PDA

نسخه کامل مشاهده نسخه کامل : موضوعات مرتبط با الكترونيك و الكترومغناطيس



khaiyam
29-06-2006, 10:47
با اين موضو ع شروع ميكنيم اميدووارم كه دوستان هم ما را ياري كنن

قانون بقاي بار الكتريكي

يك توپ را با ميله پلاستيكي و ديگر را ميله شيشه‌اي باردار كنيد سپس آنها را به هم بچسبانيد. گاهي دوبار ناپديد مي‌شوند و همديگر را از بين مي‌برند. براي بيان اين مساله مي‌توان از يك قانون رياضي مبني بر اينكه اگر حاصل جمع دو كميت صفر شود، يكي از آن دو مثبت و ديگري منفي است، استفاده نمود. طبق قرارداد به ميله پلاستيكي را بار منفي و ميله شيشه‌اي را بار مثبت نسبت داده‌اند.

بيان ساده اي از قانون بقاي بار

وقتي كه يك ميله پلاستيكي را با خز مالش مي‌دهيم، ميله بار منفي و خز بار مثبت پيدا مي‌كند. آزمايش را با دو جسم خنثي شروع مي‌كنيم، يعني مجموع بار آن دو برابر صفر است. بعد از مالش دادن ، يكي بار مثبت و ديگري بار منفي مي‌يابد كه باز هم بار كل برابر صفر مي‌شود. همچنين وقتي ميله‌اي بار مثبت بيابد، بار جسم پلاستيكي كه ميله شيشه‌اي را با آن مالش مي‌دهيم منفي مي‌شود.

هيچ كس نمي تواند يكي از اين دو بار را خلق كند، بدون آنكه همزمان ديگري را نيز توليد كرده باشد در يك چنين فرايندي مقدار كل بار تغيير نمي‌كند. اين مطلب بيانگر قانون بقاي بار الكتريكي است. اين قانون همانند قوانين پايستگي جرم و انرژي ، اندازه حركت خطي ، اندازه حركت زاويه اي و ... در فيزيك يك قانون بنيادي است.

قانون بقاي بار الكتريكي در اتم

همه اجسام داراي ذراتي با بار الكتريكي مثبت و منفي هستند. اين ذرات هماناتمهايي هستند كه جهان مادي را مي‌سازند. ابعاد اين اتمها از مرتبه آنگستروم است. چندين ميليون از اين اتمها ، در كنار هم ، چيزي در حدود يك نقطه نمايان مي‌شوند. هر اتم از لحاظ بار الكتريكي خنثي است، زيرا به تعداد مساوي بار مثبت و منفي دارد. بار مثبت اتم و تقريبا تمامي جرم آن ، در مركز آن ، يعني در هسته متمركز شده است. ابعاد هسته ده هزار برابر كوچكتر از ابعاد كل اتم است. هسته يك خوشه محكم به هم چسبيده متشكل از دو نوع ذره پروتونها و نوترونهاست.

تراكم جرم در اين ذرات غير قابل تصور است. يك تفاوت مهم بين پروتونها و نوترونها اين است كه پروتونها داراي بار الكتريكي مثبت بوده ولي نوترونها از نظر بار الكتريكي خنثي هستند. تعداد پروتونها هسته ، عنصر شيميايي را كه هسته به آن تعلق دارد، مشخص مي‌كند، با اين حال قسمت اعظم فضاي اتم خالي است، در ناحيه اطراف هسته تعدادي ذره با بار الكتريكي منفي به نام الكترون وجود دارد. جرم الكترون كم است، اما بار آن منفي و مقدارش برابر مقدار بار روي پروتون است. از اينرو در يك اتم خنثي تعداد الكترونها در فضاي اطراف هسته درست برابر تعداد پروتونها در داخل هسته است. الكترونها توسط نيروي جاذبه الكتريكي در نزديكي هسته به آن مقيد مي‌شوند.

مبادله بار و قانون بقاي بار الكتريكي

گاهي يك تماس ساده ميان اجسام ممكن است باعث شود كه تعدادي الكترون از يك جسم به جسم ديگر منتقل شود. وقتي ميله پلاستيكي با خز مالش داده مي‌شود، برخي الكترونها از خز به ميله پلاستيكي منتقل مي‌شوند. ممكن است تعداد الكترونهايي كه به ميله پلاستيكي منتقل مي‌شوند، در حدود
( 9 ^ 10 ) باشد كه ظاهرا زياد است. تعداد كل الكترونهاي موجود در ميله پلاستيكي در حدود 24 ^ 10 است.

در فلزات بستگي الكترونها به هسته ضعيف است و الكترونها مي‌توانند آزادانه در داخل ماده حركت كنند. چون بار به راحتي در داخل ميله فلزي به هم وصل نماييم، هر دو كره خنثي مي‌شوند. ماده اي كه بار الكتريكي را از خود عبور مي‌دهد رسانا ناميده مي‌شود. در جامدات ، فقط الكترونها مي‌توانند حركت كنند. اما محلول الكتروليت ، آب شور يا گاز داخل لامپ فلوئورسانس رساناهاي بسيار خوبي هستند. زيرا حاملين بار مثبت و منفي هردو تحت تاثير نيروي الكتريكي مي‌توانند آزادانه حركت كنند. در تمام فرايندهاي مبادله بار و انتقالات اخير قانون بقاي بار الكتركي به دقت ملاحظه مي‌شود. به عبارتي نحوه مبادله بار به توسط قانون بقاي بار صورت مي‌گيرد. در واكنشهاي شيميايي اين قانون همانند قانون بقاي جرم ظاهر مي شود و واكنش را از نظر الكتريكي مجاز مي داند كه در طرفين واكنش مجموع بارهاي الكتريكي برابر باشند.

khaiyam
29-06-2006, 10:51
فيوز چيست ؟

مقاومت الكتريكي و جريان در مدار

جريان الكتريكي در رساناي متصل به مدار بنابر قانون اهم از روي مقاومت رسانا و ولتاژ دو سر آن معين مي شود. براي يك ولتاژ معين ، هر چه مقاومت رساناي داده شده بيشتر باشد جريان كمتر است. مثلاً مقاومت لامپ هاي التهابي معمولي نسبتاًزياد است ( صدها اهم ). و از اين رو جرياني كه از آنها مي گذرد كم است (چند دهم آمپر) .

كوتاه شدگي مدار

اگر سيم ها را با اتصال فرعي به لامپ متصل كنيم. مدار فرعي با مقاومت بسيار كم بدست مي آيد. و جريان خيلي شديد مي شود. در اين مورد گفته مي شود كه مدار كوتاه بوجود آمده است. مدار كوتاه بطور عام هر اتصال كم مقاومتي در دو سر منبع جريان الكتريكي است. جريان هاي شديدي كه در مدار كوتاه ظاهر مي شود فوق العاده خطرناك هستند و به علت آنكه سيم ها شديداً گرم مي شوند براي منبع جريان بسيار زيان آورند.

محافظت سيم ها از كوتاه شدگي مدار

براي محافظت سيم ها از كوتاه شدگي مدار ، فيوز استفاده مي شود فيوز ها سيم هاي نازك مسي اند يا سيم هايي كه از فلزات زود گداخت مثل سرب ساخته شده اند. كه به طور سري به مدار حامل جريان متصل مي شوند. و طوري در نظرگرفته مي شوند كه اگر جريان از مقدار مشخص شده بيشتر شود ذوب مي شود. نمودار طرح وار زير طرز كار فيوز را شرح مي دهد وقتي كه سيم ها توسط تكه سيم مسي متصل شوند مدار كوتاه فيوز بطور سريع ذوب شده و مدار قطع مي شود.

ساختمان فيوز فشنگي با توپي پيچي

اين فيوز رايجترين نوع از فيوزهاست كه به كار برده مي شود. منشا اصلاح فيوزي به توپي چيني كه در سطح بيروني فيوز قراردارد، مربوط است، كه سيم با نقطه ذوب پايين در آن قراردارد. توپي مانند سرپيچ لامپ در سر پيچ پيچانده مي شود و پس در هر كوتاه شدن مدار تعويض مي شود.

معمولا ، يك فيوز يا دسته فيوزهايي به اتصال هاي تامين كننده جريان در يك ساختمان يا هر آپارتماني متصل مي شود. گاهي فيوزها را در جعبه مستقلي قرارمي دهند. فيوزپريزي در ساختمان جعبه فيوز وجود دارد كه بايد با عبور جريان 3تا 5a ذوب مي شود، فيوز آپارتمان با عبور جريان 15تا 20a ذوب مي شود. در حاليكه فيوز يك ساختمان براي جريانهاي خيلي شديدتر چند صد آمپر تنظيم مي شود.

ساختمان فيوز با توپي پيچي

1. توپي چيني

2. سيم با نقطه ذوب پائين

3. جاي فيوز

khaiyam
29-06-2006, 10:54
آمپر متر چيست؟

ريشه لغوي

لغت ammeter از كلمه amper مشتق شده است. توجه كنيد كه حرف P در كلمه amper حذف شده است و فقط دو حرف اول اين كلمه در لغت ammeter بكار رفته است.

ما نمي‌توانيم الكترونها يا پروتونها را ديده يا لمس كنيم. به همين دليل نمي‌توانيم آنها را بشماريم. در نتيجه به ابزاري احتياج داريم تا بتوانيم آنها را بشماريم. شدت روشنايي لامپ مشخصاتي از شدت جريان را به ما نشان مي‌دهد، ولي دو نقص اصلي دارد. اول اينكه نمي‌تواند شدت جريان را در واحدي كه به آساني قابل يادداشت و مقايسه با اندازه گيري شدت جريان در محلها و زمانهاي ديگر است، اندازه بگيرد. همچنين در شدت جريانهاي معين مي‌توان از آن استفاده كرد. اگر مقدار شدت جريان خيلي كم باشد، لامپ روشن نمي‌شود و اگر شدت جريان خيلي زياد باشد، لامپ مي‌سوزد. براي رفع نقص اول به ابزاري احتياج داريم كه به ما نشان دهد، چند آمپر (چند كولن الكترون در هر ثانيه) در مدار جريان دارد. دستگاه مخصوصي كه اين اندازه گيري را انجام مي‌دهد، آمپرمتر (ammetr) ناميده مي‌شود.

طرز كار آمپرمتر

آمپرمتر مقدار شدت جرياني را كه از آن مي‌گذرد، بوسيله يك عقربه كه در روي صفحه درجه بندي شده حركت مي‌كند، نشان مي‌دهد. ميزان انحراف عقربه آمپرمتر با تعداد الكترونهايي كه از اين دستگاه مي‌گذرند، نسبت مستقيم دارد. يعني نشان مي‌دهد كه چه مقدار بار الكتريكي در ثانيه از آن عبور مي‌كند.

طرز استفاده از آمپرمتر

آمپرمتر از خيلي جهات شبيه كنتور آب است كه ميزان آب مصرف شده منازل را اندازه مي‌گيرد. هر دو دستگاه (آمپرمتر و كنتور آب) بايد طوري در مدار قرار گيرند كه جريانهاي الكتريسيته و آب از آنها بگذرد، تا بتوان شدت جريان را اندازه گرفت. تمام آبي كه از لوله اصلي وارد خانه مي‌شود، بايد از كنتور آب عبور كند. آمپرمتر نيز بايد طوري قرار گيرد كه تمام جريان الكتريسته از ان بگذرد، تا بتوان تمام شدت جريان الكتريكي را بوسيله آن اندازه گرفت. اين نوع اتصال را اتصال متوالي يا سري مي‌گويند. يعني اجزا تشكيل دهنده مدار در يك خط مستقيم (يك مسير هدايت كننده) به يكديگر اتصال دارند.

مراحل قرار دادن آمپرمتر در مدار

براي قرار دادن آمپرمتر در مدار متوالي به ترتيب زير عمل كنيد.

1. نيروي خارجي را كه به مدار وارد مي‌شود، قطع كنيد.

2. آن قسمت از مدار را كه آمپرمتر در آن قرار دارد، باز كنيد يا ببريد.

3. انتهاي مثبت آمپرمتر را به سيمي كه به قطب مثبت پيل مي‌رود، وصل كنيد.

4. انتهاي منفي آمپرمتر را به سيمي كه به قطب منفي پيل مي‌رود، وصل كنيد.

مراحل 4 , 3 (كه عبارتند از انتقال مثبت به مثبت ، منفي به منفي) را دقت در پلاريته مي‌نامند و اين امر مهم است. زيرا دستگاه اندازه گيري آمپرمتر شدت جريان را در يك جهت نشان مي‌دهد. اگر دستگاه اندازه گيري را بطور عكس در مدار قرار دهيم، چون جريان در جهت عكس (كه مناسب آمپرمتر نيست) از آن مي‌گذرد و انحراف عقربه بوجود مي‌آيد كه باعث شكسته شدن يا خم شدن آن مي‌گردد. فيش قرمز را به جك قرمز آمپرمتر و فيش سياه را به جك سياه در بالاي آمپرمتر وصل كنيد.

خطاي دستگاه اندازه گيري (Meter Tolrances)

بايد توجه داشت كه در يك مدار معين آمپرمترهاي مختلف ، اندازه شدت جريان را با كمي اختلاف نشان مي‌دهند. اين امر بدان دليل است كه مقداري از انرژي كه در مدار جريان دارد، براي بكار انداختن آمپرمتر مصرف مي‌شود و همه آمپرمترها هم يكسان نيستند. همچنين به علت اختلافي كه در ساختمان آمپرمتر و تلف شدن انرژي وجود دارد، شدت جرياني را كه در روي آمپرمتر مي‌خوانيد، تقريبي است. دستگاه اندازه گيري درست است كه حدود خطاي آن 0± در صد اندازه واقعي باشد. يعني اگر شدت جريان اصلي 100 آمپر باشد، روي دستگاه آمپرمتر حدود 9 تا 10 آمپر را مي‌خوانيد.

بكار بردن آمپرمتر

1. يك آمپرمتر ساده را برداريد. در انتخاب دستگاه اندازه گيري دقت كنيد كه شدت جريان مدار نبايد بيش از حد تعيين شده براي اندازه گيري باشد. زيرا آمپرمتر بر حسب درجه بندي خود ، شدت جريانهاي معيني را مي‌تواند اندازه بگيرد. در مورد اين آزمايش مي‌توانيد فرض كنيد كه آمپرمتر داراي توانايي كافي براي اندازه گيري شدت جريان مي‌باشد.

2. فيش قرمز را به جك قرمز و فيش سياه را به جك سياه وصل كنيد.

3. مطمئن شويد كه به مدار انرژي داده نمي‌شود. كليد مدار بايد باز باشد (به خاطر حفظ جان خود هيچگاه سعي نكنيد كه آمپرمتر را در مداري كه انرژي الكتريكي در آن جريان دارد قرار دهيد).

4. با جدا كردن سيم رابط بين T2 و T1 مدار را باز كنيد. با قرار گرفتن آمپرمتر بين اين دو نقطه مدار كامل مي‌شود.

5. با رعايت پلاريته ، فيش سياه را به T1 و فيش قرمز را به T2 وصل كنيد. اگر پلاريته مناسب در نظر گرفته نشود، عقربه آمپرمتر به طرف چپ منحرف شده و اين عمل موجب خرابي دستگاه اندازه گيري خواهد شد.

6. كليد مدار را ببنديد و درجه‌اي را كه آمپرمتر نشان مي‌دهد بخوانيد. هميشه از روبرو به صفحه درجه بندي شده آمپرمتر نگاه كنيد و هيچوقت تحت هيچ زاويه‌اي درجه آمپرمتر را نخوانيد.

7. درجه‌اي را كه خوانده‌ايد، يادداشت كنيد.

8. كليد مدار را باز كنيد.

khaiyam
29-06-2006, 10:54
ساختمان ترانسفورماتور

ترانسفورماتورها را با توجه به كاربرد و خصوصيات آنها به سه دسته كوچك متوسط و بزرگ دسته بندي كرد. ساختن ترانسفورماتورهاي بزرگ و متوسط به دليل مسايل حفاظتي و عايق بندي و امكانات موجود ، كار ساده اي نيست ولي ترانسفورماتورهاي كوچك را مي توان بررسي و يا ساخت. براي ساختن ترانسفورماتورهاي كوچك ، اجزاي آن مانند ورقه آهن ، سيم و قرقره را به سادگي مي توان تهيه نمود.

اجزاي تشكيل دهنده يك ترانسفورماتور به شرح زير است؛

هسته ترانسفورماتور:

هسته ترانسفورماتور متشكل از ورقه هاي نازك است كه سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه مي شود. براي كم كردن تلفات آهني هسته ترانسفورماتور را نمي توان به طور يكپارچه ساخت. بلكه معمولا آنها را از ورقه هاي نازك فلزي كه نسبت به يكديگر عايق‌اند، مي سازند. اين ورقه ها از آهن بدون پسماند با آلياژي از سيليسيم (حداكثر 4.5 درصد) كه داراي قابليت هدايت الكتريكي و قابليت هدايت مغناطيسي زياد است ساخته مي شوند.

در اثر زياد شدن مقدار سيليسيم ، ورقه‌هاي دينام شكننده مي شود. براي عايق كردن ورقهاي ترانسفورماتور ، قبلا از يك كاغذ نازك مخصوص كه در يك سمت اين ورقه چسبانده مي شود، استفاده مي كردند اما امروزه بدين منظور در هنگام ساختن و نورد اين ورقه ها يك لايه نازك اكسيد فسفات يا سيليكات به ضخامت 2 تا 20 ميكرون به عنوان عايق در روي آنها مي مالند و با آنها روي ورقه ها را مي پوشانند. علاوه بر اين ، از لاك مخصوص نيز براي عايق كردن يك طرف ورقه ها استفاده مي شود. ورقه هاي ترانسفورماتور داراي يك لايه عايق هستند.

بنابراين ، در مواقع محاسبه سطح مقطع هسته بايد سطح آهن خالص را منظور كرد. ورقه‌هاي ترانسفورماتورها را به ضخامت هاي 0.35 و 0.5 ميلي متر و در اندازه هاي استاندارد مي سازند. بايد دقت كرد كه سطح عايق شده ى ورقه هاي ترانسفورماتور همگي در يك جهت باشند (مثلا همه به طرف بالا) علاوه بر اين تا حد امكان نبايد در داخل قرقره فضاي خالي باقي بماند. لازم به ذكر است ورقه ها با فشار داخل قرقره جاي بگيرند تا از ارتعاش و صدا كردن آنها نيز جلوگيري شود.

سيم پيچ ترانسفورماتور :

معمولا براي سيم پيچ اوليه و ثانويه ترانسفورماتور از هادي هاي مسي با عايق (روپوش) لاكي استفاده مي‌كنند. اينها با سطح مقطع گرد و اندازه‌هاي استاندارد وجود دارند و با قطر مشخص مي‌شوند. در ترانسفورماتورهاي پرقدرت از هاديهاي مسي كه به صورت تسمه هستند استفاده مي‌شوند و ابعاد اين گونه هادي‌ها نيز استاندارد است.

توضيح سيم پيچي ترانسفورماتور به اين ترتيب است كه سر سيم پيچ‌ها را به وسيله روكش عايقها از سوراخهاي قرقره خارج كرد، تا بدين ترتيب سيم ها قطع (خصوصا در سيمهاي نازك و لايه‌هاي اول) يا زخمي نشوند. علاوه بر اين بهتر است رنگ روكش‌ها نيز متفاوت باشد تا در ترانسفورماتورهاي داراي چندين سيم پيچ ، را به راحتي بتوان سر هر سيم پيچ را مشخص كرد. بعد از اتمام سيم پيچي يا تعمير سيم پيچهاي ترانسفورماتور بايد آنها را با ولتاژهاي نامي خودشان براي كنترل و كسب اطمينان از سالم بودن عايق بدنه و سيم پيچ اوليه ، بدنه و سيم پيچ ثانويه و سيم پيچ اوليه آزمايش كرد.

