاسماییماده قرار می‌گیرند.
    پلاسما شبیه به گاز است، ولی مرکب از ذرات باردارمتحرکی به نام یون است. یونها به شدت تحت تأثیرنیروهایالکتریکی و مغناطیسیقرار می‌گیرند. مواد طبیعی در حالت پلاسما عبارتند ازانواع شعله ،بخشخارجی جو زمین،اتمسفر ستارگان، بسیاری از مواد موجود درفضایسحابیو بخشی ازدمستاره دنباله‌داروشفقهایقطبی شمالیکه نمایش خیره کننده‌ای از حالت پلاسمایی ماده است که درمیدان مغناطیسیجریان می‌یابد.
    بد نیست بدانید که دانش امروزی حالات دیگری از جملهبرهمکنش ضعیفوقوی هسته‌ایرا نیز در دسته‌بندیها به عنوانحالات پنجم و ششم ماده بحساب می‌آورد که از این حالات در توجیهخواص نوکلئونهای هسته،نیروهای هسته‌ای، واکنشهای هسته‌ای و در کلفیزیکذرات بنیادیاستفاده می‌شود.

    چگالی بوز اینشتین
    حالت پنجم با نام ماده چگال بوز - اینشتین (Booze - Einstein condensate) که در سال ۱۹۹۵ کشف شد، در اثر سرد شدن ذراتی به نامبوزونها (Bosons) تا دماهایی بسیار پایینپدید می‌آید. بوزونهای سرد در هم فرو می‌روند و ابر ذره‌ای که رفتاری بیشتر شبیه یکموج دارد تا ذره‌های معمولی ، شکل می‌گیرد. ماده چگال بوز - اینشتین شکننده است وسرعت عبور نور در آن بسیار کم است.



    چگالی فرمیونی
    حالت تازه هم مادهچگال فرمیونی (Fermionic condensate) است. دبورا جین (Deborah Jin) از دانشگاه کلورادو که گروهش در اواخر پاییز۱۳۸۲ ، موفق به کشف این شکل تازه ماده شده است، می‌گوید: وقتی با شکل جدیدی از مادهروبرو می‌شوید، باید زمانی را صرف شناخت ویژگیهایش کنید. آنها این ماده تازه را باسرد کردن ابری از پانصد هزار اتم پتاسیم با جرم اتمی ۴۰ تا دمایی کمتر از یکمیلیونیم درجه بالاتر از صفر مطلق پدید آوردند. این اتمها در چنین دمایی بدونگرانروی جریان می‌یابند و این ، نشانه ظهور ماده‌ای جدید بود. در این حالت اتمهایپتاسیم بدون آنکه چسبندگی میان آنها وجود داشته باشد، بصورت مایع جریان یافتند. حالت چگالیده فرمیونی تا حدی شبیه چگالش بوز - اینشتین است. هر دو حالت از اتمهاییتشکیل شده‌اند که این اتمها در دمای پایین به هم می‌پیوندند و جسم واحدی را تشکیلمی‌دهند. در چگالش بوز - اینشتین اتمها از نوع بوزون هستند، در حالی که در چگالشفرمیونی اتمها فرمیون هستند.

    تفاوت میان بوزونها و فرمیونها
    رفتار بوزونها به گونه‌ای است که تمایلدارند باهم پیوند برقرار کنند و به هم متصل شوند. یک اتم در صورتی که حاصل جمعتعدادالکترون،پروتونونوترونهایشزوج باشد، بوزون است. به عنوان مثال اتمهای سدیم بوزون هستند، زیرا اتمهای سدیم درحالت عادی یازده الکترون ، یازده پروتون و دوازده نوترون دارند که حاصل جمع آنهاعدد زوج ۳۴ می‌شود. بنابراین اتمهای سدیم این قابلیت را دارند که در دماهای پایینبه هم متصل شوند و حالت چگالیده بوز - اینشتین را پدید آورند، اما از طرف دیگرفرمینها منزوی هستند. این ذرات طبقاصل طرد پائولیهنگامی که در یک حالتکوانتومی قرار می‌گیرند همدیگر را دفع می‌کنند و اگر ذره‌ای در یک حالت کوانتومیخاص قرار گیرد مانع از آن می‌شود که ذره دیگری هم بتواند به آن حالت دسترسییابد.
    هر اتم که حاصل جمع تعداد الکترون ، پروتون و نوترونهایش فرد باشدفرمیون است. به عنوان مثال ، اتمهای پتاسیم با عدد جرمی ۴۰ فرمیون هستند، زیرادارای ۱۹ الکترون ، ۱۹ پروتون و ۲۱ نوترون هستند و حاصل جمع این سه عدد برابر ۵۹می‌شود. دکتر جین و همکارانش بر پایه همین خاصیت انزوا طلبی فرمیونها روشی را پیشگرفتند و از میدانهای مغناطیسی کنترل شونده‌ای برای انجام آزمایشها استفاده کردند. میدان مغناطیسیباعث می‌شود که اتمهای منفردباهم جفت شوند و میزان جفت شدگی اتمها در این حالت با تغییر میدان مغناطیسی قابلکنترل است. انتظار می‌رفت که اتمهای جفت شده پتاسیم خواص همانند بوزونها داشتهباشند، اما آزمایشها نشان دادند که در بعضی از اتمها که میزان جفت شدگی ضعیف بودهنوز بعضی از خواص فرمیونی خود را از دست نداده بودند. در این حالت یک جفت ازاتمهای جفت شده می‌تواند به جفت دیگری متصل شود و این جفت شدگی به همین ترتیب ادامهیابد تا اینکه سرانجام باعث تشکیل حالت چگالیده فرمیونی شود

  4. 2 کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده اند


  5. #113
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    جريان پلاسماي خورشيد

    پلاسما گازي ست كه از يون هايي كه آزادانه شناورند تشكيل شده اند. پلاسما جريانات الكتريكي را هدايت مي كند (رسانا ست) و به وسيله ويليام كروكس در سال 1879 كشف شد. انواع بسيار مختلفي از پلاسما وجود دارد. پلاسما در ستارگان (شامل خورشيد) وجود دارد و باد خورشيدي در منظومه شمسي ما از پلاسما ساخته شده.
    دانشمندان پلاسما را حالت چهارم ماده مي دانند، يعني مايع، جامد، گاز و پلاسما. اين ماده با ماهيت محيط يونيزه ، ترکيبي از يونهاي مثبت و الکترون با غلظت معين مي‌باشد که مقدار الکترونها و يونهاي مثبت در يک محيط پلاسما تقريبا برابر است و حالت پلاسماي مواد ، تقريبا حالت شبه خنثايي دارد. پديده‌هاي طبيعي زيادي از جمله آتش ، خورشيد ، ستارگان و غيره در رده حالت پلاسمايي ماده قرار مي‌گيرند. پلاسما شبيه به گاز است، ولي مرکب از ذرات باردار متحرکي به نام يون است. يونها بشدت تحت تاثير نيروهاي الکتريکي و مغناطيسي قرار مي‌گيرند. مواد طبيعي در حالت پلاسما عبارتند از انواع شعله ، بخش خارجي جو زمين ، اتمسفر ستارگان ، بسياري از مواد موجود در فضاي سحابي و بخشي از دم ستاره دنباله‌دار و شفقهاي قطبي شمالي. نمايش خيره کننده از حالت پلاسمايي ماده است که در ميدان مغناطيسي جريان مي‌يابد. بد نيست بدانيد که دانش امروزي حالات ديگري از جمله برهمکنش ضعيف و قوي هسته‌اي را نيز در دسته‌بنديها بعنوان حالات پنجم و ششم ماده بحساب مي‌آورد که از اين حالات در توجيه خواص نکلئونهاي هسته ، نيروهاي هسته‌اي ، واکنش هاي هسته‌اي و در کل فيزيک ذرات بنيادي استفاده مي‌شود.
    ساختار پلاسما : عموما پلاسما را مجموعه‌اي از يونها ، الکترونها و اتمهاي خنثي جدا از هم و تقريبا در حال تعادل مکانيکي ـ الکتريکي مي‌گويند. حالتهاي خاصي را در مقابل مغناطيس نشان مي‌دهد. اين رفتارها کاملا برعکس رفتار گازها در مقابل ميدان مغناطيسي است. زيرا گازها به سبب خنثي بودنشان از لحاظ بار الکتريکي توانايي عکس ‌العمل در مقابل مغناطيس و ميدان وابسته به آن را ندارند. در کنار اين رفتار پلاسما مي‌تواند تحت تاثير ميدان مغناطيسي دروني که از حرکت يونهاي داخلي به عمل مي‌آيد قرار گيرد. همچنين پلاسما بعلت رفتار جمعيتي که از خود نشان مي‌دهد، گرايشي به متاثر شدن در اثر عوامل خارجي ندارد. و اغلب طوري رفتار مي‌کند که گويي داراي رفتار مخصوص به خودش است. معيار ديگر براي پلاسما آن است که فراواني بارهاي مثبت و منفي بايد چندان زياد نباشد که هر گونه عدم توازن موضعي بين غلظت‌هاي اين بارها غير ممکن باشد. مثلا بار مثبت به سرعت بارهاي منفي را به سوي خود مي‌کشد تا توازن بار از نوع برقرار سازد. بنابراين اگرچه پلاسما به مقدار زيادي بار آزاد دارد، ولي از لحاظ بار الکتريکي خنثي است. ماده در حالت پلاسما نسبت به حالتهاي جامد ، مايع و گاز نظم کمتري دارد. با اين حال خنثي بودن الکتريکي پلاسما بطور متوسط انرژي از نظم را نشان مي‌دهد. اگر پلاسما تا دماي زياد حرارت داده شود، نظم موجود در پلاسما از بين مي‌رود و ماده به توده درهم و برهم و کاملا نامنظم ذرات منفرد تبديل مي‌شود. بنابراين پلاسما گاهي نظير سيارات ، رفتاري جمعي و گاهي نظير ذرات منفرد ، بصورت کاملا تکي عمل مي‌کند. بدليل همين رفتارهاي عجيب و غريب است که غالبا پلاسما در کنار گازها و مايعات و جامدات ، چهارمين حالت ماده معرفي مي‌شود. بنابراين با توجه به اينکه چگالي پلاسما قابل توجه مي‌باشد. مدولانک در تک ذرات منفرد به مشکلات رفتار پلاسما افزوده مي‌شود.
    ضرورت بررسي پلاسماي طبيعي : با وجود اين پيچيدگي‌ها با عنايت به اينکه 99 درصد ماده موجود در طبيعت و جهان در حالت پلاسما است. علاقمندي ما به پلاسما جدا از بسياري کاربردها نظير توليد انرژي، عدسي پلاسمايي براي کانونش انرژي و ... معتدل مي‌باشد، چرا که از ترک زمين ، با انواع پلاسماها مانند «يونسفر ، کمربندها و بادهاي خورشيدي) مواجه مي‌شويم. بنابراين فيزيک پلاسما نيز در کنار ساير شاخه‌هاي علوم فيزيکي ، در شناخت محيط زندگي ما در قالب رشته ژئوفيزيک از يک اهميت زيادي برخوردار است.
    انواع پلاسما
    پلاسماي جو: نزديکترين پلاسما به ما «کره زمين) ، يونوسفر (Ionosphere) مي‌باشد که از صد و پنجاه کيلومتري سطح زمين شروع و به طرف بالا ادامه مي‌يابد. لايه‌هاي بالاتر يونسفر ، فيزيک سيستمها به فرم پلاسما مي باشند که توسط تابش موج کوتاه در حوزه وسيعي ، از طيف اشعه فرابنفش گرفته تا پرتوهاي ايکس و همچنين بوسيله پرتوهاي کيهاني و الکترونهايي که به گلنونسفر اصابت مي‌کنند يونيزه مي‌شوند.
    شفق قطبي: پديده شفق نيز نوعي پلاسما است که تحت اثر يونيزاسيون ايجاد مي‌شود. يونسفر پلاسمايي با جذب پرتوهاي ايکس ، فرابنفش ، تابش خورشيدي ، انعکاس امواج کوتاه و راديويي اهميت اساسي در ارتباط راديويي در سرتاسر جهان دارد. با همه اين احوال نه تنها زمين بلکه زهر و مريخ نيز فضايي يونسفري دارند. ملاحظات نظري نشان مي‌دهد که در ساير سياره‌هاي منظومه شمسي نظير مشتري ، زحل ، اورانوس ، نپتون نيز بايد يونسفرهاي قابل مشاهده وجود داشته باشد.
    فضاي بين سياره‌اي نيز از پلاسماي بين سياره‌اي در حال انبساط پر شده که محتواي يک ميدان مغناطيسي ضعيف (حدود 5 به توان 10- تسلا) است.
    هسته‌هاي ستارگان دنباله دار نيز به فضاي بين پلاسمايي پرتاب مي‌کند.
    از طرف ديگر ، خورشيد منظومه شمسي مانند يک کره پلاسمايي است. درخشندگي شديد خورشيد ، معمولا عين يک درخشندگي پلاسمايي مي‌باشد. خورشيد به سه قشر گازي فتوسفر ـ کروموسفر و کورونا (که کروناي آن بيش از يک ميليون درجه ، حرارت دارد) احاطه شده است و انتظار مي‌رود که هزارها سال به درخشندگي خود ادامه بدهد.
    کاربرد پلاسماي يونسفر : يونوسفر زمين در ارتباطات راديويي اهميت زيادي دارد. توضيح اين نکته لازم است که يونوسفر ، امواج راديويي با فرکانسهاي بيش از 30 مگاهرتز (بين امواج رادار و تلويزيون) را عبور مي‌دهد. ولي امواج با فرکانسهاي کمتر (کوتاه ، متوسط و بلندراديويي) را منعکس مي کند. همچنين شايان ذکر است که ضخامت يونسفر زمين که از چند لايه منعکس کننده تشکيل شده است با عواملي نظير شب و روز آشفتگي پلاسمايي سطح خورشيد در ارتباط نزديک مي‌باشد.
    بادهاي خورشيدي : خورشيد منظومه شمسي منبع نيرومندي از جريان مداوم پلاسما به صورت باد خورشيدي است. باد خورشيدي اصطلاحي براي ذرات تشعشع يافته نظير بادهايي در حدود 100 هزار درجه کلوين است. باد خورشيدي پديده پيچيده‌اي است که سرعت و چگالي آن متغير مي‌باشد. متغير بودن پلاسماي بادي به فعاليت خورشيد بستگي دارد. گفتني است که به دليل 100 برابر بودن انرژي جنبشي پلاسما نسبت به انرژي مغناطيسي‌اش ، اصطلاح باد مغناطيسي به آن داده‌اند.