قرقره ترانسفورماتور:

براي حفاظ و نگهداري از سيم پيچ‌هاي ترانسفورماتور خصوصا در ترانسفورماتورهاي كوچك بايد از قرقره استفاده نمود. جنس قرقره بايد از مواد عايق باشد قرقره معمولا از كاغذ عايق سخت ، فيبرهاي استخواني يا مواد ترموپلاستيك مي سازند. قرقره هايي كه از جنس ترموپلاستيك هستند معمولا يك تكه ساخته مي شوند ولي براي ساختن قرقره هاي ديگر آنها را در چند قطعه ساخت و سپس بر روي همدگر سوار كرد. بر روي ديواره هاي قرقره بايد سوراخ يا شكافي ايجاد كرد تا سر سيم پيچ از آنها خارج شوند.

اندازه قرقره بايد با اندازه ى ورقه‌هاي ترانسفورماتور متناسب باشد و سيم پيچ نيز طوري بر روي آن پيچيده شود. كه از لبه هاي قرقره مقداري پايين تر قرار گيرد تا هنگام جا زدن ورقه‌هاي ترانسفورماتور ، لايه ى رويي سيم پيچ صدمه نبيند. اندازه قرقره هاي ترانسفورماتورها نيز استاندارد شده است اما در تمام موارد ، با توجه به نياز ، قرقره مناسب را مي توان طراحي كرد.

khaiyam
01-07-2006, 07:04
آمپر متر چيست؟

ريشه لغوي

لغت ammeter از كلمه amper مشتق شده است. توجه كنيد كه حرف P در كلمه amper حذف شده است و فقط دو حرف اول اين كلمه در لغت ammeter بكار رفته است.

ما نمي‌توانيم الكترونها يا پروتونها را ديده يا لمس كنيم. به همين دليل نمي‌توانيم آنها را بشماريم. در نتيجه به ابزاري احتياج داريم تا بتوانيم آنها را بشماريم. شدت روشنايي لامپ مشخصاتي از شدت جريان را به ما نشان مي‌دهد، ولي دو نقص اصلي دارد. اول اينكه نمي‌تواند شدت جريان را در واحدي كه به آساني قابل يادداشت و مقايسه با اندازه گيري شدت جريان در محلها و زمانهاي ديگر است، اندازه بگيرد. همچنين در شدت جريانهاي معين مي‌توان از آن استفاده كرد. اگر مقدار شدت جريان خيلي كم باشد، لامپ روشن نمي‌شود و اگر شدت جريان خيلي زياد باشد، لامپ مي‌سوزد. براي رفع نقص اول به ابزاري احتياج داريم كه به ما نشان دهد، چند آمپر (چند كولن الكترون در هر ثانيه) در مدار جريان دارد. دستگاه مخصوصي كه اين اندازه گيري را انجام مي‌دهد، آمپرمتر (ammetr) ناميده مي‌شود.

طرز كار آمپرمتر

آمپرمتر مقدار شدت جرياني را كه از آن مي‌گذرد، بوسيله يك عقربه كه در روي صفحه درجه بندي شده حركت مي‌كند، نشان مي‌دهد. ميزان انحراف عقربه آمپرمتر با تعداد الكترونهايي كه از اين دستگاه مي‌گذرند، نسبت مستقيم دارد. يعني نشان مي‌دهد كه چه مقدار بار الكتريكي در ثانيه از آن عبور مي‌كند.

طرز استفاده از آمپرمتر

آمپرمتر از خيلي جهات شبيه كنتور آب است كه ميزان آب مصرف شده منازل را اندازه مي‌گيرد. هر دو دستگاه (آمپرمتر و كنتور آب) بايد طوري در مدار قرار گيرند كه جريانهاي الكتريسيته و آب از آنها بگذرد، تا بتوان شدت جريان را اندازه گرفت. تمام آبي كه از لوله اصلي وارد خانه مي‌شود، بايد از كنتور آب عبور كند. آمپرمتر نيز بايد طوري قرار گيرد كه تمام جريان الكتريسته از ان بگذرد، تا بتوان تمام شدت جريان الكتريكي را بوسيله آن اندازه گرفت. اين نوع اتصال را اتصال متوالي يا سري مي‌گويند. يعني اجزا تشكيل دهنده مدار در يك خط مستقيم (يك مسير هدايت كننده) به يكديگر اتصال دارند.

مراحل قرار دادن آمپرمتر در مدار

براي قرار دادن آمپرمتر در مدار متوالي به ترتيب زير عمل كنيد.

1. نيروي خارجي را كه به مدار وارد مي‌شود، قطع كنيد.

2. آن قسمت از مدار را كه آمپرمتر در آن قرار دارد، باز كنيد يا ببريد.

3. انتهاي مثبت آمپرمتر را به سيمي كه به قطب مثبت پيل مي‌رود، وصل كنيد.

4. انتهاي منفي آمپرمتر را به سيمي كه به قطب منفي پيل مي‌رود، وصل كنيد.

مراحل 4 , 3 (كه عبارتند از انتقال مثبت به مثبت ، منفي به منفي) را دقت در پلاريته مي‌نامند و اين امر مهم است. زيرا دستگاه اندازه گيري آمپرمتر شدت جريان را در يك جهت نشان مي‌دهد. اگر دستگاه اندازه گيري را بطور عكس در مدار قرار دهيم، چون جريان در جهت عكس (كه مناسب آمپرمتر نيست) از آن مي‌گذرد و انحراف عقربه بوجود مي‌آيد كه باعث شكسته شدن يا خم شدن آن مي‌گردد. فيش قرمز را به جك قرمز آمپرمتر و فيش سياه را به جك سياه در بالاي آمپرمتر وصل كنيد.

خطاي دستگاه اندازه گيري (Meter Tolrances)

بايد توجه داشت كه در يك مدار معين آمپرمترهاي مختلف ، اندازه شدت جريان را با كمي اختلاف نشان مي‌دهند. اين امر بدان دليل است كه مقداري از انرژي كه در مدار جريان دارد، براي بكار انداختن آمپرمتر مصرف مي‌شود و همه آمپرمترها هم يكسان نيستند. همچنين به علت اختلافي كه در ساختمان آمپرمتر و تلف شدن انرژي وجود دارد، شدت جرياني را كه در روي آمپرمتر مي‌خوانيد، تقريبي است. دستگاه اندازه گيري درست است كه حدود خطاي آن 0± در صد اندازه واقعي باشد. يعني اگر شدت جريان اصلي 100 آمپر باشد، روي دستگاه آمپرمتر حدود 9 تا 10 آمپر را مي‌خوانيد.

بكار بردن آمپرمتر

1. يك آمپرمتر ساده را برداريد. در انتخاب دستگاه اندازه گيري دقت كنيد كه شدت جريان مدار نبايد بيش از حد تعيين شده براي اندازه گيري باشد. زيرا آمپرمتر بر حسب درجه بندي خود ، شدت جريانهاي معيني را مي‌تواند اندازه بگيرد. در مورد اين آزمايش مي‌توانيد فرض كنيد كه آمپرمتر داراي توانايي كافي براي اندازه گيري شدت جريان مي‌باشد.

2. فيش قرمز را به جك قرمز و فيش سياه را به جك سياه وصل كنيد.

3. مطمئن شويد كه به مدار انرژي داده نمي‌شود. كليد مدار بايد باز باشد (به خاطر حفظ جان خود هيچگاه سعي نكنيد كه آمپرمتر را در مداري كه انرژي الكتريكي در آن جريان دارد قرار دهيد).

4. با جدا كردن سيم رابط بين T2 و T1 مدار را باز كنيد. با قرار گرفتن آمپرمتر بين اين دو نقطه مدار كامل مي‌شود.

5. با رعايت پلاريته ، فيش سياه را به T1 و فيش قرمز را به T2 وصل كنيد. اگر پلاريته مناسب در نظر گرفته نشود، عقربه آمپرمتر به طرف چپ منحرف شده و اين عمل موجب خرابي دستگاه اندازه گيري خواهد شد.

6. كليد مدار را ببنديد و درجه‌اي را كه آمپرمتر نشان مي‌دهد بخوانيد. هميشه از روبرو به صفحه درجه بندي شده آمپرمتر نگاه كنيد و هيچوقت تحت هيچ زاويه‌اي درجه آمپرمتر را نخوانيد.

7. درجه‌اي را كه خوانده‌ايد، يادداشت كنيد.

8. كليد مدار را باز كنيد.

khaiyam
01-07-2006, 07:07
1- نيروگاه حرارتي: از اواخر قرن نوزدهم بشر براي توليد الكتريسيته از نيروگاه هاي حرارتي استفاده مي كند. در اين نيروگاه ها ابتدا زغال سنگ مصرف مي شد و بعدها فرآورده هاي سنگين نفتي مورد استفاده قرار گرفت. اساس كار اين نيروگاه ها بر گرم كردن آب تا حالت بخار است و سپس بخارهاي توليد شده توربين هاي توليدكننده الكتريسيته را به حركت در مي آورند. عيب اين نوع نيروگاه ها توليد گاز كربنيك فراوان و اكسيدهاي ازت و گوگرد و غيره است كه در جو زمين رها شده و محيط زيست را آلوده مي كنند. دانشمندان بر اين باورند كه در اثر افزايش اين گازها در جو زمين اثر گلخانه اي به وجود آمده و دماي كره زمين در حال افزايش است. در كنفرانس هاي متعددي كه درباره همين افزايش گازها و به ويژه گرم شدن كره زمين در نقاط مختلف جهان برگزار شد (لندن، ريو دوژانيرو و همين سال گذشته در كيوتو) غالب كشورهاي جهان جز ايالات متحده آمريكا موافق با كم كردن توليد اين گازها بر روي كره زمين بودند و تاكنون تنها به علت مخالفت آمريكا موافقتي جهاني حاصل نشده است.

2- نيروگاه هاي آبي: در مناطقي از جهان كه رودخانه هاي پر آب دارند به كمك سد آب ها را در پس ارتفاعي محدود كرده و از ريزش آب بر روي پره هاي توربين انرژي الكتريكي توليد مي كنند. كشورهاي شمال اروپا قسمت اعظم الكتريسيته خود را از آبشارها و يا سدهايي كه ايجاد كرده اند به دست مي آورند. در كشور فرانسه حدود 30 تا 40 درصد الكتريسيته را از همين سدهاي آبي به دست مي آورند. متاسفانه در كشور ما چون كوه ها لخت (بدون درخت) هستند غالب سدهاي ساخته شده بر روي رودخانه ها در اثر ريزش كوه ها پر شده و بعد از مدتي غير قابل استفاده مي شوند.

3- نيروگاه هاي اتمي: در دهه اول و دوم قرن بيستم نظريه هاي نسبيت اينشتين امكان تبديل جرم به انرژي را به بشر آموخت (فرمول مشهور اينشتين mc2=E). متاسفانه اولين كاربرد اين نظريه منجر به توليد بمب هاي اتمي در سال 1945 توسط آمريكا شد كه شهرهاي هيروشيما و ناكازاكي در ژاپن را به تلي از خاك تبديل كردند و چند صد هزار نفر افراد عادي را كشتند و تا سال هاي متمادي افراد باقي مانده كه آلوده به مواد راديواكتيو شده بودند به تدريج درپي سرطان هاي مختلف با درد و رنج فراوان از دنيا رفتند. بعد از اين مرحله غير انساني از كاربرد فرمول اينشتين، دانشمندان راه مهار كردن بمب هاي اتمي را يافته و از آن پس نيروگاه هاي اتمي متكي بر پديده شكست اتم هاي اورانيم- تبديل بخشي از جرم آنها به انرژي- براي توليد الكتريسيته ساخته شد.

اتم هاي سنگين نظير ايزوتوپ اورانيم 235 و يا ايزوتوپ پلوتونيم 239 در اثر ورود يك نوترون شكسته مي شود و در اثر اين شكست، 200 ميليون الكترون ولت انرژي آزاد شده و دو تكه حاصل از شكست كه اتم هاي سبك تر از اورانيم هستند توليد مي شود. اتم هاي به وجود آمده درپي اين شكست غالباً راديواكتيو بوده و با نشر پرتوهاي پر انرژي و خطرناك و با نيمه عمر نسبتاً طولاني در طي زمان تجزيه مي شوند. اين پديده را شكست اتم ها (Fision) گويند كه بر روي اتم هاي بسيار سنگين اتفاق مي افتد. در اين فرايند همراه با شكست اتم، تعدادي نوترون به وجود مي آيد كه مي تواند اتم هاي ديگر را بشكند، لذا بايد نوترون هاي اضافي را از درون راكتور خارج كرد و اين كار به كمك ميله هاي كنترل كننده در داخل راكتور انجام مي گيرد و اين عمل را مهار كردن راكتور گويند كه مانع از انفجار زنجيره اي اتم هاي اورانيم مي گردد.

از آغاز نيمه دوم قرن بيستم ساخت نيروگاه هاي اتمي يا براي توليد الكتريسيته و يا براي توليد راديو عنصر پلوتونيم كه در بمب اتم و هيدروژني كاربرد دارد، شروع شد و ساخت اين نيروگاه ها تا قبل از حوادث مهمي نظير تري ميل آيلند در آمريكا در سال 1979 ميلادي و چرنوبيل در اتحاد جماهير شوروي سابق در سال 1986 همچنان ادامه داشت وتعداد نيروگاه هاي اتمي تا سال 1990 ميلادي از رقم 437 تجاوز مي كرد. بعد از اين دو حادثه مهم تا مدتي ساخت نيروگاه ها متوقف شد. در سال 1990 مقدار انرژي توليد شده در نيروگاه هاي صنعتي جهان از مرز 300 هزار مگاوات تجاوز مي كرد.

ولي متاسفانه در سال هاي اخير گويا حوادث فوق فراموش شده و گفت وگو درباره تاسيس نيروگاه هاي اتمي جديد بين دولت ها و صنعتگران از يكسو و دانشمندان و مدافعان محيط زيست آغاز شده است. بديهي است اغلب دانشمندان و مدافعان محيط زيست مخالف با اين روش توليد انرژي هستند و محاسبات آنها نشان مي دهد كه اگر قرار باشد تمام جهانيان از نيروگاه اتمي استفاده كنند، از يكسو احتمالاً توليد پلوتونيم از كنترل آژانس جهاني كنترل انرژي هسته اي خارج خواهد شد و امكان دارد هر ديكتاتور غيرمعقول و ناآشنا با مفاهيم علمي تعادل محيط زيست، داراي اين سلاح خطرناك شود. از سوي ديگر افزايش مواد زايد اين نيروگاه ها كه غالباً راديوايزوتوپ هاي سزيم 137 و استرانسيم 90 و پلوتونيم 239 است، سياره زمين را مبدل به جهنمي غير قابل سكونت خواهد كرد.

با وجود اين، اخيراً ايالات متحده آمريكا مسائل فوق را فراموش كرده و برنامه ساخت نيروگاه هاي اتمي را مورد مطالعه قرار داده است. در كشورهاي اروپايي نيز صنايع مربوطه و به ويژه شركت هاي توليدكننده برق دولت هاي متبوع خود را براي تاسيس نيروگاه هاي اتمي تحت فشار قرار داده اند. ولي خوشبختانه در اين كشورها با مقاومت شديد مدافعان محيط زيست روبه رو شده اند. اما در كشورهاي آسيايي، در حال حاضر 22 نيروگاه اتمي در دست ساخت است (تايوان 2- چين 4- هندوستان 8- كره جنوبي 2- ژاپن 3- كره شمالي 1- ايران 2) و در كشورهاي كمونيستي سابق ده نيروگاه در حال ساخت است (اوكـراين 4- روسيه 3- اسلواكي 2- روماني 1)

مواد زايد نيروگاه هاي موجود و در حال بهره برداري از 300 هزار تن در سال تجاوز مي كند و تا سال 2020 كه 33 نيروگاه در حال ساخت كنوني است به بهره برداري خواهند رسيد، مواد زايد راديواكتيو و خطرناك از مرز 500 هزار تن در سال تجاوز خواهد كرد. (مجله كوريه اينترناسيونال 17-11 دسامبر 2003 صفحه 12) اگر اروپايي ها و آمريكا و كانادا نيز ساخت نيروگاه هاي اتمي را شروع كنند، مواد زايد و راديواكتيو جهان از حد ميليون تن در سال تجاوز خواهد كرد. بايد توجه داشت كه براي از بين رفتن 99 درصد راديو اكتيويته اين مواد بايد حداقل 300 سال صبر كرد.

4- نيروگاه متكي بر پديده پيوست اتم ها: از اواسط قرن بيستم دانشمندان با جديت فراوان مشغول پژوهش و آزمايش بر روي پديده پيوست اتم هاي سبك هستند. در آغاز نيمه دوم قرن بيستم كشورهاي غربي (آمريكا، فرانسه و انگلستان و...) و اتحاد جماهير شوروي، از اين پديده براي مصارف نظامي و توليد بمب هيدروژني استفاده كرده و به علت ارزان بودن فرآورده هاي نفتي، كشورهاي پيشرفته كمك مالي چنداني به دانشمندان براي يافتن وسيله كنترل بمب هيدروژني نكردند و اكنون كه قسمت اعظم ذخاير نفت و گاز مصرف شده، به فكر ساخت نيروگاهي براساس پديده پيوست اتم ها افتاده اند كه در آغاز به آن اشاره شد و در زير اصول آن تشريح مي شود.

الف) بمب هيدروژني: بمب هيدروژني در واقع يك بمب اتمي است كه در مركز آن ايزوتوپ هاي سنگين هيدروژن (دوتريم D و تريسيم T و يا فلز بسيار سبك ليتيم Li) را قرار داده اند. بمب اتمي به عنوان چاشني شروع كننده واكنش است. با انفجار بمب اتمي دمايي معادل ده ها ميليون درجه (K10000000) در مركز توده سوخت ايجاد مي شود، همين دماي بالا سبب تحريك اتم هاي سبك شده و آنها را با هم گداخت مي دهد. در اثر گداخت و يا در واقع پيوست اتم هاي سبك با يكديگر انرژي بسيار زيادي توليد مي شود. اين است كه در موقع انفجار بمب هيدروژني دو قارچ مشاهده مي شود، قارچ اول مربوط به شكست اتم هاي اورانيم يا پلوتونيم است و قارچ دوم مربوط به پديده پيوست اتم هاي سبك با يكديگر است كه به مراتب از قارچ اول بزرگ تر و مخرب تر است. واكنشي كه در خورشيد اتفاق مي افتد نتيجه پيوست اتم هاي هيدروژن با يكديگر است، دماي دروني خورشيدها ميليون درجه است. (دماي سطح خورشيد 6000 درجه است).

در مركز خورشيد از پيوست اتم هاي هيدروژن معمولي ايزوتوپ هاي دوتريم و تريسيم توليد مي شود و سپس اين ايزوتوپ به هم پيوسته شده و هسته اتم هليم را به وجود مي آ ورند. اين واكنش ها انرژي زا هستند و در اثر واكنش اخير 6/17ميليون الكترون ولت انرژي توليد مي شود. و اين واكنش ها همراه انفجار وحشتناك و مهيبي است كه همواره در درون خورشيد به طور زنجيره اي ادامه دارد و دليل اينكه خورشيد از هم متلاشي نمي شود اثر نيروي گرانشي بر روي جرم بي نهايت زياد درون خورشيد است. وقتي كه ذخيره هيدروژن خورشيد تمام شود، زمان مرگ خورشيد فرا مي رسد. (البته در 5 تا 6 ميليارد سال ديگر).