  6. #114
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    مول (Mole)
    اطلاعات اوليه
    چون وزن اتمي فلوئور 19.0 و وزن اتمي هيدروژن 1.0 است، سنگيني يك اتم فلوئور 19 برابر يك اتم هيدروژن خواهد بود. حال اگر 100 اتم فلوئور و 100 اتم هيدروژن را در نظر بگيريم، جرم مجموع اتم‌هاي فلوئور 19 برابر جرم اتم‌هاي هيدروژن مي‌شود. پس جرم‌هاي هر دو نمونه‌اي از فلوئور و هيدروژن كه عمده اتم‌هاي آنها برابر باشد همان نسبت 19.0 به 1.0 يعني نسبت وزنهاي اتمي آنها ، خواهد بود.
    اگر 19.0g فلوئور و 1.0g هيدروژن داشته باشيم. اين دو مقدار بر حسب گرم و از لحاظ عددي برابر وزن‌هاي اتمي اين دو عنصر است. چون جرم‌هاي اين دو نمونه نسبت 19.0 به 1.0 دارد، نمونه‌ها بايد شامل تعداد اتم‌هاي مساوي باشند. در واقع ، نمونه‌اي از هر عنصر كه جرم آن بر حسب گرم عددي برابر با وزن اتمي آن عنصر باشد، شامل اين عده اتم‌هاي يكسان خواهد بود.
    اين عدد را به افتخار آمدو آووگادرو عدد آووگادرو مي‌نامند. آووگادرو نخستين كسي بود كه رفتار گازها در واكنش شيميايي را بر حسب عده مولكولها واكنش دهنده ، توضيح داد. مقدار عدد آووگادرو با آزمايش معين شده و تا شش رقم با معني عبارت است از:6.02205x10**23
    تعريف مول
    مقدار خالصي كه شامل عدد آووگادرو واحد اصلي باشد يك مول ناميده مي‌شود كه يك واحد اصلي است. تعريف مول مقدار ماده خالصي است كه تعداد واحد‌هاي مستقل اصلي آن دقيقا برابر با تعداد اتم‌هاي 12g كربن 126C باشد.
    پس نمونه‌اي از يك عنصر كه جرم آن بر حسب گرم از لحاظ عددي برابر با وزن اتمي آن عنصر باشد، شامل يك مول از اتمهاي آن عنصر ، يعني شامل عدد آووگادرو اتم است. مثلا وزن اتمي بريليم 9.01218 است.
    بنابر اين : اتم بريليم Be=1mol Be = 6.02205x10**23 9.01218
    مول ماده مولكولي
    يك مول مركب از عدد آووگادرو واحد مستقل است. يك مول ماده مولكولي مركب از عدد آدوگادرو مولكول و جرمي بر حسب گرم دارد كه از لحاظ عددي برابر با وزن مولكولي آن ماده است. مثلا وزن مولكولي H2O برابر 18.02 گرم است، پس مولكول H2O با
    18.02g H2O =1MolH2O =6.02205x10**23 مولكول آب H2O .
    چون يك مولكول آب دو اتم H و يك اتم O دارد، يك مول H2O شامل دو اتم H و يك مول اتم O است.
    با استفاده از تعريف مول، نوع واحد مستقلي كه اندازه گيري مي‌شود بايد مشخص باشد. يك مول از اتم هاي H شامل 6.02205x10**23 اتم H و جرم آن ، تا سه رقم با معني ، 1.01g است، يك مول از مولكولهاي H2 شامل 6.02205x10**23 مولكول H2 و جرم آن 2.02g است. براي فلوئور : فلوئو گرم MolF=6.02205x10**23 F=19.0
    مولكول فلووئور 1MolF2=6.02205x10**23 F2=38.0g
    مول در مواد يوني
    وقتي مي گوييم يك مول(BaCl2) به اين معني است كه نمونه مورد نظر ما شامل عدد آووگادرو واحد فرمولي است كه واحد مستقل آن مشخص است. يك مول BaCl2 جرمي برابر 208.3g دارد كه همان وزن فرمولي BaCl2 است. در واقع ، يك مول BaCl2 شامل ، باريم
    137.3g= يون 1MolBa2=6.02205x10**23Ba2
    كلر: 71.0g= يون 2MolCl2=6.02205x10**23BaCl2
    كه روي هم مي‌شود :
    208.3g Bacl2= واحد 1MolBaCl2=6.02205x10 **23Cl2
    (** به معني به توان مي باشد. 10 به توان 23 )
    خوب است بدانيد:
    در سال 1811 آمادئو آووگادرو، قانون تركيب حجمي را توضيح داد. اصل آووگادرو مي‌گويد: حجمهاي مساوي همه‌ي گازها در دما و فشار يكسان، داراي تعداد مولكولهاي برابر هستند. به عكس، تعداد مولكولهاي برابر از هر دو گاز، تحت شرايط دما و فشار يكسان، حجمهاي برابر را اشغال مي‌كنند. يك مول از يك ماده داراي 23**10*022/6 ذره است. بنابراين در شرايط دما و فشار يكسان، يك مول از يك گاز حجمي برابر با يك مول از هر گاز ديگر اشغال مي‌كند. در شرايط متعارفي اين حجم، به حجم مولي گاز در شرايط متعارفي موسوم است و برابر با 414/22 ليتر مي‌باشد.
    - تعداد واحدها در يك مول به افتخار آمادئو آووگادرو ، عدد آووگادرو ناميده مي‌شود . وي نخستين كسي بود كه رفتار گازها را برحسب تعداد مولكول‌هاي واكنش دهنده توجيه كرد .
    درواقع آقاي آووگادرو خودش مقدار عددي اين عدد را نتوانست به دست آورد، اما چون وي رفتار گازها را بر حسب تعداد مولكولهاي واكنش دهنده را مورد بررسي قرار داد، بعدها كه اين عدد بدست آمد، به افتخار آووگادرو كه بنيان گذار اين كار بود، به نام وي نام گذاري نمودند.
    مقدار اين عدد با روشهاي الكترو شيميايي و بلور شناسي معين شده است . در روش بلور شناسي مثلا يك عنصر را در نظر مي‌گيرند سپس با دستگاه‌هاي دقيق ساختار عنصر و طول هريك از اضلاع سلول واحد بلور و وزن اتمي عنصر و وزن حجمي آن را مشخص مي‌كنند . سپس به كمك يك عمليات رياضي مي‌توان به عدد آووگادرو دست يافت به عنوان مثال نيكل در سيستم مكعبي با وجوه مركز پر متبلور مي‌شود . طول هر يك از اضلاع سلول واحد 52/3 آنگسترم ، وزن اتمي نيكل 7/58 و وزن حجمي آن 94/8 است .حال به كمك اين داده‌ها عدد آووگادرو را حساب مي‌كنيم : هر سلول واحد داراي چهار اتم نيكل است . اگر عدد آووگادرو را N در نظر بگيريم ، وزن هر اتم برابر( 7 /58 تقسيم بر N) گرم خواهد بود . وزن هر سلول واحد چهار برابر اين مقدار و حجم آن برابر( 52/3 ضرب در ده به توان منفي هشت ) كل اين مقدار به توان سه ، سانتيمتر مكعب است . حال اكر اين دو را تقسيم كنيم چگالي نيكل بدست مي‌آيد كه البته ضريبي است از Nبا توجه به اينكه مي‌دانيم چگالي نيكل برابر است با 94/8 پس با مي‌توانيم مقدار N را كه همان عدد آووگادرو است حساب كرد . اگر بخواهيم از روش الكترو شيمي استفاده كنيم بايستي عدد فاراده را تقسيم بر بار يك الكترون تنها كنيم كه در اين صورت مقدار عدد آووگادرو حساب مي‌شود .
    كاربرد عدد آووگادرو
    براي بيان مفهوم اتم گرم
    شيميدان‌ها جرم يك مول يا 6.023*10**23اتم را اتم گرم مي‌گويند و آنرا برحسب گرم بيان مي‌كنند. براي مثال اتم اكسيژن ، 16 گرم و اتم كربن ، 12 گرم است؛ يعني جرم يك مول از اتمهاي اكسيژن كه شامل 6.023*10**23اتم است، برابر 16 گرم و به همين ترتيب ، جرم يك مول از اتم‌هاي كربن برابر 12 گرم است.
    مفهوم مولكول گرم
    بديهي است جرم يك مول از مولكول‌هاي يك ماده كه «مولكول گرم» ناميده مي‌شود. به كمك اتم گرم اتم‌هاي سازنده آن به آساني قابل محاسبه است. براي مثال ، مولكول گرم اكسيژن O2 برابر مجموع دو اتم اكسيژن 16+16=32گرم و مولكول گرم CO2برابر است با مجموع دو اتم اكسيژن و يك اتم كربن 44=16+16+12 گرم است.
    مفهوم جرم مولكولي
    شمار اجزاي يك مول برابر با عدد آووگادرو است. تعداد مولكول‌هاي موجود در يك مول از يك تركيب مولكولي ، برابر با عدد آووگادرو است و جرم آن بر حسب گرم برابر با وزن مولكولي آن تركيب است. براي مثال ، وزن مولكولي H2Oبرابر با 18.02 است. در نتيجه داريم:
    1mol H2O= 6.023*10**23 H2O
    مولكول چون يك مولكول آب داراي يك اتم O است يك مولكول H2Oشامل دو اتم از اتم H و يك مولكول از اتم O است