در مقايسه نسبي اوزان، در پديده پيوست 4 برابر انرژي بيشتر از پديده شكست اتم هاي اورانيوم توليد مي شود.

ب) نيروگاه متكي بر پديده پيوست:در اين پديده همانطور كه گفته شد اتم هاي سبك با يكديگر پيوست حاصل كرده و اتمي سنگين تر از خود به وجود مي آورند، در واقع همان واكنشي است كه در خورشيد اتفاق مي افتد ولي بايد شرايط ايجاد آن را بدون كاربرد بمب اتمي به وجود آورد و به ويژه بايد آن را تحت كنترل درآورد. از دهه 1950 تاكنون دانشمندان سعي در به وجود آوردن دمايي در حدود ميليون درجه كرده تا واكنش پيوست را به نحو متوالي در اين دما نگه دارند، دستگاهي كه براي اين كار ساخته اند توكاماك Tokamak نام دارد. تاكنون در آزمايشگاه ها توانسته اند به مدت حداكثر 4 دقيقه اين واكنش را ايجاد و كنترل كنند. در اين دستگاه كه در شكل نمايش داده شده است، ميدان مغناطيسي بسيار شديدي ايجاد كرده و شدت جريان الكتريكي در حدود 15 ميليون آمپر از آن عبور مي كند (برق منزل شما 30 تا حداكثر 90 آمپر است). در مركز اين دستگاه اتم هاي سبك در اثر ميدان مغناطيسي و الكتريكي، حالت پلاسما را خواهند داشت. (در روي زمين ما سه حالت از ماده را مي شناسيم: جامد، مايع و بخار، ولي در داخل ستارگان يا خورشيد ماده به صورت پلاسما است، يعني در اين حالت هسته اتم ها در دريايي از الكترون ها غرق اند.) در چنين حالتي اتم هاي سبك آنقدر تحريك و نزديك به هم شده اند كه در هم نفوذ مي كنند و اتم جديدي كه هليم است به وجود مي آيد. (ستارگان بسيار حجيم تر از خورشيد دماي دروني بيش صدها ميليون و يا حتي ميليارد درجه است و در آنها اتم هاي سنگين تر نظير كربن، ازت و اكسيژن با هم پيوست مي كنند و عناصري مانند سليسيم و گوگرد و... را به وجود مي آورند .

khaiyam
01-07-2006, 07:15
قوس الكتريكي چيست؟

تاريخچه

در سال 1802 پتروف (V.P.Petrof) كشف كرد كه اگر دو تكه زغال چوب را به قطب هاي باتري بزرگي وصل كنيم و آنها را به هم تماس دهيم و سپس كمي از هم جدا كنيم شعله روشني بين دو تكه زغال ديده مي شود. و انتهاي آنها كه از شدت گرما سفيد شده است نور خيره كننده اي گسيل مي دارد. قوس الكتريكي هفت سال بعد ديوي (H.Davy) فيزيكدان انگليسي اين پديده را مشاهده نمود و پيشنهاد كرد كه اين پديده به احترام ولتا قوس ولتا ناميده شود.

آزمايش ساده

اگر بخواهيم در يك روش ساده اي ايجاد قوس الكتريكي را نشان دهيم بايد دو تكه كربن را روي گيره قابل تنظيم سوار نمود (بهتر است كه به جاي زغال چوب معمولي ميله خاصي كه از كربن قوس ساخته مي شود و با فشار دادن مخلوط گرافيت ، كربن سياه و مواد چسبنده به وجود مي آيند، استفاده شود).

چشمه جريان مي تواند برق شهر هم باشد براي اجتناب ازاينكه در لحظه تماس تكه هاي كربن مدار كوتاه ايجاد شود بايد رئوستايي به طور متوالي به قوس وصل شود.

معمولا برق شهر با جريان متناوب تغذيه مي شود. ولي در صورتي كه جريان مستقيم از آن عبور كند قوس پايدارتر است به طوري كه يكي از الكترودها هميشه مثبت «آند)و ديگري همواره منفي «كاتد)است.

ماهيت قوس الكتريكي

در قوس الكتريكي الكترودها در اثر حرارت سفيد رنگ مي شود. ستوني از گاز ملتهب رساناي خوب الكتريكي بين الكترودها وجود دارد. در قوس معمولي اين ستون نوري بسيار كمتر از نور تكه هاي كربن سفيد شده از آزمايش‌هاي مربوط به گرما گسيل مي كنند. چون الكترود مثبت دمايش از الكترود منفي بيشتر است زود تر از بين مي رود. در نتيجه تصعيد شديد كربن صورت گرفته و در آن الكترود (الكترود مثبت) فرورفتگي به وجود مي آيد كه به دهانه مثبت معروف است و داغ ترين نقطه الكترودهاست.

دماي دهانه در هوا و در فشار جو به 4000 درجه سانتيگراد مي رسد. در لامپ هاي قوسي سازوكارهاي منظم و خود كار خاصي براي نزديك كردن تكه هاي كربن با سرعت يكنواخت وقتي با سوختن از بين مي روند، مورد استفاده قرار مي گيرند. براي اينكه سايش و خوردگي الكترود مثبت به خاطر دماي بالايش بيشتر است،براي همين هميشه الكترود كربن مثبت كلفت تر از الكترود منفي اختيار مي شود.

دماهاي بالا در قوس الكتريكي

قوس الكتريكي مي تواند بين الكترودهاي فلزي ساخته شده از آهن ، مس و غيره نيز بگيرد. در اين حالت الكترودها به ميزان زيادي ذوب و تبخير مي شوند و اين عمل به مقدار زيادي آزمايش‌هاي مربوط به گرما احتياج دارد. به اين دليل دماي مركز الكترود فلزي معمولا كمتر از دماي الكترود كربني است (2000 تا 2500 درجه سانتيگراد).

قوسي كه بين الكترودهاي كربن در گاز فشرده اي قرار مي گيرد (حدود 20atm) بالا رفتن دماي مركز مثبت تا 5900 درجه سانتيگراد يعني دما روي سطح خورشيد را ممكن ساخته است. معلوم شده است كه كربن در اين حالت ذوب مي شود. دماي باز هم بالاتري را مي توان در ستوني از گاز و بخاري كه از آن تخليه الكتريكي مي گذرد، به دست آورد.

بمباران شديد اين گاز و بخار با الكترون ها و يون هايي كه با ميدان الكتريكي قوس شتاب گرفته اند دماي ستون گاز را 6000 تا 7000 درجه سانتيگراد مي رساند. به اين دليل تقريبا تمام مواد شناخته شده در ستون قوس الكتريكي ذوب و تبخير مي شوند. و بسياري از واكنش هاي شيميايي كه در دماهاي پايين انجام شدني نيستند، با قوس الكتريكي امكان پذير مي شوند. مثلا ميله هاي چيني دير گداز در شعله قوس به سهولت ذوب مي شود.

چگونگي ايجاد تخليه قوس الكتريكي

براي ايجاد تخليه قوس الكتريكي به ولتاژ زيادي احتياج نيست با ولتاژ 40 تا 45 ولت بين الكترود ها مي توان قوس را به وجود آورد. از طرف ديگر جريان داخل قوس زياد است. مثلا حتي در قوس كوچك جريان به 5 آمپر مي رسد، در حاليكه در قوس هاي بزرگ كه در مقياس صنعتي به كار مي روند جريان به صدها آمپر بالغ مي شود. اين به اين معنا ست كه مقاومت قوس پايين است و از اين رو ستون گاز تابان رساناي الكتريكي خوبي است.

يونيزاسيون گاز با انرژي قوس الكتريكي

يونش شديد گاز با قوس الكتريكي به آن دليل امكان پذير است كه كاتد قوس الكتريكي تعداد زيادي الكترون گسيل مي داد. اين الكترون ها با برخورد با گاز داخل شكاف تخليه گازي آن را يونيزه مي كنند. گسيل الكتروني شديد از كاتد از آنجا ممكن مي شود كه خود كاتد تا دماي بسيار بالايي گرم مي شود (بسته به ماده از 2200 تا 3500). وقتي كه الكترودهاي قوس در ابتدا تماس داده شوند تقريباً تمام گرماي ژول كه از الكترود ها مي گذرد در ناحيه تماس كه مقاومت بسيار دارد آزاد مي شود.

به اين دليل انتهاي الكترودها به شدت گرم مي شوند كه براي گيراندن قوس به هنگام جداكردن آنها كافي است آن وقت كاتد قوس توسط جرياني كه از قوس مي گذرد، در حالت التهاب مي ماند. در اين فرايند بمباران كاتد توسط يون هايي كه به آن برخورد مي كند نقش اصلي را ايفا مي كند.

مشخصه جريان ولتاژ قوس الكتريكي

يعني بستگي جريان الكتريكي در قوس الكتريكي به ولتاژ بين الكترودها ، ويژگي خاصي دارد. در فلزات و الكتروليت ها جريان متناوب با ولتاژ افزايش مي يابد «قانون اهم). در صورتيكه براي رسانش القايي گازها جريان ابتدا با ولتاژ زياد مي شود، سپس اشباع شده و مستقل از ولتاژ است.

بنابر اين افزايش جريان در تخليه قوسي به اندازه مقاومت در شكاف بين الكترودها و ولتاژ بين آنها منجر مي شود. براي اينكه تاباني قوس پايدار بماند رئوستا يا مقاومت الكتريكي قوي ديگري را بايد به طور متوالي به آن بست.

khaiyam
01-07-2006, 07:17
جريان مستقيم و جريان متناوب

تا به حال هر چه گفتيم راجع به جريان مستقيم بود يعني جرياني كه دامنه و جهت آن نسبت به زمان ثابت است به زبان ساده تر اينكه مقدار جريان عبوري از مدار و جهت حركت الكترونها ثابت بوده و با گذشت زمان هيچ تغييري نميكند.

جريان متناوب

تعريف : جريان متناوب جرياني است كه مقدار و جهت آن نسبت به زمان دائماً در حال تغيير است. به زبان ساده تر اينكه مقدار جريان دائماً كم و زياد ميشود و جهت حركت الكترونها هم عوض ميشود (از ماكزيمم به صفر و از صفر به مينيمم ميرسد).

سوال :

چگونه مقدار جريان تغيير ميكند در صورتيكه عناصر مدار ثابت هستند ؟

جواب :

ولتاژ منبع تغذيه دائما در حال تغيير (متناوب ) است به همين جهت در مقدار جريان تاثير ميگذارد.

سوال :

جهت الكترونها چگونه عوض ميشود ؟

ميدانيد كه الكترونها هميشه از قطب منفي به سمت مثبت حركت ميكنند . در منبع تغذيه متناوب مثبت و منفي آن (پلاريته ) دائما در حال تغيير است يعني اگر خروجي منبع تغذيه ما دو سيم داشته باشد مثلا به رنگهاي قرمز و سياه در يك لحظه زماني سيم قرمز مثبت و سيم سياه منفي است و در لحظه اي ديگر عكس اين حالت وجود دارد يعني جاي قطب مثبت و منفي دائما عوض ميشود پس جهت حركت الكترونها هم كه از قطب منفي به مثبت است دائما عوض ميشود .

معروف ترين جريان متناوب جريان متناوب سينوسي است .

در نمودار روبرو مشخص است كه در لحظه 1 ثانيه جريان صفر، در لحظه 5/1 ثانيه 5- آمپر و در لحظه 5/2 ثانيه 5 آمپر است .

سيكل چيست ؟

كوچكترين قسمت موج كه دائماُ تكرار ميشود يك سيكل نام دارد مثلا در شكل روبرو از لحظه صفر ثانيه تا لحظه 2 ثانيه يك سيكل است كه تا بينهايت تكرار ميشود .

فركانس چيست ؟

به تعداد سيكل هايي كه در يك ثانيه توليد ميشود فركانس گويند كه واحد آن هرتز است . مثلاً در شكل بالا فركانس 5/0 هرتز است .

نكته :

برقي كه در خانه هاي ما استفاده ميشود همين جريان متناوب است كه فركانس آن 50 هرتز ميباشد. يعني جرياني كه از يك لامپ عبور ميكند ثانيه اي 100= 50×2 بار صفر ميشود پس چه انتظاري داريد حتماُ انتظار داريد كه لامپ در هر ثانيه 100 بار خاموش و روشن شود ولي اين عمل صورت نميگيرد چون لامپ بر اساس گرما توليد نور ميكند اگر بخواهيم كه يك لامپ را ثانيه اي صد بار خاموش و روشن كنيم بايد بتوانيم در يك ثانيه صد بار لامپ را گرم و صد بار سرد كنيم . ولي گرما چيزي نيست كه در مدت 1 صدم ثانيه صفر شود پس مدتي طول ميكشد كه دفع شود و تا آن مدت لامپ دوباره روشن ميشود .

khaiyam
01-07-2006, 07:18
لرزش ديوارها هم برق توليد مي كند


تلويزيون ، يخچال و ساير لوازم برقي منزلتان را تصور كنيد كه نيروي خود را از انرژي توليد شده از لرزش پنجره و ديواره هاي ساختمان مسكوني شما مي گيرد.

فكر مي كنيد چنين چيزي تا چه حد عملي باشد؟ ماسايوكي ميازاكي كه يكي از محققان آزمايشگاه مركزي توكيوست ، براي رسيدن به چنين هدفي تلاشهاي فراواني كرده است.

او بتازگي توانسته است يك ژنراتور در حال حاضر خيلي كوچك بسازد كه مي تواند حركات ساختمان ها را به الكتريسيته تبديل كند و نيروي راه انداختن يك سنسور حرارتي يا نوري را كه يك بار در هر ساعت كار مي كند؛ تامين نمايد.

گرچه خروجي اين ژنراتور بسيار كوچك و فقط در حد 10ميكرووات است ؛ اما دانشمندان آينده اي خوب را براي آن پيش بيني مي كنند و اميدوارند كه در دهه هاي آينده ، اين ژنراتور بتواند بازدهي خوبي داشته باشد.
به طوري كه بتوان سيستم هاي رايانه اي بدون باتري را به كمك آن راه اندازي كرد.
كار ميازاكي در واقع قسمتي از يك جنبش رو به رشد ميان دانشمندان است كه هدف آن يافتن ، خلق كردن و كسب منابع انرژي جايگزين ولو در مقادير كوچك ، يعني بسيار كمتر از يك وات است. اين دانشمندان اميدوارند كه بتوانند انرژي را از هر چيزي ، از لرزش ديوارها و پنجره ها گرفته تا حركات هوا و بدن انسان ها برداشت كنند.
در حالي كه منابع جايگزين انرژي به تنهايي نخواهند توانست الكتريسيته بيشتري را توليد كنند؛ اما مي توانند وسايل كوچكي از قبيل تراشه هاي رايانه اي ، شبكه هاي حسگر بي سيم و يا تلفنهاي همراه را به راه اندازند. ايده اين كار نيز بسيار ساده است.

درست همانند برخي از ساعتهاي مچي كه نيروي خود را از حركات اتفاقي دست يك شخص مي گيرند، اين وسايل نيز انرژي خود را از حركات اتفاقي ديگر چيزها كسب مي كنند.

khaiyam
01-07-2006, 07:22
آشنايي با الكترونيك - توان چيست؟

منبع تغذيه اي كه جريانش بيشتر باشد ميتواند كار بيشتري انجام دهد يا منبع تغذيه اي كه ولتاژش بيشتر باشد ؟

گفتيم كه ولتاژ باعث حركت الكترونها ميشود كه حركت الكترونها همان جريان ميباشد .

در منابع تغذيه يك مقاومت داخلي وجود دارد كه باعث ميشود در هنگام تغذيه نمودن يك مصرف كننده ولتاژ منبع تغذيه كاهش يابد پس قدرت يك منبع تغذيه به دو عامل بستگي دارد يكي ولتاژش و ديگري مقاومت داخلي اش .

حالا ميخواهيم ببينيم كه چگونه براي يك منبع تغذيه جريان تعيين ميكنند ؟

وقتي ميگويند مثلاً : يك باطري يا يك آدابتور 12 ولت و 2 آمپر است يعني اينكه اگر جريان 2 آمپر از اين منبع تغذيه دريافت كنيم كاهش ولتاژش در حدود 5 - 10 درصد است كه اين مقدار كاهش ولتاژ تاثير چنداني بر روي مدارات ندارد حالا اگر بيشتر از اين مقدار جريان از منبع تغذيه بگيريم (مصرف كننده هاي بيشتري به آن وصل كنيم ) اين كار دو پي آمد دارد يكي اينكه ولتاژ مورد نياز را به مانمي دهد (ولتاژش كاهش ميابد) و دوم اينكه به خود منبع تغذيه آسيب وارد ميشود .

معمولاً ولتاژ منابع تغذيه را كمي بيشتر انتخاب ميكنند كه در حالت كار معمولي كه جريان متوسطي از آن گرفته ميشود ولتاژش به ولتاژ اصلي برسد مثلاً يك منبع تغذيه را كه ما به عنوان منبع 12 ولتي خريداري ميكنيم در حالتي كه هيچ مصرف كننده اي به آن وصل نيست اگر با ولتمتر ولتاژش را اندازه گيري كنيم حدوداً 14 ولت را نشان ميدهد .

چرا در حالتي كه منبع به هيچ مصرف كننده اي وصل نيست مقاومت داخلي ولتاژ را افت نميدهد ؟

چون كه مقدار ولتاژي را كه مقاومت داخلي افت ميدهد به مقدار جريان عبوري از منبع تغذيه بستگي دارد كه در اين حالت چون جريان صفر است افت ولتاژي هم وجود ندارد .

نتيجه گيري كلي :

هر منبع تغذيه دو كميت دارد ، يكي ولتاژ و ديگري قابليت جريان دهي (حداكثر جريان مجاز) كه بستگي به مقاومت داخلي اش دارد پس قدرت كلي منبع تغذيه به اين دو كميت وابسته است لذا براي تعيين قدرت يك منبع كميت سومي نيز بوجود مي آيد كه توان نام دارد و واحد آن وات (w) است كه از حاصلضرب جريان و ولتاژ بدست مي آيد يعني توان يك منبع 12 ولتي 2 آمپر 24=12*2 وات است كه نشان دهنده قدرت آن ميباشد .

هر چه توان يك منبع بيشتر باشد حجم و وزن آن نيز بيشتر ميشود . فرق باطري ماشين با 8 عدد باطري 1.5 ولتي سري(باطري قلمي) در اين است كه اگر با 8 عدد باطري 1.5 ولتي بتوانيم حداكثر 2 لامپ 12 ولتي را روشن كنيم با باطري ماشين دست كم 50 عدد از همان لامپ را ميتوان هم زمان روشن كرد زيرا مقاومت داخلي باطري ماشين خيلي كم است و وقتي جريان زيادي از آن دريافت ميكنيم كاهش ولتاژش كم است ولي در باطري قلمي وقتي بيشتر از 2 يا 3 لامپ به آن وصل ميكنيم ولتاژش كاهش يافته و نور لامپها كم ميشود.

براي محاسبه مقدار افت ولتاژ از همان رابطه اهم استفاده ميكنيم

V=r*i

طبق اين رابطه مقدار افت ولتاژ دو سر مقاومت با تغيير جريان تغيير ميكند.