  7. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  8. #115
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    دانلود فلش پيل الكترو شيميايي:
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

  9. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  10. #116
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    شماره گذاری فریون ها
    شماره گذاری فریون ها برحسب قراردادی می باشد که به صورت یک عدد سه رقمی مشخص می شوند.
    در واقع اعداد 11 و 12 به صورت 011 و 012 هستند که از سمت چپ به ترتیب (تعداد کربن -1) سپس (تعداد هیدروژن +1) ودر سمت راست تعداد فلوئور نشان داده می شود. پس مثلا فریون 011 یعنی تعداد کربن برابر1وتعداد هیدروژن برابر 0 وتعدا فلوئور برابر 1 است (بقیه ظرفیت کربن را کلر پر می کند.) :CFCl3

    می توان به این صورت نیز عمل کرد که عدد دو رقمی داده شده را با عدد 90 جمع کنیم عددی 3 رقمی بدست می آید (101=90+11) که از سمت چپ 1 نشان دهنده تعداد کربن و 0 نشان دهنده تعداد هیدروژن و 1 بعدی نشان دهنده تعداد فلوئور است . تعدا کلر را نیز می توان از رابطه زیر بدست آورد:

    تعداد فلوئور - تعداد هیدروژن - 2 + تعداد کربن ضرب در 2 =تعداد کلر

  11. #117
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    رادیکال آزاد
    هر چند که در ساده‌ ترین تعریف، رادیکال آزاد، هر یک از مولکولها و اتمهایی است که دارای یک الکترون جفت نشده باشند. ولی باید توجه داشت که مولکولهایی مانند اکسید نیتریک و اکسیژن نیز از این قاعده پیروی می‌کنند، لکن بصورت عادی نمی‌توانند از باب رادیکالهای آزاد مطرح باشند بنابراین این اصطلاح (یعنی رادیکال آزاد) شامل مولکولهای عادی پایدار نمی‌شود. از جمله رادیکالهای آزاد ساده می‌توان به CH3 ,CN ,OH ,Cl ,H اشاره کرد. چنینی رادیکالهایی از اهمیت فوق العاده‌ای در واکنشهای گرمایی و فتوشیمیایی، پلیمریزاسیون و احتراق برخوردارند. آنها در هر دو فاز مایع و گازی دارای اهمیت می‌باشند، لکن به هر حال دستگاههای فاز گازی بسیار ساده تر بوده و تفسیر قاطعانه‌تری را اجازه می‌دهند. با وجود این حتی در فاز گازی، روشهای تجربی بناچار پیچیده و غیر مستقیم هستند، زیرا موادی با چنین طول عمر کوتاه را نمی‌توان در غلظتهای زیاد تهیه کرد. بنابراین چنین عواملی، امکان تهیه، ارزیابی و شناسایی رادیکالها را با اشکالات بسیار زیاد مواجه می‌سازد.


    در طول قرن نوزده میلادی غالبا رادیکالهای آزاد بصورت ناصحیح بعنوان اصل مسلم در نظر گرفته می‌شده‌اند. فرضیه آووگادرو بوسیله شیمیدانان مواد آلی آن زمان بصورت جدی مورد توجه واقع نشده بود و موادی مانند C2H6 غالبا بصورت CH3 توصیف می‌گردید. با پایان یافتن قرن نوزده میلادی، این وضعیت مورد بررسی قرار گرفت و امکان موجودیت رادیکالهای آزاد، با کشف تری‌فنیل‌متیل‌رادیکال بوسیله گامبرگ "Moses Gomberg" به وضوح تایید شد. پس از این تاریخ بسیاری از رادیکالهای آزاد کشف و چنینی ترکیباتی در مکانیزمهای شیمی آلی بعنوان یک اصل پذیرفته شد.



    تشکیل رادیکال آزاد
    بطور کلی، رادیکالهای آزاد بوسیله شکستگی یک پیوند در یک مولکول پایدار، با بوجود آمدن دو قطعه که هر یک از آنها حاوی یک الکترون جفت نشده است، تشکیل می‌شوند.
    R1__R2 <------> R1. + .R2

    باید توجه داشت که امکان دارد قطعات حاصله بطریقی تغییر شکل یابند و بویژه این تغییر شکل از ترکیب شدن مجدد آنها شود. در بسیاری از موارد، ترکیب شدن مجدد تقریبا در هر برخورد R1 و R2 با همنوع خود رخ می‌دهد و ترکیب مخلوط تعادلی تحت شرایط معمولی، دلالت بر تجزیه مقدار بسیار کمی از ترکیب به رادیکالها می‌نماید. همچنین بسیاری از روشهای دیگر نیز باستثنای ترکیب شدن مجدد مورد ملاحظه قرار گرفته است که با استفاده از آنها، رادیکالها تغییر شکل داده اند. رادیکالها از طول عمر کوتاهی (معمولا کمتر از 3- 10 ثانیه) برخوردارند و به همین دلیل آنها غالبا دارای اهمیت بسیار زیادی در علم سینتیک واکنش هستند.

    روشهای تهیه رادیکال آزاد
    روشهای متداول تهیه رادیکالهای آزاد را می‌توان به سه نوع گرمایی، الکتریکی و فتوشیمیایی تقسیم نمود:

    روش گرمایی
    در روشهای گرمایی، یک مولکول پایدار در درجه حرارت زیاد تجزیه می‌شود. باید توجه داشت که در شرایط استثنایی امکان دارد که در یک حالت تعادلی، تفکیک بسوی رادیکالها قابل ملاحظه باشد. بنابراین امکان دارد که اتمهای هیدروژن بوسیله حرارت دادن به هیدروژن در یک درجه حرارت بسیار زیادی تهیه شوند:

    .H2 <----> 2H

    بعنوان مثال در دمای 1900 k˚ این حالت تعادلی در فشار یک اتمسفر بسوی 1% تفکیک سوق داده می‌شود.
    همچنین در چند مورد، تفکیک بسوی رادیکالها در دمای اطاق در موادی در محلول، مشاهده شده است. بدین ترتیب امکان تهیه رادیکالها، در غلظتهای زیاد و با طول عمر قابل ملاحظه وجود دارد. از جمله مواردی که می‌توان بدان اشاره کرد، هگزا فنیل‌اتان است که در محلول بنزن در 5 درجه سانتیگراد تا حد 3% به رادیکالهای تری‌فنیل‌متیل با غلظت 3-2% تفکیک شده و نیز هگزا- (پارا- بی- فنیلیل)-اتان است که واقعا در شرایط مشابه تا حد 100% تفکیک شده است.
    به هر حال معمولا تجزیه های گرمایی برگشت ناپذیر می‌باشند. در این حال اکثر مواد آلی گازی تماما و یا قسمتی از آنها بوسیله مکانیزمی که طی آن، شکافتن مولکول بسوی رادیکالها با تشکیل دو رادیکال متیل آغاز می‌شود، تجزیه می‌گردند.

    C2H6 <-------> 2 .CH3


    روش الکتریکی
    در روش الکتریکی رادیکالها را می‌توان از طریق عبور گاز مورد نظر از مکانی که یک تخلیه الکتریکی در سرعت زیاد در آن برقرار می‌شود، تهیه نمود. در این روش طیفهای اتمی تهیه می‌شوند و از این روش غالبا برای بررسی واکنشهای شیمیایی اتمهای هیدروژن، اکسیژن و نیتروژن استفاده می‌گردد.



    یک ترکیب دارای رادیکال


    روش فتوشیمیایی
    از جمله روشهایی که برای تهیه رادیکالهای آزاد بسیار عمومیت دارد، روشهای فتوشیمیایی است. تقریبا کلیه ترکیبات آلی گازی به روش فتوشیمیایی از مسیر رادیکالهای آزاد تجزیه می‌شوند و این روش از کاربرد گسترده‌ای برخوردار است. بدین روش، دو ماده کلر و استون در حد گسترده‌ای مورد استفاده واقع می‌شوند. کلر در تابش نور در ناحیه پیوسته طیف جذبی خود به اتمهای کلر تجزیه می‌شود.

    cl2 + hv <------> 2.cl

    بسیاری از واکنشهای اتمهای کلر بدین روش مورد بررسی قرار گرفته‌اند. همچنین فتولیز "photolysis" استون در حد گسترده‌ای مورد بررسی قرار گرفته است. در چنین واکنشی بدون هیچ گونه ابهامی ثابت شده است که شکافت اولیه با استفاده از تابش گستره 2537 تا 3130 آنگستروم رخ می‌دهد.

    CH3COCH3+ hv <---------> .CH3CO+ .CH3

    این واکنش یکی از عمومی‌ترین منابع تهیه رادیکالهای متیل و استیل است.
    تابش امواج با طول موج کوتاه و ذرات بنیادی پر انرژی (مانند آنچه در فروپاشیهای هسته‌ای ملاحظه می‌شود) نیز امکان دارد که بسوی تهیه رادیکالها و یونها سوق داده شود. باید توجه داشت که چنین سیستمهایی همه روزه از اهمیت بیشتری برخوردار می‌شوند، لکن معمولا پیچیده هستند.

    شناسایی رادیکالها
    اولین روشهای شناسایی رادیکالها، مستلزم در نظر گرفتن خواص شیمیایی آنها بوده است. بعدها از روش های مطمئن‌تری مانند طیف سنجی جذبی و طیف سنجی جرمی استفاده شد. به طور کلی، شناسایی رادیکالها به روشهای زیر انجام می‌گیرد:

    روشهای شیمیایی
    ازاله آئینه (mirror removal method)
    گیر اندازی رادیکالها
    طیف‌بینی جذبی (absorption spectroscopy)
    طیف‌سنجی جرمی (mass spectrometry)

  12. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  13. #118
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    طیف سنجی جرمی

    تاریخچه
    اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.
    اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.
    اصول طیف سنجی جرمی
    به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:

    مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.

    یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.

    یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.
    دستگاه طیف سنج جرمی
    هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.
    سیستم ورودی نمونه
    قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.
    در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.
    روزنه مولکولی
    نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.
    در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.
    محفظه یونیزاسیون
    هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.
    این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.
    بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا پمپهای خلا که به محفظه یونیزاسیون متصل نیستند، خارج می‌گردند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحه دافع جذب می‌گردند. ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.
    پتانسیل یونیزاسیون
    انرژی لازم برای برداشتن یک الکترون از یک اتم یا مولکول ، پتانسیل یونیزاسیون آن است. بسیاری از ترکیبات آلی دارای پتانسیل یونیزاسیونی بین 8 تا 15 الکترون ولت هستند. اما اگر پرتو الکترونهایی که به مولکولها برخورد می‌کند، پتانسیلی معادل 50 تا 70 الکترون ولت نداشته باشد، قادر به ایجاد یونهای زیادی نخواهد بود. برای ایجاد یک طیف جرمی ، الکترونهایی با این میزان انرژی برای یونیزه کردن نمونه بکار برده می‌شوند.
    تجزیه گر جرمی
    پس از گذر کردن از محفظه یونیزاسیون ، پرتو یونها از درون یک ناحیه کوتاه فاقد میدان عبور می‌کند. سپس آن پرتو ، وارد "تجزیه گر جرمی" شده که در آنجا ، یونها بر حسب نسبت بار/جرم آنها جدا می‌شوند. انرژی جنبشی یک یون شتاب داده شده برابر است با:
    12mv2=ev
    که m جرم یون ، v سرعت یون ، e بار یون و V اختلاف پتانسیل صفحات شتاب دهنده یون است.

    در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیر است:
    (r =MV)/eH
    که r شعاع انحنای مسیر و H قدرت میدان مغناطیسی است.


    اگر این دو معادله را برای حذف عبارت سرعت ترکیب کنیم، خواهیم داشت:

    این معادله مهمی است که رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توجیه می‌کند.