براي هر عنصري كه در يك مدار الكتريكي وجود دارد ميتوان توان را محاسبه كرد بطور كلي دو نوع توان در يك مدار وجود دارد 1- توان توليدي كه توسط منبع تغذيه توليد ميشود 2- توان مصرفي كه توسط مصرف كننده ها مصرف ميشود ، در يك مدار هميشه توان توليدي با توان مصرفي برابر است ((در صورت صرفنظر كردن از تلفات سيمهاي رابط))

تواني كه يك مقاومت مصرف ميكند به جريان عبوري از آن بستگي دارد كه طبق رابطه زير محاسبه ميشود :

W=r*i^2

بطور كلي سه فرمول براي توان ميتوان نوشت :

W=v^2/r

W= V*i

W=r*i^2

khaiyam
01-07-2006, 07:33
نور و امواج الكترومغناطيس

نوشته: حسين جوادي

مقدمه

امروزه مي دانيم كه نور يك موج الكترمغناطيسي است و بخش بسيار كوچكي از طيف الكترمغناطيسي را تشكيل مي دهد. بنابراين براي شناخت نور بايستي به بررسي امواج الكترومغناطيسي پرداخت. اما از آنجاييكه مكانيك كلاسيك قادر به توضيح كامل امواج الكترومغناطيسي نيست، الزاماً بايستي به مكانيك كوانتوم مراجعه كرد. اما قبل از وارد شدن به مكانيك كوانتوم لازم است با برخي از خواص نور آشنا شد و دليل نارسايي مكانيك كلاسيك را دانست. لذا در اين فصل دانش نور را تا پيش از ارائه شدن رابطه ي مشهور پلانك بررسي مي كنيم و در فصل جداگانه اي خواص امواج الكترومغناطيسي بعد از مكانيك كوانتوم و نسبيت بررسي خواهد شد.

خواص نور

نخستين مسئله اي مهم جلوه مي كرد اين بود كه نور چيست؟ از آنجاييكه عامل ديدن بود و در تاريكي چيزي ديده نمي شد، سئوال اين بود كه نور چيست؟ چرا مي بينيم و نور چگونه و توسط چه چيرزي توليد مي شود؟ بالاخره اين نظريه پيروز شد كه نور توسط اجسام منير نظير خورشيد و مشعل توليد مي شود. بعد از آن مسئله انعكاس نور مورد توجه قرار گرفت و اينكه چرا برخي از اجسام بهتر از ساير اجسام نور را باز تابش مي كنند؟ چرا نور از برخي اجسام عبور مي كند و از برخي ديگر عبور نمي كند؟ چرا نور علاوه بر آنكه سبب ديدن است موجب گرم شدن نيز مي شود؟ نور چگونه منتقل مي شود؟ سرعت آن چقدر است؟ و سرانجام ماهيت نور و نحوه ي انتقال آن چيست؟

نخستين آزمايش مهم نور توسط نيوتن در سال 1666 انجام شد. وي يك دسته اشعه نور خورشيد را كه از شكاف باريكي وارد اتاق تاريكي شده بود، بطور مايل بر وجه يك منشور شيشه اي مثلث القاعده اي تابانيد. اين دسته هنگام ورود در شيشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد.

نيوتن دسته اشعه خارج شده را بر يك پرده سفيد انداخت. وي مشاهده كرد كه به جاي تشكيل يك لكه سفيد نور، دسته اشعه در نوار رنگيني كه به ترتيب مركب از رنگهاي سرخ، نارنجي، زرد، سبز، آبي و بنفش است پراكنده شده است. نوار رنگيني را كه از مولفه هاي نور تشكيل مي شود، طيف مي نامند.

نيوتن نظر داد كه نور از ذرات بسيار ريز - دانه ها - تشكيل مي شود كه با سرعت زياد حركت مي كند. علاوه بر آن به نظر نيوتن نور در محيط غليظ باسرعت بيشتري حركت مي كند. اگر نظر نيوتن در مورد سرعت نور درست مي بود مي بايست سرعت نور در شيشه بيشتر از هوا باشد كه مي دانيم درست نيست.

هويگنس در سال 1690 رساله اي در شرح نظريه موجي نور منتشر كرد. طبق اصل هويگنس حركت نور به صورت موجي است و از چشمه هاي نوري به تمام جهات پخش مي شود. هويگنس با به كاربردن امواج اصلي و موجك هاي ثانوي قوانين بازتاب و شكست را تشريح كرد. هويگنس نظر داد كه سرعت نور در محيط هاي شكست دهنده كمتر از سرعت نور در هوا است كه درست است.

پيروزي نظريه موجي نور

نظريه دانه اي نيوتن هرچند بعضي از سئوالات را پاسخ مي گفت، اما باز هم پرسش هايي وجود داشت كه اين نظريه نمي توانست براي آنها جواب قانع كننده اي ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بيشتر منحرف مي شوند؟ چرا دو دسته اشعه ي نور مي توانند بدون آنكه بر هم اثر بگذارند، از هم بگذرند؟

اما بر اساس نظريه موجي هويگنس، دو دسته اشعه ي نوراني مي توانند بدون آنكه مزاحمتي براي هم فراهم كنند از يكديگر بگرند. هويگنس نمي دانست كه نور موج عرضي است يا موچ طولي، و طول موج هاي نور مرئي را نيز نمي دانست. ولي چون نور در خلاء نيز منتشر مي شود، وي مجبور شد محيط يا رسانه حاملي براي اين انتشار اين امواج در نظر بگيرد. هويگنس تصور مي كرد كه اين امواج توسط اتر منتقل مي شوند. به نظر وي اتر محيط و مايع خيلي سبكي است و همه جا، حتي ميان ذرات ماده نيز وجود دارد.

نظري هويگنس نيز بطور كامل رضايت بخش نبود، زيرا نمي توانست توضيح دهد كه چرا سايه ي واضح تشكيل مي شود، يا چرا امواج نور نمي توانند مانند امواج صوت از موانع بگذرند؟

نظريه موجي و دانه اي نور بيش از يكصد سال با هم مجادله كردند، اما نظريه دانه اي نيوتن بيشتر مورد قبول واقع شده بود، زيرا از يكطرف منطقي تر به نظر مي رسيد و از طرف ديگر با نام نيوتن همراه بود. با وجود اين هر دو نظريه فاقد شواهد پشتوانه اي قوي بودند. تا آنكه بتدريج دلايلي بر موجي بودن نور ارائه گرديد

لئونارد اويلر فكر امواج دوره اي را تكميل كرد، همچنين دليل رنگ هاي گوناگون را مربوط به تفاوت طول موج آنها دانست. و اين گام بلندي بود. در سال 1800 ويليام هرشل آزمايش بسيار ساده اما جالبي انجام داد. وي يك دسته اشعه ي نور خورشيد را از منشور عبور داد و در ماوراي انتهاي سرخ طيف حاصل دماسنجي نصب كرد. جيوه در دما سنج بالا رفت، بدين ترتيب هرشل تابشي را كشف كرد كه به تابش زير قرمز مشهور شد.

در همين هنگام يوهان ويلهلم ريتر انتهاي ديگر طيف را كشف كرد. وي دريافت كه نيترات نقره كه تحت تاثير نور آبي يا بنفش به نقره ي فلزي تجزيه و رنگ آن تيره مي شود، اگر در وراي طيف، در جاييكه بنفش محو مي شود، نيترات نقره قرار گيرد حتي زودتر تجزيه مي شود. ريتر نوري را كشف كرد كه ما اكنون آن را فوق بنفش مي ناميم. بدين ترتيب هرشل و ريتر از مرزهاي طيف مرئي گذشتند و در قلمروهاي جديد تابش پا نهادند. در اين هنگام دلايل جديدي براي موجي بودن نور توسط يانگ و فرنل ارائه گرديد.

در سال 1801 توماس يانگ دست به آزمايش بسيار مهمي زد. وي يك دسه اشعه ي باريك نور را از دو سوراخ نزديك بهم گذارانيد و بر پرده اي كه در عقب اين سوراخ نصب كرده بود تابانيد. احتمال مي رفت كه اگر نور از ذرات تشكيل شده باشند، محل تلاقي دو دسته اشعه اي كه از سوراخها عبور كرده اند، بر روي پرده روشن تر از جاهاي ديگر باشد. اما نتيجه اي كه يانگ به دست آورد چيزي ديگر بود. بر روي پرده يك گروه نوارهاي روشن تشكيل شده بود كه هر يك به وسيله ي يك نوار تاريك از ديگري جدا مي شد. اين پديده به سهولت با نظريه موجي نور توضيح داده شد.

نوار روشن نشان دهنده ي تقويت امواج يكي از دسته ها به وسيله ي امواج دسته ي ديگر است. به گفته ي ديگر، هر جا كه دو موج همفاز شوند، بر يكديگر افزوده مي شوند و يكديگر را تشديد مي كنند. از طرف ديگر نوارهاي تاريك نشان دهنده ي جاهايي است كه امواج در فاز مقابلند، در نتيجه يكديگر را خنثي مي كنند. اگر چه يانگ بارها تاكيد كرد كه برداشت هايش ريشه در پژوهش هاي نيوتن دارد، اما به سختي مورد حمله قرار گرفت و نظريات وي خالي از هر گونه ارزش تلقي شد. با اين وجود يانگ طول موج هاي متفاوت نور مرئي را اندازه گرفت.

در سال 1814 ژان فرنل بي خبر از كوششهاي يانگ مفاهيم توصيف موجي هويگنس و اصل تداخل را با هم تركيب كرد و اظهار داشت: ارتعاشات يك موج درخشان را در هر يك از نقاط آن مي توان به عنوان مجموع حركت هاي بنيادي دانست كه به آن نقطه مي رسند. بر اثر انتقادهاي شديد طرفداران نيوتن، فرنل تاكيدي رياضي يافت. وي توانست نقش هاي پراش ناشي از موانع و روزنه هاي گوناگون را محاسبه كند و به طور رضايت بخشي انتشار مستقيم نور را در محيط هاي همسانگرد و همگن توضيح دهد. بدينسان انتقاد عمده ي طرفداران نيوتن را نسبت به نظريه موجي بي اثر كند. هنگاميكه فرنل به تقدم يانگ در اصل تداخل پي برد، هرچند اندكي مايوس شد، اما نامه اي به يانگ نوشت و احساس آرامش خود را از هم راي بودن با او ابراز داشت.

قبل از ادامه ي بحث در مورد كارهاي فرنل لازم است موج طولي و موج عرضي را تعريف كنيم. در مجو طولي جهت انتشار با جهت ارتعاش يكي هستند. نظير نوسان يك فنر. اما در موج عرضي جهت ارتعاش بر جهت انتشار عمود است، نظير موج بر سطح آب كه نوسان و انتشار عمود بر هم هستند.

فرنل تصور مي كرد امواج نور، امواج طولي هستند. اما تصور موج طولي نمي توانست خاصيت قطبش نور را توجيه كند. فرنل و يانگ چندين سال با اين مسئله درگير بودند تا سرانجام يانگ اظهار داشت كه ممكن است ارتعاش اتري همانند موجي در يك ريسمان عرضي باشد. ولي امواج عرضي انها در يك محيط مادي منتقل شوند. از طرفي ديگر با توجه به سرعت نور ( كه در آنزمان مقدار آن را نمي دانستند ولي مي دانستند كه فوق العاده زياد است)، اتر نمي توانست گاز يا مايع باتشد و بايد جامد و در عين حال خيلي صلب باشد حتي مي بايست صلب تر از فولاد باشد. از اين گذشته اتر مي بايست در تمام مواد نفوذ كند، يعني نه تنها در فضا، بلكه بايد در بتواند گازها، آب، شيشه و حتي در چشم ها نفوذ كند، زيرا نور وارد چشم نيز مي شود. علاوه بر اين اتر نبايستي هيچگونه اصطكاكي داشته باشد و مانع بهم خوردن پلك ها گردد. با وجود اين با تمام مشكلاتي كه اتر داشت براي توجيه موجي بودن نور مورد قبول واقع شد. بدين ترتيب در سال 1825 نظريه موجي نور مورد قبول واقع شد و نظريه دانه اي نيوتن طرفداران چنداني نداشت .

محاسبه سرعت نور

اولين كسي كه براي محاسبه ي سرعت نور اقدام كرد، گاليله بود. وي به اتفاق همكارش براي اندازه گيري سرعت نور اقدام كردند. روش كار به اين طريق بود كه همكار گاليله در حاليكه فانوسي در دست داشت بالاي تپه اي ايستاده بود و گاليله بالاي تپه اي ديگر. هر دو با خود فانوسي داشتند كه روي آن را پوشانده بودند. دستيار وي به مجرد آنكه نور گاليله را مي ديد، با برداشتن پرده از روي فانوس خود به گاليله علامت مي داد. گاليله اين آزمايش را با فواصل بيشتر و بيشتر تكرار كرد، اما نتوانست اختلاف زماني بين برداشتن پرده از روي فانوس خود و دستيارش به دست آورد و سرانجام گفت كه سرعت نور خيلي زياد است.

نخستين بار سرعت نور در سال 1676 توسط رومر (Romer) با استفاده از ماه گرفتگي محاسبه شد و معلوم گشت كه سرعت نور نيز محدود است. عددي را كه رومر به دست آورد 215 هزار كيلومتر بر ثانيه بود. اين عدد آنقدر بزرگ بود كه معاصران وي آن را باور نمي كردنددر سال 1726 برادلي با استفاده از تغيير وضعيت ستارگان نسبت به زمين سرعت نور را محاسبه كرد و عدد سيصد هزار كيلومتر بر ثانيه را به دست آورد.

نخستين بار فيزيو با ستفاده از روش غير نجومي و اصلاح روش گاليله سرعت نور اندازه گيري كرد و مقدار آن را سيصد و سيزده هزار كيلومتر بر ثانيه به دست آورد. بتدريج همراه با پيشرفت وسائل اندازه گيري هاي زيادي انجام شد و امروزه مقدار سيصد هزار كيلومتر بر ثانيه پذيرفته شده است .

در زمان فرنل اين سئوال مطرح بود كه آيا حركت زمين در ميان اتر موجب ايجاد اختلافي قابل مشاهده بين نور چشمه ي زميني و چشمه هاي فرازميني مي شود يا نه؟ آراگو به طور تجربي دست به آزمايش زد و دريافت كه هيچگونه اختلافت قابل مشاهده اي در اين زمينه وجود ندارد. رفتار نور چنان بود كه گويي زمين نسبت به اتر بي حركت است.

فرنل براي توضيح آن اظهار داشت كه نور هنگام عبور از يك ماده ي شفاف متحرك كشيده مي شود و رابطه زير را ارائه داد:


v=c/n + or - vw(1-1/n^2)


كه در آن v=c/n , vw سرعت نور در يك محيط غليظ مثلاً آب است و سرعت آب و جمله ي بعدي به دليل حركت آب نسبت به وجود مي آيد.

در هر محيط مادي سرعت نور و طول موج آن مقدارشان از مقدار خلا كمتر است كميتي كه در هر محيطي ثابت مي ماند فركانس نور هست. فركانس نور با طول موجش نسبت عكس دارد:

(V=F L) كه در آن F معرف فركانس و L معرف طول موج و V معرف سرعت نور در محيط مادي مي باشد .

در اپتيك خواص محيط در يك طول امواج را مي توان توسط يك پارامتر يعني نسبت سرعت نور در خلا به سرعت نور در محيط توصيف نماييم. اين پارامتر ضريب شكست نام دارد.

(n=c/v) بنابر اين در يك محيط مادي داريم (V=F L ) كه در اين رابطه (n) اين ضريب شكست تنها كميتي است كه براي محاسبه رفتار نور در محيط مورد نياز هست. از آنجايي كه سرعت نور در محيط هاي مختلف متفاوت است ،تعيين مسير پيشروي نور رديايي پرتو) كه از ميان محيط هاي مختلف طي مسير مي كند مشكل مي باشد.

نور و الكترومغناطيس

همزنان با تلاشهاي يانگ و فرنل فارادي، اورستد، آمپر و عده اي ديگر از فيزيكدانان روي پديده هاي الكتريكي و مغناطيسي و وابستگي آنها كار مي كردند كه ظاهراً هيچ ربطي به نور نداشت. اما بعدها مشخص گرديد كه الكتريسيته و مغناطيس و نور از هم جدا نيستند. به همين دليل در اينجا اشاره اي كوتاه به الكترسيسته و مغناطيس داريم و سپس امواج الكترومغناطيسي را بيان خواهيم كرد كه نور بخش بسيار كوچكي از آن است.

نيروي الكتريكي

دو جسم كه داراي بار الكتريكي باشند بر يكديگر نيرو وارد مي كنند. كولن تحت تاثير قانون جهاني گرانش نيوتن مقدار نيرويي را كه اجسام باردار بر يكديگر وارد مي كنند به طور رياضي بيان كرد كه طبق آن اين مقدار با حاصلضرب بارها متناسب و با مجذور فاصله نسبت عكس دارد.


F=kqQ/r^2


بين نيروي گرانش و نيروي الكتريكي دو اختلاف وجود دارد:

اول اينكه گرانش همواره جاذبه است. در حاليكه نيروي الكتريكي مي تواند جاذبه يا دافعه باشد. دو بار الكتريكي همنام يكديگر را دفع مي كنند و دو بار الكتريكي غير همنام يكديگر را جذب مي كنند.

اختلاف ديگر نيروهاي الكتريكي و گرانشي در مقدار آنها است. به عنوان مثال نيروي الكتريكي كه دو الكترون به يكديگر وارد مي كنند، تقريبا هزار ميليارد ميليار ميليارد برابر نيروي گرانشي است كه اين دو الكترون برهم وارد مي كنند.

كولن پس از ارائه قانون الكتريكي خود، در صدد تهيه قانوني براي نيروي مغناطيسي برآمد. كولن براي نيروي مغناطيسي فرمولي مشابه با نيروي الكتريكي به دست آورد كه مورد توجه فيزيكدانان واقع نشد. اما پس از كشف ارتباط متقابل ميدانهاي الكتريكي و مغناطيسي، مشخص شد كه اين دو ميدان مستقل از هم نيستند. كه آن را نيروي الكترومغناطيسي مي نامند. برد اين نيرو نيز بينهايت است.

الكترومغناطيس

مبدا علم الكتريسيته به مشاهده معروف تالس ملطي در 600 سال قبل از ميلاد بر ميگردد. در آن زمان تالس متوجه شد كه يك تكه كهرباي مالش داده شده خرده هاي كاغذ را ميربايد. از طرف ديگر مبدا علم مغناطيس به مشاهده اين واقعيت برميگردد كه بعضي از سنگها (يعني سنگهاي ماگنتيت) بطور طبيعي آهن را جذب ميكند. اين دو علم تا سال 1199-1820 به موازات هم تكامل مييافتند.

در سال 1199-1820 هانس كريستان اورستد (1777-1851) مشاهده كرد كه جريان الكتريكي در يك سيستم ميتواند عقربه قطب نماي مغناطيسي را تحت تاثير قرار دهد. بدين ترتيب الكترومغناطيس به عنوان يك علم مطرح شد. اين علم جديد توسط بسياري از پژوهشگران كه مهمترين آنان مايكل فاراده بود تكامل بيشتري يافت.

جيمز كلارك ماكسول قوانين الكترومغناطيس را به شكلي كه امروزه ميشناسيم، در آورد. اين قوانين كه معادلات ماكسول ناميده ميشوند، همان نقشي را در الكترومغناطيس دارند كه قوانين حركت و گرانش در مكانيك دارا هستند

در مكانيك كلاسيك و ترموديناميك تلاش ما بر اين است كه كوتاهترين وجمع و جورترين معادلات يا قوانين را كه يك موضع را تا حد امكان به طور كامل تعريف مي‌كنند معرفي كنيم. در مكانيك به قوانين حركت نيوتن و قوانين وابسته به آنها ، مانند قانون گرانش نيوتن، و در ترموديناميك به سه قانون اساسي ترموديناميك رسيديم. در مورد الكترومغناطيس ، معادلات ماكسول به عنوان مبنا تعريف مي‌شود. به عبارت ديگر مي‌توان گفت كه معادلات ماكسول توصيف كاملي از الكترو‌مغناطيس به دست مي‌دهد و علاوه برآن اپتيك را به صورت جزء مكمل الكترومغناطيس پايه گذاري مي‌كند. به ويژه اين معادلات به ما امكان خواهد داد تا ثابت كنيم كه سرعت نور در فضاي آزاد طبق رابطه :


(C=1/sqr(M.E.))


به كميتهاي صرفا الكتريكي و مغناطيسي مربوط مي‌شود .

يكي از نتايج بسيار مهم معادلات ماكسول ، مفهوم طيف الكترومغناطيسي است كه حاصل كشف تجربي موج راديويي است. قسمت عمده فيزيك امواج الكترومغناطيسي را از چشمه‌هاي ماوراي زمين دريافت مي‌كنيم و در واقع همه آگاهي هايي كه درباره جهان داريم از اين طريق به ما مي‌رسد. بديهي است كه فيزيك امواج الكترو مغناطيسي خارج از زمين در گسترده نور مرئي از آغاز خلقت بشر مشاهده شده‌اند.

فيزيك امواج الكترو مغناطيسي يك رده از فيزيك امواج است كه داراي مشخصات زير است.

امواج الكترو مغتاطيسي داراي ماهيت و سرعت يكسان هستند و فقط از لحاظ فركانس ، يا طول موج با هم تفاوت دارند .

در طيف فيزيك امواج الكترو مغناطيس هيچ شكافي وجود ندارد. يعني هر فركانس دلخواه را مي‌توانيم توليد كنيم.

براي مقياس‌هاي بسامد يا طول موج ، هيچ حد بالا يا پائين تعيين شده اي وجود ندارد.

قسمت عمده اين فيزيك امواج داراي منبع فرازميني هستند.

فيزيك امواج الكترومغناطيسي جزو امواج عرضي هستند.

فيزيك امواج الكترومغناطيسي از طولاني‌ترين موج راديويي ، با طول موج‌هاي معادل چندين كيلومتر ، شروع شده پس از گذر از موج راديويي متوسط و كوتاه تا نواحي كهموج ، فروسرخ و مرئي امتداد مي‌يابد. بعد از ناحيه مرئي فرابنفش قرار دارد كه خود منتهي به نواحي اشعه ايكس ، اشعه گاما و پرتوي كيهاني مي‌شود. نموداري از اين طيف كه در آن نواحي قراردادي طيفي نشان داده مي‌شوند در شكل آمده است كه اين تقسيم بندي‌ها جز براي ناحيه دقيقا تعريف شده مرئي لزوما اختياري‌اند.

يكاهاي معروف فيزيك امواج الكترومغناطيسي

طول موج لاندا بنا به تناسب مورد ، برحسب متر و همچنين ميكرون يا ميكرومتر ، واحد آنگستروم نشان داده مي‌شود. اين واحد اكنون دقيقا معادل 10- ^ 10 متر تعريف شده است.

ناحيه مرئي يا نور مرئي ( 4000-7500 آنگستروم ) توسط نواحي فروسرخ از طرف طول موج‌هاي بلند ، فرابنفش از طرف طول موج‌هاي كوتاه ، محصور شده است. معمولا اين نواحي به قسمت هاي فروسرخ و فرابنفش دور و نزديك ، با محدوده‌هايي به ترتيب در حدود 30 ميكرومتر و 2000 آنگستروم تقسيم مي‌شوند كه نواحي مزبور داراي شفافيت نوري براي موادي شفاف از جمله منشورها و عدسي‌ها مي‌باشند .

طبيعت نور

حساسيت اندام هاي ديداري به نور بسيار زياد است. بنابر تازه‌ترين اندازه گيريها ، براي ‏احساس نور كافي است كه حدود انرژي تابشي در هر ثانيه و تحت شرايط مناسب بر ‏چشم بتابد. به عبارت ديگر ، توان كافي براي تحريك نوري قابل احساس مساوي ‏است.

چشم انسان از جمله حساسترين وسايلي است كه مي تواند وجود نور را درك كند. اثر ‏نور بر چشم در فرايند شيميايي معيني خلاصه مي شود. كه در لايه حساس چشم پديد ‏مي آيد و باعث تحريك عصب بينايي و مركزهاي مربوط در مغز قدامي مي شود. اثر ‏شيميايي نور مشابه با كش روي اي حساس چشم انسان را مي توان در محور ‏تدريجي رنگها در نور مشاهده كرد .

با استفاده از اين وسايل خاص مي توان پديد آمدن جريان الكتريكي بر اثر نور را به ‏سهولت آشكار كرد. اگر بام يك خانه كوچك را بتوان با ماده اي كه در فتوسلها بكار مي ‏رود پوشاند، مي توان در يك روز آفتابي به كمك انرژي نوري جريان الكتريكي با توان چند ‏كيلووات بهت آورد. سرانجام بايد متمركز شد كه اثر مكانيك نور را نيز مي توان ‏مشاهده كرد. اين اثر در فشار نور بر سطح بازتاب دهنده يا جذب كننده نور آشكار مي ‏شود.

اگر جسم را به شكل پره‌هاي متحركي بسازيم، چرخش چنين پره‌هايي بر اثر نور تابشي ‏را مي توان ديد. اين آزمايش جالب توجه اولين بار در 1900 توسط بروف در مسكو انجام ‏شده است. محاسبه‌ها نشان مي دهد كه تابش پرتوهاي خورشيدي بر آينه‌‌ها اثر مي كند.

معادلات الكترومغناطيس ماكسول و آغاز بحران فيزيك نيوتني

ماكسول تمام دانش تجربي آن روزگار را در مجموعه واحدي از معادلات رياضي به طور بارزي خلاصه كرد و جهان علم را شديداً تحت تاثير قرار داد. چنانكه همگان به تحسين وي پرداختند. لودويك بولتزمن از قول گوته مي نويسد كه آيا خدا بود كه اين سطور را نوشت.

وي به شيوه اي صرفاً نظري نشان داد كه ميدان مغناطيسي مي تواند همانند موجي عرضي در اتر نور رسان انتشار يابد. پذيرش موجي نور به همان اندازه پذيرش يك زمينه ي فراگير يعني اتر نور رسان را ايجاب مي كرد. ماكسول در اين مورد مي گويد.

اترها را ابداع كردند تا سيارات در آنها شناور باشند، جوهاي الكتريكي و شارهاي مغناطيسي را تشكيل دهند، احساس ها را از يك پاره ي پيكر ما به پاره ي ديگر منتقل كنند. ولي آخر، تا آنجا كه تمامي فضا سه يا چهار بار از اترها پر شده است... تنها اتري كه باقيمانده است، همان است كه توسط هويگنس براي توضيح انتشار نور ابداع شده است.

بنابراين سرعت ثابت امواج الكترمغناطيسي بايستي نسبت به يك دستگاه مقايسه مي شد، و اين دستگاه همان دستگاه اتر بود. يعني اتر ساكن مطلق فرض مي شد و تمام اجسام نسبت به آن در حركت بودند و سرعت امواج الكترومغناطيسي و در حالت خاص سرعت نور نسبت به اتر ثابت بود. اين نظريه در حالي شكل گرفت كه نسبيت گاليله اي نيز معتبر و بي نقص تصور مي شد. بنابراين اگر سرعت نور نسبت به يك دستگاه لخت c باشد و دستگاه با سرعت v نسبت به اتر در حركت باشد، در آنصورت سرعت نور نسبت به اتر w برابر خواهد شد با w=c+v چنانچه نور در جهت مخالف دستگاه حركت كند، آنگاه خواهيم داشت w=c-v نتيجه اينكه در اواخر قرن نوزدهم ميلادي فيزيك نظري بر سه بنياد زير مبتني بود.

معادلات نيوتن

نسبيت گاليله اي

معادلات ماكسول

بر اين اساس ماكسول به فكر محاسبه سرعت حركت منظومه ي شمسي نسبت به اتر افتاد. وي در سال 1879 طي نامه اي كه براي تاد در آمريكا نوشت، طرحي را براي اندازه گيري سرعت حركت منظومه ي شمسي نسبت به اتر پيشنهاد كرد. يك آمريكايي به نام مايكلسون اين طرح را دنبال كرد و براي انجام آزمايش تداخل سنجي نيز ساخت و در سال 1880 آزمايش كرد.

آزمايش مايكلسون

آزمايش مايلكسون بر اساس نسبيت گاليله شكل گرفت. در نسبيت گاليله اي همه ي اجسام نسبت به اتر كه ساكن فرض شده بود حركت مي كردند. بنابراين اگر جسمي مثلاً زمين نسبت به اتر با سرعت V1 در حركت بود و جسم ديگري مثلاً يك راكت نسبت به زمين با سرعت V2 حركت مي كرد، انگاه سرعت راكت نسبت به اتر از رابطه ي زير به دست مي آمد:


V=v1+V2


سئوال مايكلسون اين بود كه اگر دو شعاع نوراني يكي عمود بر جهت حركت زمين و ديگري همجهت با آن به دو آينه كه در فاصله مساوي از منبع نور قرار دارند بفرستيم، كداميك زودتر بر مي گردد؟ طبق محاسبات مايكلسون كه در ادامه خواهد آمد و با استفاده از نسبيت گاليله اي و مطلق بودن زمان و با توجه به جمع برداري سرعت ها، زمان رفت و برگشت دو شعاع نوراني قابل محاسبه و با توجه به آن مي توان سرعت مطلق زمين را نسبت به اتر محاسبه كرد.

با توجه به شكل آزمايش مايكلسون، يك پرتو نوري (مايكلسون از نور خورسيد استفاده كرد) به آينه مياني دستگاه برخورد مي كند. آينه نيمه اندود است قسمتي از نور را عبور مي دهد و بخشي از آن را با توجه به زاويه اي كه با نور ورودي تشكيل داده تحت زاويه 45 درجه منعكس مي كند.

پرتو عبوري در رفت و بازگست بازوي تداخل سنج را طي مي كند كه با توجه به اينكه در رفت و بازگشت به ترتيب سرعت هاي زير خواهد داشت:


c+v and c-v


كه در آن c , v به ترتيب سرعت نور نسبت به زمين و سرعت زمين نسبت به اتر است. بنابراين زمان رفت و برگشت پرتو موازي با حركت زمين برابر خواهد شد با


T1=(L/c+v)+(L/c-v)=2Lc/c2-v2


كه در آن L طول بازوي تداخل سنج است.

اما پرتوي كه عمود بر جهت حركت منعكس مي شود، قبل از آنكه به منعكس كننده برسد، منعكس كننده قدري جابجا شده و كه در اين حالت كقدار جابجايي آن با بازوي تداخل سنج و مسير نور يك مثلث قائم الزاويه تشكيل مي دهد. كه مي توان نشان داد زمان رفت و برگشت تور در جهت عمود بر جهت حركت رمين برابر است با:


T2=2L/(c2-v2)1/2


با تقسيم طرفين روابط بالا بر يكديگر و پس از ساده كردن خواهيم داشت:


T2=T1/(1-v2/c2)1/2


در اين رابطه سرعت نور مشخص است و زمانها با آزمايش قابل محاسبه هستند و تنها مجهول آن v يعني سرعت زمين نسبت به اتر مجهول بود كه طبق پيش بيني مايكلسون بسادگي قابل محاسبه بود.

مايكلسون براي آنكه طول بازوي تداخل سنج هم موجب بروز اشكال نشود با چرخندان آن به اندازه 90 درجه تنها يك طول مورد استفاده قرار گرفت، با اين وجود نتيجه ي آزمايش منفي بود. بارها و بارها اين آزمايش و حتي با در سال 1987 به كمك مورلي تكرار شد، بازهم نتيجه منفي بود و دو زمان اندازه گيري شده با هم برابر بود. يعني آزمايش نشان داد كه زمين نسبت به اتر ساكن است.

بحران فيزيك كلاسيك

آنچه از اين آزمايش به دست آمد بسيار گيج و ناراحت كننده بود. اولين فكري كه قوت گرفت اين بود كه بايد اشكال از معادلات ماكسول باشد كه تنها بيست سال از عمر آن مي گذشت. يعني بايد آنها را طوري تغيير داد تا با نسبيت گاليله اي سازگار باشد. اما آزمايش فيزو و ساير نتايج حاصل از حركت نور و امواج الكترومغناطيسي آنها را تاييد مي كرد.

مورد بعدي اشكال را به مكانيك نيوتني وارد كردند، اما مكانيك نيوتني هم در جهان معمولي پا برجا و با تجربه سازگار بود. هر تلاشي كه براي توجيه علت شكست نتيجه ي آزمايش مايكلسون انجام مي دادند، با شكست رو به رو مي شد. در اين ميان دو نظريه از بقيه حالب تر به نظر مي رسيد.

يكي كشش اتري كه به موجب آن جارجوب اتر بطور موضعي به كليه ي اجسام با جرم محدود متصل است. اين نظريه هيچ اصلاحي را در قوانين نيوتن، نسبيت گاليله اي و معادلات ماكسول لازم نمي دانست. اما اين نظري با كجراهي نور ستارگان ناسازگار بود.

نظريه دوم نظريه گسيلي بود كه طبق آن معادله هاي ماكسول را بايد طوري اصلاح مي كردند كه سرعت نور با سرعت چشمه ي صادر كننده بستگي داشته باشد. اين نظريه نيز با نور واصل از ستارگان دوتايي ناسازگار بود

سرانجام در سال 1893 فيتز جرالد نظريه ي عجيبي ارائه داد. طبق نظر فيتز جرالد، تمام اجسام در جهت حركت خود نسبت به اتر منقبض مي شوند و عامل انقباض برابر است با:


1/sqr(1-(v2/c2)^2)


اين نظريه هرچند عجيب و ساختگي به نظ مي رسيد، اما جون فرضيه اتر را مي پذيرفت و معادلات الكترومغناطيس ماكسول را تغيير نمي داد و در عين حال اصول مكانيك بهمان شكل قبلي باقي مي گذاشت و نتيجه ي آزمايش را نيز توجيه مي كرد، بيشتر مورد قبول بود.

متعاقب آن لورنتس تبديلات خود را كه به تبديلات لورنتس معروف است ارائه كرد :


Lorentz Transformation



The primed frame moves with velocity v in the x direction with respect to the fixed reference frame. The reference frames coincide at t=t'=0. The point x' is moving with the primed frame.


در همان دوران كه لورنتس روي اشعه ي كاتدي كار مي كرد، اين انقباض را بوسيله ي نظريه الكتروني خود توضيح داد. وي نظر داد كه جرم ذره اي باردار كه بر اثر حركت در حجم كوچكتري متمركز مي شود، اضافه خواهد شد. و بدين تريب نظريه تغييرات جرم نيز براي اولين بار در فيزيك مطرح شد.

تمام اين كوششها براي حفظ دستگاه مرجع مطلق اتر انجام شد، اما ديگر اين موجود ناسازگاري خود را با مشاهدات تجربي نشان داده بود. پوانكاره نخستين كسي بود كه اظهار داشت آين اتر ما واقعاً وجود دارد؟ من اعتقاد ندارم كه مشاهدات دقيقتر ما هرگز بتواند چيزي بيشتر از جابجايي هاي نسبي را آشكار كند

بدين ترتيب فيزيك نظري در آغاز قرن بيستم با بزرگترين بحران دوران خود رو به رو بود .


منبع : [ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

khaiyam
01-07-2006, 07:36
بمبهاي الكترومغناطيسي

سلاح تازه اي كه ساخت آن بسيار ساده و تأثير آن كاملاً گسترده است ، نگراني هايي را براي دانشمندان و دولتمردان بوجود آورده است . به نوشته هفته نامه علمي نيوساينتيست اين سلاح مؤثر « بمب الكترو مغناطيسي » نام دارد كه اساس و عصاره آنها چيزي نيست جز يك پرتو شديد و آني از موجهاي راديويي يا مايكروويو كه قادر است همه مدارهاي الكتريكي را كه در سر راهش قرار گيرد ، نابود سازد . در دوراني كه بافت و ساخت تمامي جوامع تا حدود بسيار زيادي به دستاوردهاي علمي از نوع الكترونيكي وابسته است و همه امور از تجهيزات بيمارستانها تا شبكه هاي مخابراتي و از رايانه هاي بانكها و مؤسسات بزرگ مالي يا نظامي تا دستگاههاي نظارت و مراقبت ، نحوه كار ماشينها و ادوات صنعتي همگي متكي به ساختارهاي الكترونيك هستند ، كاربرد بمبهاي الكترو مغناطيس مي تواند سبب فلج شدن روند زندگي در مناطق بزرگ مسكوني شود . به اعتقاد برخي كارشناسان به نظر مي رسد كشورهاي پيشرفته پيشاپيش چنين سلاحي را تكميل كرده اند و حتي برخي بر اين باورند كه ناتو در جريان جنگ عليه صربستان از اين قبيل بمبها براي تخريب دستگاههاي رادار صربها بهره گرفته است . توجه به بمبهاي الكترو مغناطيس حدود نيم قرن قبل مطرح شد . متخصصان در آن هنگام به اين نكته توجه كردند كه اگر بمبي هسته اي منفجر شود ، امواج الكترومغناطيسي كه در اثر انفجار پديد مي آيد تمامي مدارهاي الكترونيك را نابود مي سازد . اما مسئله اين بود كه به چه ترتيب بتوان موج انفجار را ايجاد كرد بدون آنكه نياز به انجام يك انفجار هسته اي باشد ؟

دانشمندان مي دانستند كه كليد حل اين مسئله در ايجاد پالسهاي ( تپ هاي ) الكتريكي كه با عمر بسيار كوتاه و قدرت زياد نهفته است . اگر اينگونه پالسها به درون يك آنتن فرستنده تغذيه شوند ، امواج الكترومغناطيس قدرتمندي در فركانسهاي ( بسامد ) مختلف از آنتن بيرون مي آيند ، هر چه فركانس موج بالاتر باشد ، امكان تأثيرگذاري آن بر مدارهاي الكترونيك دستگاهها بيشتر خواهد شد . بزودي اين نكته روشن شد كه مناسب ترين امواج الكترومغناطيس براي ساخت بمبهاي الكترومغناطيس امواج با فركانس در حدود گيگا هرتز است . اين نوع امواج قادرند به درون انواع دستگاههاي الكترونيك نفوذ كنند و آنها را از كار بيندازند . براي توليد امواج با فركانس گيگاهرتز نياز به توليد پالسهاي الكترونيكي بود كه تنها 100 پيكو ثانيه تدوام پيدا كنند . يك شيوه توليد اين نوع پالسها استفاده از دستگاهي به نام « مولد ژنراتور ماركس » بود . اين دستگاه عمدتاً متشكل است از مجموعه بزرگي از خازنها كه يكي پس از ديگري تخليه مي شوند و نوعي جريان الكتريكي موجي شكل بوجود مي آورند . با گذراندن اين جريان از درون مجموعه اي از كليدهاي بسيار سريع مي توان پالسهايي با دوره زماني 300 پيكوثانيه توليد كرد . با عبور دادن اين پالسها از درون يك آنتن ، امواج الكترومغناطيسي بسيار قوي توليد مي شود . مولدهاي ماركس سنگين هستند اما مي توانند پشت سرهم روشن شوند تا يك سلسله پالسهاي قدرتمند را به صورت متوالي توليد كنند . اين نوع مولدها هم اكنون در قلب يك برنامه تحقيقاتي قرار دارند كه بوسيله نيروي هوايي آمريكا كانزاس در دست اجراست . هدف اين برنامه جاي دادن مولدهاي ماركس روي هواپيماهاي بدون خلبان يا در درون بمبها و موشكهاست تا از اين طريق نوعي « ميدان مين الكترومغناطيس » براي مقابله با دشمن ايجاد شود . اگر هواپيما يا موشك دشمن از درون اين ميدان مين الكترومغناطيس عبور كند ، بلافاصله نابود خواهد شد . اگر لازم باشد تنها يك انفجار عظيم به انجام رسد ، به دستگاهي نياز است كه بتواند يك پالس الكترونيكي بسيار قدرتمند را بوجود آورد ؛ اين كار را مي توان با استفاده از مواد منفجره متعارف نظير « تي . ان . تي » انجام داد . دستگاهي كه اين عمل را به انجام مي رساند ، « متراكم كننده شار » نام دارد . در اين دستگاه از انفجار اوليه يك ماده منفجره متعارف براي فشرده كردن يك جريان الكتريكي و ميدان الكترومغناطيسي توليد شده بوسيله آن استفاده مي شود. زماني كه اين جريان فشرده شد ، به درون يك آنتن فرستاده مي شود و يك موج الكترومغناطيس بسيار قدرتمند از آنتن بيرون مي آيد . نيوساينتيست مي افزايد : طرح تكميل دستگاههاي متراكم كننده شار از سوي نيروي هوايي آمريكا در ايالت نيو مكزيكو در دست تكميل است . از جمله طرحهايي كه براي كاربرد اين دستگاه در نظر گرفته شده ، جاي دادن آنها در بمبهايي است كه از هواپيما به پايين پرتاب مي شود و نصب آنها در موشكهاي هوا به هواست . امتياز بزرگ بمبهاي الكترومغناطيس در دو نكته است : نخست آنكه اين بمبها مستقيماً جان انسانها را به خطر نمي اندازد و تنها بر دستگاههاي الكترونيك اثر مي گذارد ؛ و نكته دوم آنكه ساخت آنها بسيار ساده است . بمبهاي الكترومغناطيس در صورتي مي توانند بالاترين خسارت را وارد آورند كه فركانس امواجشان با فركانس دستگاههايي كه به آنها وارد مي شوند يكسان باشد . بنابراين براي ايجاد مصونيت در دستگاههاي الكترونيكي كه در مراكز حساس كار مي كنند ، مي توان طراحي مدارها را به گونه اي انجام داد كه اولاً ميان بخشهاي مختلف ، سپرهاي محافظتي موجود باشد و ثانياً در ورودي اين قبيل دستگاهها بايد صافيها و سنجنده هايي را قرار داد كه بتواند علامتهاي مورد نياز و امواج حاصل از انفجار را تشخيص دهند و مانع ورود اين قبيل امواج شوند .

منبع : ( www . sciencedaily . com )

مترجم : اسرين عبدالملكي

khaiyam
01-07-2006, 07:41
مفاهيم بنيادي طيف الكترومغناطيس

‎ديد كلي‎:‎ ‎به طور غير منطقي ولي به ترتيب تاريخي ، از ناحيه مرئي شروع مي كنيم و به خارج از آن فرا مي رويم. ‏در واقع اگر ناحيه مرئي را يك كمي به طرف فروسرخ و فرا بنفش گسترش دهيم ‏ناحيه نسبتا مشخص بين ( 1 ميكرومتر ) 2000 آنگستروم به وجود مي آيد. كه آسان ترين ناحيه براكار ‏كردن است.

كوارتز در تمامي اين ناحيه و شيشه در بيشتر قسمت هاي آن شفاف است. لذا امكان انتخاب ‏بين منشور ، توري و تداخل سنج به عنوان پاشنده وجود دارد و مشكلي در مورد پنجره ها يا عدسي ها پيش نمي ‏آيد‎.

‎جذب و اتلاف طيف الكترومغناطيسي‎:

‎طيف الكترومغناطيسي مي تواند به شكل عكاسي يا فوتوالكتريكي ثبت شود. براي طيف نمايي ‏جذبي و گسيلي رده وسيعي از منابع در دسترس اند. در زير طول موج 2000 آنگستروم ، ابتدا هوا ( ‏يا به طور دقيق اكسيژن ) سپس كوارتز شروع به جذب مي كنند.

براي‎ ‎فايق آمدن به شكل اولي، ‏مسير نوري بايد تخليه شود و نام فرا بنفش خلا ، براي اين ناحيه از همين جا ناشي مي شود. براي ‏گسترش برد عبور به اندازه چند صد آنگستروم ( تا 1040 آنگستروم كه حد عبوري ليتيوم فلورايد است ) مي ‏توان بلورهاي ديگر را با اپتيك كوجايگزين ساخت، اما اين امر فقط براي تكنيك هاي پايين عملي ‏است‎.

‎تداخل سنج ها به علت انعطاف هاي سطحي و باز تابندگي پايين داراي مشكلات زيادي هستند. در پايين تر ‏از حدود 1800 آنگستروم توري ها تنها پاشنده هاي قابل دسترس براي تفكيك بالاي اند. عدسي ها و ‏‏آينه ها( كه داراي باز تابندگي هاي كمي در اين ناحيه اند ) با به كادن توري ، حذف مي شوند. در ‏پايين تر از حدود 400 آنگستروم ، براي غلبه بر باز تابندگي كم ، توري ها بايستي در وضع فرود ‏خراشان به كار روند از طرف ديگر آشكار شدن گرما مسئله ساز نمي باشد‎.

‎بررسي نواحي طيفي‎:

‎روش هاي عكاسي يا فوتو الكتريكي مي توانند در سر تا سر ناحيه ‏فرابنفش مورد استفاده قرار گيرند. مسائل مربوط به استفاده از منابع نوري مناسب ممكن است در ناحيه ‏پايين تر از 1040 آنگستروم كه در آن پنجره ها نمي توانند براي در بر گرفتن يا مجزا كردن گاز هاي مختمورد استفاده قرار گيرند، به صورت حاد درآيند. نواحي طول موج كوتاه و بلند اطراف 1040 آنگستروم به ‏ترتيب به نام كاشفين آنها شومن و ليمن ناميده مي شود‎.

‎حركت به سوي فروسرخ ، در مي يابيم كه انتخاب بين منشورها و شبكه ها و تداخل ‏سنج ها تا حدود 40 ميكرومتر ، حد موثر بلور آزاد است. تداخل سنج هاي ساخته شده از فيلم هاي ‏نازك نظير پلي تن را مي توان ، تا طول موج هاي باز هم بلند تري مورد استفاده قرار داد به طوره ‏طيف نمايي تبديل فوريه مي تواند با طيف سنجي شبكه در ناحيه فرو سرخ رقابت ‏كند‎.

‎با ايجاد ليزر هاي رنگي كوك پذير طيف نمايي بدون شبكه ها يا تداخل سنج ها در ‏موارد معيني امكان پذير مي شود. به دليل بالا بودن ضريب باز تابشان مي توان آينه هاي متعددي را بدون ‏اتلاف قابل توجه در شدت به كار برد. مسئله اساسي در قسمت عمده ناحيه ، ناكافي بودنت است. اغلب ‏منابع در ناحيه فروسرخ انرژي نسبتا كمي را تابش مي كنند و در اثر آشكار شدن گرما در معرض مسائل ‏جدي ناشي از پارازيت قرار مي گيرند. اغلب لازم است كه تفكيك را فداي به دست آوردن نسبت مناسبي از ‏علامت به پارازيت بكنيم.

‎طيف نمايي در فروسرخ معمولا به علت فقدان منابع خطي با كافي ، به صورت جذب انجام مي شود. از ‏طرف ديگر ضرورت تخليه در فروسرخ چندان جدي نيست زيرا اكسيژن و ازت خشك جاذب نيستند، و ‏فقط كافي است كه بخار آب و گاز كربنيك حذف شوند.

‎در طول موج هاي حدود چند دهم ميلي متر ، ناحيه فروسرخ با ناحيه كه موج روي هم مي افتند و يك تغيير ‏كلي در روش پيش مي آيد. منبع و آشكارگرهاي برگزيده نخست به شكل ليزرهاي زير ميليمتر در طول موج ‏هاي مخصوص و سپس به صورت نوسان سازهاي كليسترون كوك پذير به آسانيبل حصول هستند. در ‏اين حالت پاشنده ها به كلي زائد شده و طيف نمايي جذب فقط شامل مشاهده تغييرات در علامت در حين ‏جاروب منبع و آشكارگر بر روي محدوده طول موج مورد لزوم مي شود‎.

‎طيف نمايي فركانس راديويي در دوره نسبتا متفاوت قرار مي گيرد. از يك طرف به سادگي گسترش ‏طيف نمايي كه موج است به طرف طول موج هايي بلندتر ، از طرف ديگر ادغام روش هاي متعدد تشديد است ‏كه براي مطالعه گذارهاي بين زير ترازهاي مغناطيسي و يا ساختار فوق ريز توسداده شده اند. در اين ‏روش ها ، انتقالات هر چند كه به وسيله ميدان فركانس راديويي القا شوند، معمولا نه از طريق جذب انرزي ، ‏بلكه به وسيله روش هاي ديگر ، نظير انحراف حاصل از تغيير در جهت اسپين يا تغييري در جهت ‏‏قطبش تابش تشديد آشكار مي شوند‎.‎


منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

khaiyam
01-07-2006, 07:42
ماهواره ها و فركانس هاي مخابراتي

لايه أنيوسفر در فركانس حدود 30 مگا هرتز به صورت شفاف عمل مي كند. علائم ارسالي بر روي اين فركانس مستقيما از ميان آن مي گذرد و در فضاي بيرون گم مي شوند. اين فركانس ها همچنين در خط مستقيم ديد حركت مي كنند. به اين دلايل براي مقاصد ارتباطي آن ها را بايد به طريقه هاي گوناگون به كار گرفت. فركانسهاي 30 تا 300 مگاهرتز بسيار مفيد و كارامد هستند چون انتشار آنها با وجود محدود بودن پايدار است. اين امواج با چنين فركانسي براي امواج تلويزيون كارامدند زيرا فركانسهاي بالاي آن ها اجازه حمل مقادير فراواني از اطلاعات مورد لزوم را مي دهد و براي پخش صداي داراي كيفيت بالا نيز سودمند مي باشد. علت اين امر اين است كه در اين محدوده از فركانس براي كانالهاي پهن جا وجود دارد. قسمتي از باند UHF را كه بين 790 تا 960 مگاهرتز قرار دارد مي توان براي مرتبط ساختن ايستگاههايي با فاصله بيش از 320 كيلومتر به شيوه به اصطلاح پراكندگي در لايه تروپوسفر زمين به كار برد. اين شيوه به توانايي گيرنده دوردست در گرفتن بخش كوچكي از علائم فركانس UHF كه به دليل ناپيوستگي هاي بالاي لايه تروپوسفر پراكنده شده بستگي دارد. يعني علائم در جايي پراكنده مي شوند كه تغييرات شديدي و تندي در ضريب شكست هوا وجود دارد.


امواج مايكروويو چه نوع امواجي هستند؟


فركانس هاي بين 3000 تا 12000 مگاهرتز براي رابطهاي در خط مستقيم كه در آن پيام رساني از طريق آنتن هايي بر فراز برجهاي بلند ارسال مي شود به كار مي رود. ايستگاههاي تكرار كننده را كه ساختاري برج مانند دارند نيز در فواصل 40 تا 48 كيلومتري ( معمولا بالاي تپه ها ) كار مي گذارند. اين ايستگاهها امواج را مي گيرند تقويت مي كنند و دوباره به مسير خود مي فرستند. بخش مربوط به امواج مايكروويو براي ارتباط مراكز پرجمعيت بسيار مفيد است چون فركانس بالا به معناي آن است كه امكان حمل باند عريضي از طريق مدولاسيون وجود دارد و اين نيز به اين معني است كه هزاران كانال تلفن را مي توان روي يك فركانس مايكروويو فرستاد. باند عريض اين نوع فركانس اجازه مي دهد كه علائم ارسالي تلويزيون سياه و سفيد و تلويزيون رنگي بر روي يك موج حامل منفرد ارسال شوند و چون اين امواج داراي طول موج بسيار كوتاه هستند براي متمركز كردن علائم رسيده مي توان از بازتابنده هاي بسيار كوچك و اجزاي هدايت مستقيم بهره گرفت.


ماهواره چيست ؟


دستگاههاي ارتباطي ماهواره ها در باند مايكروويو عمل مي كنند در واقع ماهواره ها صرفا ايستگاه مايكروويو غول پيكري است در مدار زمين كه با كمك پايگاه زميني بازپخش مي شود. اين مدار تقريبا دايره شكل در ارتفاع 36800 كيلومتري بالاي خط استوا قرار دارد و در اين فاصله سرعت ماهواره با سرعت زمين برابر است و نيروي خود را به وسيله سلولهاي خورشيدي از خورشيد مي گيرد. نيروي جاذبه زمين شتاب زاويه شي قرار گرفته در مدار را دقيقا بي اثر مي سازد. در اين فاصله دور چرخش ماهواره ها با حركت دوراني زمين كاملا همزمان و برابر است و باعث مي شود ماهواره نسبت به نقطه مفروض روي زمين ثابت بماند.

ايستگاه زميني در كشور اطلاعات را با فركانس 6 گيگاهرتز ارسال مي كند. اين فركانس فركانس UPLINK ناميده مي شود. سپس ماهواره امواج تابيده شده را گرفته و با ارسال آن به نقطه ديگر كه بر روي فركانس حامل متفاوت DownLink برابر 4 گيگا هرتز است عمل انتقال اطلاعات از فرستنده به گيرنده را انجام مي دهد. در واقع ماهواره اطلاعات گرفته شده را به سمت مقصد تقويت و رله مي كند. آنتن ماهواره ترانسپوندر نام دارد. از مدار همزمان با زمين هر نقطه از زمين بجز قطبين در Line of sight است. و هر ماهواره مي تواند تقريبا 40 % از سطح زمين را بپوشاند. آنتن ماهواره ها را طوري مي شود طراحي كرد كه علائم پيام رساني ضعيف تر به تمام اين ناحيه فرستاده شود و يا علائم قويتر را در نواحي كوچكتري متمركز كند. بر حسب مورد اين امكان وجود دارد كه از ايستگاه زميني در كشوري فرضي به چندين ايستگاه زميني ديگر واقع در كشورهاي گوناگون علائم ارسال كرد. به طور مثال : وقتي برنامه اي تلويزيوني در تمام شهر ها و دهكده هاي يك يا چند كشور پخش شود در اين حالت ماهواره ماهواره پخش برنامه است ولي وقتي علائم ارسال ماهواره در سطح گسترده اي از زمين انتشار يابد ايستگاههاي زميني بايد آنتنهاي بسيار بزرگ و پيچيده اي داشته باشند. هنگامي كه علائم ارسالي ماهواره در محدوده كوچكترين متمركز مي شوند و به حد كافي قوي هستند مي توان از ايستگاههاي زميني كوچكتر ساده تر و ارزانتر استفاده كرد.

از آنجاييكه ماهواره ها براي جلوگيري از تداخل امواج راديويي بايد جدا از هم باشند لذا شماره مكان هاي مداري در مدار همزمان با زمين كه امكان استفاده آن براي ارتباطات وجود دارد محدود است. از اين رو جاي شگفتي نيست كه وظيفه مديريت در امور دستيابي به مدار و استفاده از فركانس ها براي انواع روز افزون و متنوع كاربردهاي زميني و ماهواره اي بوسيله شمار روزافزوني از كشورها بي نهايت دشوار شده است. از سويي استفاده از ماهواره ها در كش.رهاي متمدن و پيشرفته به عملكرد دقيق و عمليات روز به روز دقيق تر نه تنها از نظر به كارگيري شيوه خودشان بلكه از نظر همسايگانشان در مدار همزمان با زمين نياز مي باشد. برخي از ماهواره ها نيز در مدار ناهمزمان با چرخش زمين non- geosynchronous قرار داده مي شوند.در ماهواره هاي ناهمزمان با مدار زمين ماهواره ديگر در ديد ايستگاه زميني نيست زيرا كه سطح افق زمين را پشت سر مي گذارد و از ديررس خارج مي شود در نتيجه براي اينكه ارسال همواره ادامه يابد به چندين ماهواره از اين نوع نياز است و چون نگهداري و ادامه كار چنين شيوه ارتباطي بسيار پيچيده و گران است لذا كاربران و متخصصان طراحي ماهواره ها بيشتر جذب ماهواره همزمان با زمين مي شود.


فركانس هاي بالاي فركانس مايكروويو چه نوع فركانس هايي هستند؟


با كشف ليزر براي نخستين بار آن قسمت از محدوده فركانسي كه بالاتر از باند فركانس هاي مايكروويو بودند به منظور حمل پيام هاي بي سيم در نظر گرفته شدند. پرتو هاي ليزري تحت تاثير عواملي مانند مه - غبار -- خرابي وضع هوا و روزهاي بسيار داغ به شدت ضعيف مي شوند. اگر چه ليزر براي حمل اطلاعات تا مسافت هاي كوتاه خط ارتباطي بسيار عالي ايجاد مي كند ولي چون پرتو ليزر خاصيت هدايت شونده بالايي دارد بازداشتن يا سد كردن آن بسيار دشوار است. اين امر سبب مي شود براي ارتش و بعضي از مقاصد نظامي كه شيوه هاي آن ها بايد داراي حفظ اسرار باشد بسيار سودمند است در ضمن دستگاه ليزر براي كاربردهاي ارتباط سيار از سبكي و قابليت حمل خوبي برخوردار است. برخلاف امواج راديويي امواج نوري را نمي توان با عبور دادن جريان هاي متناوب در سيم ها توليد كرد آن ها تنها با فرايند هايي كه داخل اتم روي مي دهد به وجود مي ايند فن آوري تار نوري مشابه موج رسان فلزي مايكروويو براي پرتو تاباني الكترومغناطيسي در ناحيه نور مرئي تعريف شده است. اين شيوه به طور كلي شامل رشته اي شيشه اي با نازكي موي انسان است كه از هدر رفتن انرژي نور در مسافت طولاني جلوگيري مي كند همچنين بر خلاف پرتوي نور معمولي پرتوي نور ليزري تكفام است يعني فقط داراي يك فركانس تنها است. پرتوي ليزر داراي گستره پهن فركانس است كه خاصيت گسيختگي نور را ندارد به همين دليل آن ها را مي توان دقيقا به همان طريق كه با فركانس هاي مايكروويو تعديل مي شوند و تغيير نوسان مي دهند را با پيام هاي تلفني و اطلاعات و علائم تصويري تعديل كرد.

به هر حال چون فركانس آن ها خيلي بالاتر است به تناسب آن مي توان تعداد بيشتري از امواج و كانالها را انتقال دهند. به طور كلي مقايسه بين شيوه هاي مختلف ارسال امكان پذير مي باشد. روابط بين فرستنده و گيرنده خواه انتشار از روي سيم و خواه از هوا به نوع ساخت شيوه ارتباطي بستگي دارد و به همين ترتيب باند به فركانس به كار رفته به شرايط حل مساله ارتباطاتي وابسته است. بيشتر فركانسهاي در دسترس را مقررات ملي و توافق هاي بين المللي تعيين مي كنند. اگر چه تصميمات مربوط به شيوه ها و نحو ارسال امري فني به شمار مي آيد ولي در اكثر اوقات ملاحظات سياسي آن را در بر مي گيرد.

khaiyam
01-07-2006, 07:44
توانايى نور در حركت دادن مولكول هاى آب

گروهى از محققان دانشگاه آريزونا توانايى حركت مولكول هاى آب به وسيله نور را بررسى كرده و معتقدند كه اين پديده كاربردهاى گسترده اى در شيمى تجزيه و دارورسانى خواهد داشت. پژوهشگران دانشگاه آريزونا (asu) اثر تقويت كننده نور بر تغيير زاويه تماس آب و سطح را كشف كرده اند كه اين يافته تاثير مهمى در گسترش زمينه نوپاى ميكروسيالات خواهد داشت.

استفاده از يك پرتو نور معمولى براى حركت دادن آب به جاى ميدان هاى الكتريكى مخرب، يا حباب هاى هوا - كه تغييردهنده ماهيت پروتئين ها هستند - و يا حركت اجزاى ميكروسكوپى پمپ ها كه ساخت و تعميرشان هزينه بر و مشكل است، مى تواند به طور قابل توجهى به توسعه وسايل ميكروسيال مورد استفاده در تجزيه نمونه ها كمك كند.

اين وسايل مى توانند 20 تا 30 نوع آزمايش مختلف را بر روى يك قطره خون انجام داده و دسترسى به نتايج را در مدت زمان كوتاهى امكان پذير كنند. علاوه براين شركت هاى داروسازى با استفاده از اين وسايل، داروهاى جديدى را عرضه خواهند كرد كه در مقياس خيلى كوچك ولى به طور همزمان مى توانند چندين اثر داشته باشند. تيم تحقيقاتى Asu اثبات كرده اند كه با كمك نور مى توان تغييرات زيادى در خيس شوندگى سطوح بسيار صاف با پوشش هاى شيميايى ايجاد كرد. با رشد ماهرانه نانوسيم ها مى توان بر يكى از خاصيت هاى فيزيكى سطح به نام جنبش سيالات، در اندازه هاى نانو اثر گذاشت.

تيم Asu هم اكنون قصد دارد با اين روش، وسيله اى را براى انتقال داروهاى محلول در آب يا قطرات و نمونه هاى نيازمند به آناليزهاى بيوشيميايى يا زيست محيطى طراحى كند. كاربرد ديگر، كاهش پروتئين ها يا مقدار آنزيم هايى است كه براى آزمايش طى توسعه دارو مورد نياز است. معمولاً توليد و تخليص چنين داروهايى بسيار وقت گير است و با بازده پايين انجام مى شود. در يك افزاره ميكروسيالى، مقدار Dna و پروتئين هايى كه براى آزمايش داروها به كار مى روند، آنقدر كاهش مى يابد كه مقدار كمى از دارو به هدف رسانده مى شود.

اين امر زمان لازم براى آزمايش تمام دارو را كاهش داده و اجازه مى دهد كه بيشترين تعداد آزمايش به طور همزمان انجام شود. نتيجه علمى اين تحقيق به كار گيرى پرتوهاى نور براى حركت ميكرو قطرات در كانال هاى كوچك بر روى سطح يا قرار دادن آنها در موقعيت هاى از پيش تعيين شده براى آناليز است.

khaiyam
01-07-2006, 07:49
طوفان مغناطيسي

مترجم: مريم جوزي

همانند طرح يك فيلم علمي-تخيلي نوع ب، اتفاق عجيب غريبي در عمق زير زمين در حال اتفاق افتادن است، جايي كه چرخش پيوسته‌ي هسته‌ي مايع و فلزي زمين، ميدان مغناطيسي نامرئي‌اي توليد مي‌كند كه سياره‌ي ما را از تابش‌هاي مضر كيهاني محافظت مي‌كند. اين ميدان، به آرامي در حال ضعيف‌تر شدن است. آيا ما به سمت رستاخيز غيرمغناطيسي شدني به پيش مي‌رويم كه ما را در برابر اثرات مهلك بادهاي خورشيدي و اشعه‌هاي كيهاني بدون دفاع باقي مي‌گذارد؟ «طوفان مغناطيسي» براي آينده‌ي مبهم مغناطيسي ما محتمل به نظر مي‌رسد. دانشمنداني كه اين مسأله را مورد بررسي قرار داده‌اند در همه‌جا به مطالعه پرداخته‌اند، از مريخ، كه در چهار بيليون سال پيش دچار يك بحران مغناطيسي شده است و از آن زمان به بعد عاري از هرگونه ميدان مغناطيسي، جو قابل ملاحظه و محتملاً حيات شده است، گرفته تا آزمايشگاهي در دانشگاه مريلند، كه تيمي به سرپرستي دن لاترپ فيزيكدان، دست به شبيه‌سازي هسته‌ي مذاب آهني زمين با استفاده از 240 پوند سديم مذاب به شدت قابل انفجار زده‌اند. واضح‌ترين نشانه‌هاي ميدان مغناطيسي زمين شفق‌هاي قطبي هستند، كه در اثر برهمكنش ذرات باردار كيهاني با جو زمين در هنگام فروافتادن در قطب شمال و جنوب مغناطيسي به وجود مي‌آيند.

ليكن نشانه‌هاي تحليل ميدان مغناطيسي بسيار ظريف مي‌باشند - اگرچه آن‌ها در هر ظرف سفالي‌اي كه تا كنون در كوره پخته شده است آشكارند. در هنگام پخته شدن سفال‌ها در دماي بالا، ناخالصي‌هاي آهني موجود در خاك رس حالت دقيق ميدان مغناطيسي زمين را دقيقاً در آن لحظه به ثبت مي‌رسانند. جان شاو زمين شناس از دانشگاه ليورپول انگليس، با بررسي كوزه‌ها از عصر حجر تا زمان حال مدرن كشف كرده است كه شدت تغييرات ميدان مغناطيسي تا چه حد هيجان‌انگيز مي‌باشد. او مي‌گويد: «هنگامي كه ما نمودار نتايج حاصل از سراميك‌ها را رسم مي‌كنيم، كاهش سريعي را با حركت به سمت زمان حال مشاهده مي‌كنيم. نرخ تغييرات در 300 سال اخير از هر زمان ديگري در 5000 سال گذشته بيشتر است. ميدان مغناطيسي از يك ميدان قوي به سمت يك ميدان ضعيف به پيش مي‌رود، و اين اتفاق به سرعت در حال افتادن است.»

با نرخ كنوني، ميدان مغناطيسي زمين در عرض چندين قرن به طور كامل از بين مي‌رود، و سياره زمين در برابر جرقه‌هاي بي‌رحمانه‌ي ذرات باردار كيهاني بدون حفاظ مي‌ماند با نتايجي غير قابل پيشبيني براي جو زمين و حيات. احتمالات ممكن ديگر: ميدان مي‌تواند از ضعيف شدن دست بكشد و دوباره قوي بشود، و يا بعد از ضعيف شدن تا حد خاصي ناگهان جهت خود را تغيير دهد - يعني اين‌كه قطب‌نماها سمت قطب جنوب را نشان مي‌دهند. آثار قديمي‌تري از نوسان ميدان مغناطيسي زمين نسبت به آن‌چه از تحقيقات شاو حاصل شده است نتايجي بسيار پيچيده‌تر را نشان مي‌دهد. گدازه‌هاي آتشفشاني كهن در جزيره هاوايي هم در مورد قدرت ميدان مغناطيسي زمين با توجه به زمان سرد شدن گدازه‌ها و هم در مورد جهت قطب‌هاي شمال و جنوب مغناطيسي با توجه به جهت گدازه‌ها به ما اطلاعات مي‌دهند. مايك فولر زمين‌شناس از دانشگاه هاوايي مي‌گويد: «وقتي ما به 700,000 سال پيش بر‌مي‌گرديم پديده‌ي غير قابل باوري را مشاهده مي‌كنيم. جهت مغناطيسي صخره‌ها ناگهان در جهت معكوس قرار گرفته است. به جاي آن‌كه آن‌ها به سمت شمال مغناطيسه باشند- همانند چيزي كه امروز مشاهده مي‌كنيم - به سمت جنوب مغناطيسه شده‌اند.»

به نظر مي‌رسد كه چنان تغيير جهت ميدان مغناطيسي‌اي به طور متوسط هر 250,000 سال يك‌بار به وقوع پيوسته است، كه نتيجتاً هم اكنون براي جابه‌جايي ديگري در قطب‌هاي مغناطيسي خيلي هم دير شده است. گري گلاتزماير دانشمندي از دانشگاه سانتا كروز كاليفرنيا چنان جابه‌جايي‌هايي را بين دو قطب شمال و جنوب در شبيه‌سازي‌هاي كامپيوتري مشاهده كرده است (يكي از شبيه‌سازي‌ها را در اين‌جا مي‌بينيد). اين اتفاقات مجازي شباهت خيلي زيادي با رفتار كنوني ميدان مغناطيسي زمين نشان مي‌دهد ولذا مي‌توان نتيجه گرفت كه ما در آستانه‌ي تجربه يكي ديگر از جابه‌جايي‌هاي قطب‌هاي زمين قرار داريم، اگرچه تكميل آن چندين قرن به طول مي‌كشد.

برخي از محققان عقيده دارند كه ما در حال حاضر هم در مرحله انتقالي قرار داريم، با توجه به توسعه نواحي‌ با رفتارهاي غير متعارف مغناطيسي - كه خطوط ميدان در جهت اشتباه حركت مي‌كنند - نشانه‌هايي از حالت ضعيف‌تر و آشوبناك‌تري براي سپر محافظ ما است.

راب كو زمين شناس از دانشگاه سانتا كروز كاليفرنيا، حتي ممكن است شواهدي در گدازه‌هايي در اُرگان پيدا كرده باشد كه حاكي از ضربات مغناطيسي ناشي از دوره‌ي جابه‌جايي مي‌باشد. تصويري كه ايجاد مي‌شود ممكن است به پرسروصدايي استانداردهاي آبروريزي‌هاي هاليوودي نباشد، ليكن با توجه به اين‌كه تمدن بشري هيچ گاه در چنين موقعيتي قرار نداشته است، نسل بشر مي‌تواند دوران جالب و پرمبارزه‌اي را در پيش رو داشته باشد.


منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

khaiyam
01-07-2006, 07:51
چوپان مغناطيسي

الكترونها در محيط پلاسمايي مثل گوسفنداني هستند كه در يك مرتع باشند. آنها به اطراف پرسه مي زنند و گاهي به سقلمه اي احتياج دارند تا باعث شود در راه مشخص گله قرار گيرند. چهاردهم نوامبر، يك تيم تحقيقاتي روشي را عرضه كرد كه با آن مي توان ديواري يكطرفه ساخت كه كه اجازه ي ورود الكترونها از يكطرف را مي دهد ولي الكترونهايي كه از طرف ديگر ديوار مي خواهند وارد شوند را مانع مي شود. اين روش جديدي براي به دام انداري الكترونها در محيط پلاسمايي است. اين ايده ما را به ياد "شيطانك ماكسول(Maxwell's Demon)" مي اندازد كه مي گفت فرض كنيد يك ظرف را با تيغه اي به دو قسمت تقسيم مي كنيم و يكطرفش را تا نصف از گاز پر مي كنيم. موجود هوشياري را در جلوي سوراخ بين دو نصفه ي ظرف قرار مي دهيم و او فقط مولكولهاي پرسرعت را انتخاب و به سمت ديگر هدايت مي كند. اين آزمايش نظري عملا غير قابل اجراست اما در اينجا با احتساب اينكه مقداري گرما هدر مي رود مي توان الكترونها را به دقت تفكيك كرد. (مثل همان كاري كه شيطانك جلوي دريچه در آزمايش ذهني ماكسول مي كرد!) قصه اينگونه است كه در يك راكتور گداخت بنام توكامك، محققان ميدان مغناطيسي براي نگه داري پلاسما در يك محل خاص بكار مي برند. يعني پلاسما را (كه مجموعه اي از الكترونهاست) درون ظرفي از جنس ميدان مغناطيسي قرار مي دهند. براي اينكار تعدادي از الكترونهاي پلاسما را در ميدان مغناطيسي مي اندازند كه باعث مي شود اين الكترونها دور حلقه اي شبيه به خانه ي حلزون بچزخند و اين خانه حكم ظرفي را دارد كه درونش پلاسما حبس مي شود. اما اين روش نيازمند اينست كه مقدار بسيار زيادي امواج راديويي به درون پلاسما فرستاده شود كه اين مقدار باعث گرم شدن بسياري از الكترونها و اتلاف گرمايي مي شود. نات فيش (Nat Fisch) از دانشگاه پرينستون (Princeton University) و همكارانش تصميم گرفتند كه انرژي لازم براي ظرف را بجاي اينكه به همه جا بفرستند فقط به يك منطقه ي كوچك بفرستند. اين ايده دو نوع ميدان مي خواهد. اول، يك لايه ي نازك از ميدانهاي الكترومغناطيس نوسان كننده مي خواهد كه بطور عمودي محوطه ي پلاسمايي را نصف مي كند و دوم، يك ميدان مغناطيسي ايستا مي خواهد. الكترونها ترجيح مي دهند كه از ديواره ي قوي و نوساني الكترومغناطيسي فاصله بگيرند بنابراين به عقب برميگردند اما ميدان مغناطيسي روي الكترونهاعمل مي كند و آنها را مجددا به جلو هدايت مي كند(مثل يك درب يكطرفه). نمايي از يك پلاسماي حبس شده در يك توكامك. توضيح كاملتر و واضحتر انست كه فرض كنيد يك الكترون به ديوار نزديك ميشود. ميدان مغناطيسي ايستا كه عمود بر ديوار است باعث مي شود كه الكترون روي مسيري حلزوني شكل به سمت ديوار جلو برود. در نزديكي هاي ديوار فركانس اين چرخش رو به جلو با فركانس نوسان ميدان الكترومغناطيسي ديوار هماهنگ مي شود و باعث مي شود كه الكترونها در جاي مشخصي از مدار چرخششان ناگهاني به سمت داخل كشيده شوند. اين شوت شدگي به سمت ديگر ديواره براي تمام الكترونها در همان جهت وجود دارد. يعني فرقي نمي كند كه الكترون به ديواره از كدام سمت نزديك شود. اگر الكتروني مثلا از سمت ديگر به ديوار نزديك شود، ميدان مغناطيسي ايستايي كه الكترونها را رو به يك سمت هدايت مي كند باعث دوري آن الكترون از ديوار مي شود. بنابراين مي بينيد كه ديوار اينجا مثل شيطانك ماكسول كه به يكسو تفكيك مي كرد عمل مي كند. حالا اين تيم در حال عملي كردن اين ايده هستند تا بتوانند با دو ديوار الكترونها را بين اين دو حبس كنند.

منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

khaiyam
01-07-2006, 07:52
تابش الكترومغناطيسي-تابش جسم سياه

تابش الكترومغناطيسي:
هر شي در نجوم بوسيله تابش الكترو مغناطيسي مشاهده مي شود بنابر اين توجه به برخي از مباني فيزيك درباره تابش وجذب لازم است .تابش الكترو مغناطيسي فقط يك موج متحرك در ميدان مغناطيسي و الكتريكي است كه در معادلات ماكسول به هم مربوط مي شوند.موج الكترو مغناطيسي باسرعت نور منتشر مي شود. C=2.998*108
حاصل ضرب طول موج و فركانس برابر سرعت نور است.

C = F * g

كه به صورت سنتي طيف سنجها طول موج را اندازه گيري مي كنند.
با وسائل جديد تمام محدوده طيف قابل مشاهده است. تعدادي ازطول موجهايي كه فقط مي توانند در بالاي جو اندازه گيري شوند؛درفنآوري ماهواره اي به كارمي روند.

تابش نور به چندطريق صورت مي گيرد:
1-فرآيند پهن شدگي (فرآيند گرما يوني )-تابش جسم سياه. 2-تابش خطي .
3-تابش سينكروترون ناشي از بارهاي الكتريكي شتابدار.
ما درباره’ مورد اول بحث خواهيم كرد
تابش جسم سياه:

جسم گرم در دماي مشخص T گستره پهني از امواج الكترو مغناطيس تابش مي كندو جسم گرمتر آبي تر تابش ميكند .
براي مثال داخل زمين يك مخزن نور است كه مانند يك باطري ضعيف شده كم نورتر وقرمزتر است . اين مسئله در ابتداي قرن بيستم در فيزيك كلاسيك حل شده ويكي از موفقيتهاي مكانيك كوانتومي شكل گرفته بود.
طيف تابش گسيل يافته براي فيزيك كلاسيك يك مشكل بزرگ بود .
استفان و بولتزمن كشف كردند كه تمام گرماي تابش شده بوسيله سطح جسمي با مساحت A و دمايT برابر است با:
Q=AsT4 s =5.67*108
شدت تابش درواحد حجم كه تابع طول موج است ،اندازه گيري شد. موقعيت ماكزيمم ناگهاني در طيف ،توسط قانون جابجايي وينز ((Wiens تشريح شد و مكان بيشترين شدت در طول موج
-3^10*2.9 كه در آن Tدر مقياس كلوين است.
بنابرا ين طول موج تابش گسيل يافته، نظريه تابشي جسم را ارائه مي دهد.
تلاشهاي رايلي (Rayleigh)براي توضيح مشاهدات از نظر كلاسيكي نا موفق بود .او محاسباتي انجام داد با اين فرض كه موجها درون كاواك قرار بگيرند وتابش گريزي از سوراخ كوچكي در ديواره كاواك را بدست آورد.فقط طول موجهايي مجازبودند كه دقيقا موج بر ديواره كاواك قرار مي گرفت (ديواره’ كاواك مكان گره ها بود).
رايلي فرض كرد كه هر گونه طول موج داراي انرژي KT است( K ثابت بولتزمن است).محاسبات پش بيني مي كرد كه در دماي T تابندگي (شدت تابش ) به طول موج وابسته است.
I(l)= T/landa^4
فرض بالا يك مشكل دارد؛وقتي طول موج صفر مي شود شدت بينهايت مي گرددواين مساله به عنوان فاجعه فرابنفش شناخته شد.
در سال 1900م.پلانگ اين مشكل را با گسسته فرض كردن تابش الكترو مغناطيسي حل كرد.او فرض كرد كه تابش بوسيله نوسانگرهاي الكترو مغناطيسي درون ديواره كاواك توليد ميشود.انرژي نوسانگرها فقط مي توانست به صور ت گسسته مضربي از بسامد باشدn=0,1,2,3,… ; E=nhn.
محا سبات پلانگ تفاوت بنيادي با محاسبا ت رايلي داشت كه مقادير انرژي را پيوسته فرض كرده بود. محاسبات پلانك تابندگي در طول موج خاص را بصورت زير داد:
I(l)=2*π*h*c^2/[l^5[exp(hc/lkT)-1]]
فرم بالاقانون استفان بولتزمن و قانونوينز را تاييد مي كند
. در طول موجهاي زياد فرمول بال منجر به نتايج رايلي مي شود.
در واقع در اندازه گيري دماي يك ستاره نوعي طيف سنجي يا نور سنجي ميتواند به كار رود.
مقايسه بين تابندگي نسبي مقدار نور گسيل شده يك ستاره در دو طول موج:.
اين نسبت مشخصه دمايي است بنابر اين اندازه گيري تمام طيف جسم سياه الزامي نيست.چون تابندگي در هر دماي مشخص به طور نسبي در شدت 550 nm بهنجار شده است.called V or Visual Band
اندازه گيري دوم در تابندگي 440nm
(( called B or Blue band ))
اندازه گيري دما را ممكن ميسازد.


ترجمه:ياوري

منبع :parash.persianblog.com

khaiyam
01-07-2006, 07:56
ظاهرا هيچ طرفداري نيست و هيچ نظري

MEMOL12
01-07-2006, 12:01
عزيزم مغناطيس درس وحشتناكيه و خيليها من جمله خود من با بدبختي پاسش كرديم اگه راجب الكترونيك مقالهاي داري مخصوصا از ترانزيستورها خودم مخاصتم هستم

khaiyam
02-07-2006, 07:31
ساختمان قطعات دیجیتال

طبق قرار قبلی بر آن شدیم تا مبحث مدارهای مجتمع و قطعات دیجیتال را در پست های بعدی دنبال کنیم. عرض کردیم که بسیاری از خانواده های مختلف منطقی به صورت مدار های مجتمع در سطح تجاری عرضه شده اند. متداول ترین خانواده ها از این قرارند:

TTL - منطق ترانزیستور - ترانزیستور
ECL - منطق کوپل امیتر
MOS - منطق فلز - اکسید - نیمه هادی
CMOS - منطق فلز - اکسید - نیمه هادی مکمل

TTL یک خانواده متداول است که سالها مورد استفاده بوده و به عنوان استاندارد تلقی می شود. ECL در سیستم هایی که به سرعت عمل بالا نیاز دارند ترجیح داده می شوند. MOS برای مدار هایی که نیاز به تراکم بالا دارند مناسب است و CMOS در سیستم های کم مصرف به کار می رود.

خانواده منطقی ترانزیستور - ترانزیستور گونه تکامل یافته تکنولوژی قدیمی تریست که در آن از دیود و ترانزیستور برای ساخت گیت پایه NAND استفاده می شده است. این تکنولوژی منطق دیود ترانزیستور (DTL) خوانده می شده است. بعد ها برای بهبود عملکرد مدار به جای دیود از ترانزیستور استفاده شد و نام خانواده جدید ترانزیستور- ترانزیستور گذاشته شد.
علاوه بر نوع استاندارد TTL انواع دیگری از این خانواده عبارتند از TTL سرعت بالا -TTL توان پایین(یا کم مصرف)-TTL شوتکی -TTL شوتکی توان پایین و....
منیع تغذیه مدار های TTL پنج ولت و در دو سطح منطقی 0 و 3.5 ولت می باشد.

خانواده کوپل امیتر سریع ترین مدار های دیجیتال را به فرم مجتمع در اختیار می گذارند. ECL در مدار هایی مانند سوپر کامپیوتر ها و پردازنده های سیگنال که در آنها سرعت بالا ضرورت دارد بکار می رود. ترانزیستور ها در گیت های ECL در حالت غیر اشباح کار می کنند و رسیدن به تاخیر های انتشاری در حد 1 تا 2 نانو ثانیه در آنها میسر است.

منطق فلز- اکسید- نیمه هادی یک ترانزیستور تک قطبی ست که به جریان یک نوع حامل الکتریکی وابسته است. این حامل ها ممکن است الکترون (در نوع کانال n) یا حفره باشند. این بر خلاف ترانزیستور به کار رفته در گیت های TTL/ECL است که در عین عملکرد هر دو نوع حامل در آن وجود دارد.
یک MOS کانال p را PMOS و یک MOS کانال n را NMOS می نامند. معمولا در مدار هایی که فقط یک ترانزیستور MOS وجود دارد از NMOS استفاده می شود. در تکنولوژی CMOS هر دو نوع ترانزیستور که به شکل مکمل در تمام مدار ها بسته شده اند به کار رفته است . بزرگترین مزیت CMOS نسبت به دو قطبی تراکم بالای مدار ها در بسته بندی ساده بودن تکنیک ساخت و عملکرد مقرون به صرفه آن به دلیل مصرف توان کم است.

به علت مزایای بی شمار مدار های مجتمع انحصارا در تهیه انواع قطعات لازم در طراحی سیستم های کامپیوتر به کار می رود . برای درک سازمان و طراحی کامپیوتر ها آشنایی با انواع قطعات و اجزائ به کار رفته در مدار های مجتمع اهمیت دارد. به این دلیل اجزائ اصلی به همراه خواص منطقی آن تشریح شده است این اجزا مجموعه ای از واحد های عملیاتی دیجیتال را فراهم می کنند که در طراحی کامپیو تر های دیجیتال یه عنوان بلوک های ساختمان اصلی پایه به کار می روند.


مرضیه مو سی زاده
m_moosazadeh2000@yahoo.com

khaiyam
02-07-2006, 07:32
معرفی
ترانزیستور را معمولا به عنوان یکی از قطعات الکترونیک می‌‌شناسند. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم (سیلیکان) ساخته می‌شود.

کاربرد
ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. در آنالوگ می‌توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. کاربرد ترانزیستور در الکترونیک دیجیتال شامل مواردی مانند پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... می‌شود.

عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سه‌پایه می‌‌باشد که با اعمال یک سیگنال به یکی از پایه‌های آن میزان جریان عبور کننده از دو پایه دیگر آن را می‌توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان‌های دیگر مانند مقاومت‌ها و ... جریان‌ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.g

انواع
دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدانی) (Field Effect Transistors) هستند. FET ‌ها نیز خود به دو دستهٔ Jfet‌ها (Junction Field Effect Transistors) و MOSFET‌ها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می‌شوند.

ترانزیستور دوقطبی پیوندی
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می‌شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می‌شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلت‌های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود.

ترانزیستور اثر میدانی(JFET)
در ترانزیستور اثر میدانی با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می‌شود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه‌ای ساخته می‌شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریبا هیچ استفاده‌ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می‌شوند.

ترانزیستور اثر میدانی(MOSFET)
این ترانزیستورها نیز مانند Jfet‌ها عمل می‌کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که تکنولوژی استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می‌شوند و فضای کمتری اشغال می‌کنند. همچنین مصرف توان بسیار ناچیزی دارند.

به تکنولوژی‌هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می‌کنند Bicmos می‌گویند

البته نقطه کار این ترنزیستورها نسبت به دما حساس است وتغییر می‌کند.بنابراین بیشتر در سوئیچینگ بکار می‌‌روند AMB

khaiyam
02-07-2006, 07:33
ترانزیستور چگونه کار می کند - ۱

اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک
پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند
جریانی از مدار عبور نخواهد کرد. اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.

موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.

جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود.

از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد. همانطور که در مطلب قبل (اولین ترانزیستورها) اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.

در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.

اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کرد (چرا؟).

این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. همانطور که می دانید یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند.

معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند. (ادامه دارد ...)

khaiyam
03-07-2006, 07:10
ظاهرا اين موضوعات طرفداري نداره پس فرستادن پست هم بيهوده است

Emprof
13-07-2006, 19:27
به نام خدا
سلام honarmand
لطفا اين حرف رو نزنيد.من بعد از مدتها دوباره سري به اين بخش زدم (مشغله نميذاشت)و دارم از مطالب شما استفاده مي كنم.يه سوال هم دارم اونم اينه كه آيا يه كتاب در مورد رياضي مهندسي سراغ نداريد ؟اگه داريد لطف كنيد و معرفي كنين.

nipd
15-08-2006, 04:18
khaiyam اطلاعات جالبي به من منتقل كردي . تشكر .

yousofnejad
30-08-2006, 01:37
hazrate khayam ye soal besiar mohom va asasi ke barobachse ferdowsi hichki javabe dorost hesabi vasash nadasht
امواج الکترو مغناطیس چه گونه در فضا منتشر میشوند؟؟؟؟؟؟؟؟؟
begoo ta begam

Moje RengeR
15-09-2006, 14:20
من این مقاله رو برای کسا نی که میخوان کار های حساس ودقیق در زمینه الکترونیک انجام بدن گذاشتم امید وارم مورد توجه دوستان قرار بگیره
استفاده از لامینت برای تهیه مدار چاپی

مواد لازم: لامینت، طلق ترانسپرنت یا فیلم از روی نقشه مدار یا کاغذ کالک که نقشه مدار روی آن پرینت شده باشد.

مواد لازم برای چاپ مدار بر روی فیبر به روش لامینت:

1) لامینت به سطح مقطع مورد نیاز (لامينت ماده اي ژلاتيني و حساس به نور است که بين دو لايه طلقي شفاف نازک قرار گرفته است)

2) طلق ترانسپرنت یا فیلم و یا طرح چاپ شده مدار نگاتیو بر روی کاغذ کالک

3) اسید (پرکلرودوفر)، آب و ظرف پلاستیکی

شروع کار:

برای شروع کار لازم است از طرح مورد نظرتان یک پرینت نگاتیو داشته باشید. پرینت نگاتیو را می توانید بر روی کاغذ کالک شفاف چاپ کنید یا به یکی از روش‌های عکاسی، به کمک یک فروشگاه مهرسازی از آن فیلم بگیرید. توجه نمایید که نقشه مدار چاپ شده شما حتماً باید نگاتیو باشد. (محل نوارهای مسی و خطوط خالی و بقیه جاهای مدار سیاه باشد) فیبر مسی را با سمباده نرم و یا با شستن، کاملاً تمیز و عاری از چربی نمایید. در یک جای کاملاً تاریک لامینت را از پوشش سیاه رنگ خود در آورید. توجه شود که این کار حتماً باید در یک محیط عاری از نور و تاریک انجام شود. همانطورکه می بینید دو طرف لامینت یک لایه چسبیده شده که یکی از دیگري نرمتر است. آن را جدا کرده و لامینت را روی سطح مسی بچسبانید و کاملاً ماساژ دهید تا هیچ حبابی در زیر آن جمع نشود. اگر جایی هم دیدید هوا زیر لامینت قرار دارد با یک سوزن هوا را از آن خارج کنید.

فیلم و یا طلق چاپ شده از روی مدار را روی لامینت بگذارید و تنظیم نمایید. توجه داشته باشید که هنوز یک لایه به لامینت چسبیده است. یک شیشه دیگر روی طرح چاپی بگذارید تا کاملاً طرح به سطح لامینت بچسبد. تمام مراحل گفته شده باید در تاریکی انجام شود.

اکنون آنها را بدون اینکه تکان بخورند زیر نور خورشید برده و به مدت 5 الی 10 دقیقه زیر نور خورشید بگذارید. دوباره به تاریک خانه برگردید و لایه دوم را از روی لامینت جدا نمایید. این لایه از لایه قبلی زخیم تر است.

مقدار یک قاشق غذا خوری پودر سفید رنگ ظهور لامینت را در یک لیوان آب حل نمایید. فیبر مدار را در آب بیاندازید و به آرامی تکان دهید تا طرح مدار ظاهر شود. (یعنی لامینت هایی که به آنها نور نتابیده کاملاً پاک شود) حالا فیبر را زیر آب کاملا بشویید و با دست به آرامی روی آن بکشید تا لیزی حاصل از ماده ظهور از روی سطح مسی کاملا پاک شود. حال پس از خشک کردن کامل فیبر ، آن را از تاریک خانه خارج کنید. اکنون فیبر آماده اسیدکاری است.

بعد از اتمام اسید کاری برای پاک کردن لامینت باقی مانده روی سطح مسی، با رعایت ایمنی، از محلول سود سوزآور استفاده نمایید.

Esikhoob
16-09-2006, 12:44
اول از همه به شما دوست عزیز که در مورد امواج الکترومغناطیس سئوال کرده بودید می پرسم که آیا این سایت را دیدید:

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]
در صفحه چهارم این صفحه (4تا next بزنی) اگر آن بار منفی که به طور فرضی به یک فنر بسته شده ( به خاطر اینکه یک حرکت تناوبی برای الکترون شبیه سازی کند) با موس بگیری وبکشی و بعد ول کنی می بینی که بارهای دیگری که در این دنیا وجود دارند و البته چند شرط محدود کننده وجود دارد، دلشان می خواهد مثل آن بار بالا و پایین بروند.
خودم هم در مورد این امواج، سئوالها دارم. اما یک چیز را میدانم که امواج الکترو مغناطیسی مثل تمام قوانین کشف شده یا نشده این دنیا از زمان دایناسورها وجود داشته و کاری که انسان در قرنهای معاصر کرده این بوده که به موجودیت چنین مسائلی در طبیعت پی برده ؛ از آنجایی که خودم این سئوالات را مانند شما از چند نفر پرسیدم و آنها هم نمی دانستند ، به نظر می رسد مانند خدا که در کتابهای دینی گفته شده از آثارش باید به وجودش پی برد، امواج الکترو مغناطیس را هم از آثارش باید پی برد.
اگر کسی چیز بیشتری می داند یا حرفهای من غلط بود ، خواهش می کنم به من بگوید.

Mirzaie
21-09-2006, 01:28
خیلی هزینه بر هست ... روش پرینتر لیزری و اتو خیلی بهتر و راحتر و صد البته ارزونتره ...

Marichka
21-09-2006, 16:01
ظاهرا اين موضوعات طرفداري نداره پس فرستادن پست هم بيهوده استسلام خيام عزيز :)
با اين حرفتون موافق نيستم چون هر تاپيكي توي انجمن علمي بازديد كننده هاي خودشو داره و همينطور تاپيك عالي و مفيد شما :happy:
فقط براي اين كه تاپيك بي جهت شلوغ نشه دوستان پستهاي تشكر كمتر ميدن :tongue:
موفق باشيد
==============================================

1. قانون بقاي بار الكتريكي ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
2. فيوز چيست ؟ ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
3. آمپر متر چيست؟ ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
4. ساختمان ترانسفورماتور ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
5. نيروگاه ها ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
6. قوس الكتريكي چيست؟ ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
7. جريان مستقيم و جريان متناوب ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
8. لرزش ديوارها هم برق توليد مي كند ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
9. آشنايي با الكترونيك - توان چيست؟ ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
10. نور و امواج الكترومغناطيس ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
11. بمبهاي الكترومغناطيسي ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
12. مفاهيم بنيادي طيف الكترومغناطيس ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
13. ماهواره ها و فركانس هاي مخابراتي ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
14. توانايى نور در حركت دادن مولكول هاى آب ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
15. طوفان مغناطيسي ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
16. چوپان مغناطيسي ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
17. تابش الكترومغناطيسي-تابش جسم سياه ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
18. ساختمان قطعات دیجیتال ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
19. ترانزیستور ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
20. ترانزیستور چگونه کار می کند ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
21. ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])استفاده از لامینت برای تهیه مدار چاپی ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])
22. مفهوم ليزر ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])

xl
25-09-2006, 20:52
دوستان سلام
سؤالي داشتم و نمي دونم كجا مطرحش كنم
بلندگوي تلويزيون ما 4 اهمه و صداي بمي داره ، اگه بجاي اون يه بلنگوي 8 و يا 16 اهم قرار بدم تا صداي زير تري دريافت كنيم، صدمه اي به آمپليفاير سيستم مي زنه؟
اگه به اون سري كنم چه؟

MOHAMMAD2010
26-09-2006, 22:15
سلام دوستان
من یک سوال در مورد الکترو مغناطیس دارم
چرا وقتی دو سیم که جهت جریان در انها یکی است را کنار هم قرار می دهیم همدیگر را جذب میکنند ولی دو سیم که جهت جریان در انها متفاوت باشند همدیگر را دفع می کنند
اگر میشه اثباتش کنید با فرمول

xl
28-09-2006, 22:49
معلوم نيست سؤالها رو در كدوم تايپيك بايد مطرح كرد!
mohammad2010، اونچه كه معلومات من اجازه مي ده، فرمولي براي اثبات جذب شدن وجود نداره، فقط يك قانون تجربي است كه جهت ميدان مغناطيسي رو نشون مي ده و يك قانون دست راست كه جهت نيرويح حاصل از ميدان رو نشون مي ده
ولي اگه اشتباه نكرده باشم، در حالت جهت جريانها مخالف، سيمها همديگر رو جذب مي كنند چون، مانند دو آهنربا عمل مي كنند كه قطبهاي مخالفشون نزديك هم قرار گرفته (بر اساس جهت ميدان مغناطيسي ايجاد شده و قرارداد N به S)

Esikhoob
17-10-2006, 19:46
xl به نظر من که فارق التحصیل رشته الکترونیکم ولی خودم میدونم که ناشی هستم ، اگر اهم بلند گو را ببری بالا ، بلندگوها از بخش آمپلیفایر دستگاه جریان کمتری میکشند در نتیجه نباید به آمپلیفایر صدمه ای بزنه ، اما اینو مطمئن هستم که از لحاظ تئوری اهم بلنگو ربطی به زیری یا بمی صدا ندارد ، البته ممکن است در بازار بلند گو هایی که صدای زیر تولید میکنند اهم بیشتری داشته باشند ، آنهم به خاطر توان کمتری است که مصرف میکنند.

Hamed_forum
17-10-2006, 23:36
يك كتاب براي راهنمايي درس مدار الكتريكي كه در رشته كامپيوتر تدريس ميشه ميخواستم

Marichka
27-10-2006, 13:02
LIGHT AMPLIFICATION

STIMULATED EMITION

RADIATION

مفهوم ليزر

همانطور كه از نام آن پيداست ليزر به معني تقويت نور از طريق تحريك امواج الكترومغناطيسي مي باشد اين نور از خود خاصيتي نشان مي دهد كه نور يك لامپ فاقد آن است تك فركانس بودن هم فاز و موازي بودن اشعه نور ليزر از ويژگي هاي خاص اين نور است اين ويژگي باعث مي شود كه اطلاعات نوري ليزري را از طريق فيبر نوري تا كيلومترها بدون افت هدايت نمود

نمي توان مواد معيني را براي توليد نور ليزر نام برد اما بعضي مواد پاسخ بهتري به ايجاد نور ليزر مي دهند

ايجاد نور ليزر

inversion population راه ايجاد نور ليزر وارونگي جمعيت مي باشد

و اين وارونگي را براساس خواص مواد به طرق مختلف از جمله

ــ عبور جريان الكتريكي

ــ تشعشع نوري

ــ تخليه الكتريكي

ــ بمباران با الكترون هاي پرانرژي

مي توان انجام داد

نور ليزر با داشتن طول موج هاي مختلف خواص متفاوتي را از خود نشان مي دهد

10A ليزر قدرتمندي است كه طول موج آن در محدوده مادون قرمز است و با جريان co2بعنوان مثال ليزرچند كيلووات قدرت ايجاد مي شود

از اين نور در پزشكي بعنوان چاقو جراحي بدون خونريزي استفاده مي گردد در پايان يادآور مي شود كه اولين تقويت كننده نور با طول موج 694توسط ميمن در آمريكا ساخته شد و سپس افتخار ساخت اولين ليزر گازي نصيب دانشمند ايراني پرفسور علي جوان گرديد

mbsh
30-11-2006, 17:50
تاريخچه ي الكترومغناطيس؟

mbsh
30-11-2006, 17:53
در مرد قانون كولن و اين كه در رابطه ي آن توان آر علاوه بر 2 افسيلون هم دارد اطلاعات مي خواهم و اصلا چه جوري مي شه اين مطلبو ثابت كرد؟