    طیف سنج جرمی


    تجزیه گر جرمی و قدرت تفکیک از معادله فوق چنین بر می‌آید که هر قدر ، مقدار m/e بزرگتر باشد، شعاع انحنای مسیر نیز بزرگتر خواهد بود. لوله تجزیه‌گر دستگاه طوری ساخته شده است که دارای شعاع انحنای ثابتی است. ذره‌ای که نسبت m/e صحیحی داشته باشد، قادر خواهد بود تا طول لوله تجزیه‌گر منحنی شکل را طی کرده ، به آشکار کننده نمی‌رسند. مسلما اگر دستگاه ، یونهایی را که جرم بخصوصی دارند، نشان دهد. این روش چندان جالب نخواهد بود.
    بنابراین بطور مداوم ، ولتاژ شتاب دهنده یا قدرت میدان مغناطیسی تغییر یافته تا بتوان کلیه یونهایی که در محفظه یونیزاسیون تولید گشته‌اند را آشکار ساخت. اثری که از آشکار کننده حاصل می‌گردد، بصورت طرحی است که تعداد یونها را بر حسب مقدار m/e آنها رسم می‌کند. فاکتور مهمی که باید در یک طیف سنج جرمی در نظر گرفتن قدرت تفکیک آن است. قدرت تفکیک بر طبق رابطه زیر تعریف می‌شود:
    (R=M)/M
    که R قدرت تفکیک ، M جرم ذره و M∆ اختلاف جرم بین یک ذره با جرم M و ذره بعدی با جرم بیشتر است که می‌تواند توسط دستگاه تفکیک گردد. دستگاههایی که قدرت تفکیک ضعیفی دارند، مقدار R آنها حداکثر 2000 در بعضی مواقع قدرت تفکیکی به میزان پنج تا ده برابر مقدار فوق مورد نیاز است.
    آشکار کننده
    آشکار کننده بسیاری از دستگاهها ، شامل یک شمارشگر است که جریان تولیدی آن متناسب با تعداد یونهایی است که به آن برخورد می‌کند. با استفاده از مدارهای الکترون افزاینده می‌توان آن قدر دقیق این جریان را اندازه گرفت که جریان حاصل از برخورد فقط یک یون به آشکار کننده اندازه ‌گیری شود.
    ثبات آشکار کننده
    سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که این ثبات خود طیف جرمی را ایجاد می‌نماید. در دستگاههای جدید ، خروجی آشکار کننده از طریق یک سطح مشترک به رایانه متصل است. رایانه قادر به ذخیره اطلاعات بوده و خروجی را به هر دو صورت جدولی و گرافیکی در می‌آورد. دست آخر داده‌ها با طیفهای استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.
    در دستگاهها قدیمیتر ، جریان الکترونی حاصل از آشکار کننده به یک سری از پنج گالوانومتر با حساسیتهای متفاوت داده می‌شود. پرتو نوری که به آینه‌های متصل به گالوانومترها برخورد می‌کند و به یک صفحه حساس به نور منعکس می‌گردد. بدین طریق یک طیف جرمی با پنج نقش بطور همزمان ، هر یک با حساسیتی متفاوت ایجاد می‌گردد. در حالی که هنوز دستگاه قویترین قله‌ها را در صفحه طیف نگاه می‌دارد، با استفاده از این پنج نقش ثبت ضعیفترین قله‌ها نیز ممکن می‌گردد.

  14. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  15. #119
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    پلی استیرن ( یونولیت )

    یونولیت یا پلی‌استیرن (Polystyrene) که در ایران با نام‌ تجاری پلاستوفوم هم شناخته می‌شود، نوعی پلیمر سفید رنگ و عایق رطوبت و صدا و حرارت است که از فرایندهای پتروشیمی تهیه می‌شود. این ماده اولین بار توسط آلمان نازی در جنگ جهانی دوم برای ساخت پل‌های شناور روی آب ساخته شد.
    مونومر این پلیمر استیرن است. پلی استیرن ویژگی بلوری ندارد و بنابرین بسیار شفاف است. تراکم حاقه های بنزنی متصل به زنجیر اصلی درشت مولکول مانع نظم ساختاری گشته و باعث مس شود پلی استیرن ماهیتا بی شکل باشد.با توجه به اینکه دمای گذار شیشه ای شدن پلی استیرن خیلی بالاتر از دمای معمولی است پلاستیک مفیدی است. این ویژگی باعث می شود که پلاستیک فوق العاده سخت و کمی شکننده باشد.
    این پلی مر سخت , شکننده , شفاف و صیقل است و چگالی ان حدود 1.09 - 1.04 g/ml است. نور معمولی را تا حدود 90 درصد از خود عبور می دهد و ماده مناسبی جهت تهیه شیشه مصنوعی و ویترین ها در فضای بسته است.
    روش تهیه :
    مخلوطی از 22 میلی لیتر اب مقطر و 0.36 میلی لیتر محلول سدیم فسفات 10% و 0 میلی لیتر امونیاک غلیظ را در بالن بریزید و بر روی هم زن مغناطیسی قرار دهید و با سرعت 100 - 60 دور در دقیقه هم بزند.
    6 میلی لیتر اب مقطر و 0.75 میلی لیتر کلسیم کلرید 10% را به تدریج در طول 30 دقیقه به وسیله قیف جداکننده به بالن اضافه کنید. این غمل باعت تشکیل کلسیم فسفات می شود که برای پخش مونومر در محیط به کار می رود. پس از اضافه کردن این مخلوط را داخل حمام اب 90 درجه سانتیگراد بگذارید و دمای بخاری و سرعت مگنت را تا انتهای واکنش ثابت نگه دارید. به 10 میلی لیتر مونومراسیون تقطیر شده 0.4 گرم بنزوئیل پروکسید اضافه کنید و پس از حل شدن این مخلوط را به وسیله قیف جداکننده در 10 دقیقه به مخلوط اضافه کنید. پس از دو ساعت پلی استیرن حاصل را روی قیف بوخنر صاف کنید و پس از شستشو با اب یا کلریدریک اسید 2% در اتو 40 درجه سانتیگراد خشک کنید.

  16. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


  17. #120
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    شيمي سيمان
    تركيبات سيمان : هر يك از انواع خاص سيمان نسبتهاي مختلفي از سيستم سه تايي SiO2 _ AlO2 _ CaO مي باشد.
    سيمان به عنوان چسب:

    سيمان به عنوان چسب براي چسباندن خرده ها و ذرات چوب سالها مورد استفاده بوده است. با اين ماده و با استفاده از خاك اره بلوكهايي براي تهيه ي ديوارهاي داخلي منازل تهيه مي شد. در اروپا قطعاتي مركب از چوب و پشم تهيه مي شد كه به دليل دارا بودن دوام زياد و هدايت گرمايي كم كاربرد وسيعي در ساخت پوشش روي سقف ساختمانها داشت.تلاش هاي اوليه براي توليد تخته هاي ساخته شده از سيمان و خرده چوب به دليل سنگيني زياد و استحكام كم محصول و به ويژه مقاومت كم ان در برابر ضربه چندان موفقيت آميز نبود. در تهيه ي چند سازه هاي چوب _ سيمان بايستي در انتخاب گونه ي چوب مناسب دقت شود تا از تخريب شيميايي سيمان (مسموم شدن سيمان ) جلوگيري شود. به دليل مقدار و نوع قند ها ٬ همي سلولزها و تركيبات فنولي موجود در چوب اغلب گونه ها گاهي اوقات سيمان خودش را نمي گيرد.در اينجا بايد پرورده شدن (سفت شدن ) تحت فشار انجام گيرد.از آنجا كه پرورده شدن سيمان فرايند بسيار كندي است لازم است قطعات ساخته شده را به صورت متصل به گيره به مدت 6 تا 8 ساعت در اتاق هاي گرم 70 تا 80 درجه ي سانتي گراد نگه داشت. همين موضوع فرايند توليد را كند مي كند و قيمت فراورده را بالا مي برد. گرچه با استفاده از چسب هاي سيماني تخته هاي سنگيني توليد مي شود با استفاده از سيمان پورتلند تخته هايي توليد مي شود كه پايداري ابعادي زيادي دارند. اين تخته ها بسيار پردوام بوده و تقريبا نسوزمي باشند.

    سيمان پرتلند : اين نوع سيمان مهمترين نوع سيمان از نظر توليد و مصرف به شمار مي رود. اين ماده از كلينكر و افزودني هاي گچ يا آنيدريت تشكيل شده است.مواد اوليه ي مورد استفاده در توليد كلينكرهاي سيمان پرتلند عبارتند از : مارل آهكي (مخلوط طبيعي سنگ آهك و رس ) يا مخلوط سنگ آهك يا نرم آهك با رس.

    اجزاء كلينكر سيمان پرتلند : وجود تري كلسيم سيليكات در سيمان پرتلند اين ماده را از خواص مطلوبي نظير سخت شدن سريع و استحكام بالا بهره مند مي سازد. به همين دليل در توليد كلينكرهاي سيمان پرتلند اطمينان از مقدار تري كلسيم سيليكات تا بيشترين حد ممكن حائز اهميت است. تنظيم دقيق مقدار آهك از اهميت فراواني برخوردار است. طبق نظر اچ كوهل حداكثر مقدار آهكي كه مي تواند با SiO2 ٫ Al2 O3 و Fe2 O3 تركيب شود با استفاده از فرمول زير محاسبه مي شود:

    CaOMax = 2.8x SiO2 + 1.1xAl2 O3 + 0.7x Fe2 O3

    وقتي مقدار آهك از مقدار مجاز بالاتر باشد در كلينكر آهك آزاد وجود خواهد داشت. Ca( OH)2 يا Mg(OH)2 كه در اثر هيدراته شدن آهك آزاد (CaO يا MgO) ايجاد مي شود فضاي بيشتري نسبت به اكسيد اوليه اشغال مي كند. پديده ي معروف به انفجار آهكي يا انفجار منيزيايي ناشي از حضور همين كلوخه هاي درشت بلورين CaO يا MgO است زيرا واكنش با آب بسيار آهسته انجام مي گيرد و پس از سخت شدن سيمان نيز ادامه مي يابد. در نتيجه مقدار اهك اضافه شده هميشه كمتر از مقدار محاسبه شده مي باشد.

    توليد سيمان پرتلند: براي توليد كلينكر از روشهاي مختلفي استفاده مي شود: در روش تر مواد آغازين به صورت تر آسياب مي شوند تا يك دوغاب خام به وجود ايد سپس اين دوغاب در كوره ي دوار خشك و پخته مي شود در اين روش امكان تامين ساده و دقيق مقدار اجزاء تركيب وجود دارد و مرحله ي آسياب به انرژي كمي نياز دارد. در صورتي كه در مرحله ي پخت بعدي به دليل مقدار آبي كه بايد تبخير شود انرژي بيشتري مصر ف خواهد شد. استفاده از روش تر صرفا در مواردي كه مقدار آب موجود در مواد آغازين بيش از بيست در صد و يا انجام عمليات تر اجتناب ناپذير باشد. در روش نيمه تر آب دوغاب خام كه به صورت تر تهيه شده به كمك صافي فشار (----- پرس ) خارج مي شود خمير حاصل به شكل گندله پرس شده و به همين صورت در كوره ي دوار پخته مي شود. در روش نيمه خشك كه متفاوت از روش نيمه تر است مواد آغازين به صورت خشك آسياب و مخلوط مي شوند. سپس خوراك خام همگن شده ي حاصله به كمك آب و برروي ميز گرانول سازي به شكل گندله تبديل مي شود.در روش خشك مواد آغازين به صورت خشك آسياب و مخلوط مي شوند تا خوراك خام به دست آيد مواد در حال آسياب شدن به كمك گازهاي داغ خروجي پخت خشك مي شوند به طوري كه مقدار رطوبت باقي مانده كمتر از يك در صد شود و بعد از آن به كوره ي پخت انتقال داده مي شوند.در تمام روشهاي فوق پخت مواد اوليه در دماي حدود 1450 درجه ي سانتي گراد و معمولا در كوره هاي دوار انجام مي شود. در كوره هاي دوارخوراك خام توسط گازهاي داغ خروجي پيش گرم مي شود با استفاده از پيش گرم هاي ويژه (پيش گرم كنهاي مشبك و پيش گرمكنهاي سيكلوني) بازيابي گرما با كارايي بيشتري صورت مي گيرد. و اما كوره هاي استوانه اي صرفا براي كارخانه هاي خيلي كوچك (كمتر از 300 تن در روز )اقتصادي هستند.نهايتا پس از گذشتن از مراحل فوق كلينكر به دست آمده آسياب مي شود. قبل از آسياب كردن تا 6.5 در صد گچ ( 2H2 O CaSO4 ) يا آنيدريت ( CaSO4 ) به كلينكر اضافه مي شود.

    كاربردهاي سيمان پرتلند: اين سيمان در صنايع ساختماني براي توليد بتون همراه با موادي مانند قلوه سنگ ماسه و مواد انبساط يافته و نيز به همراه تقويت كننده ي فولادي (آرماتور) به عنوان بتون مسلح و همچنين به عنوان اتصال دهنده ي آجرها و بلوك هاي ساختماني ديگر به طور گسترده مورد استفاده قرار مي گيرد.

  18. این کاربر از saeed-d بخاطر این مطلب مفید تشکر کرده است


Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •