PDA

نسخه کامل مشاهده نسخه کامل : مغناطیس و الکترومغناطیس |مقالات|




    

Babak_King
29-12-2005, 13:11
عقربه قطب نما هنگام باز نمودن درب آن ، آزاد شده و حول محور خود مي‌چرخد و سپس به علت نيروي مغناطيسي كره زمين هميشه در يك جهت معين كه همان قطب شمال مغناطيسي است مي‌استد و آن را به ما نشان مي‌دهد.

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

عقربه مذكور هيچگاه اشتباه نمي‌كند مگر آنكه در نزديكي اشياي آهني يا فولادي و يا كابلي قرار گرفته باشد . بنابراين ، هنگام استفاده از قطب نما بايستي مطمئن شويم كه از اشياي انحراف دهنده آن ، بطور كلي دور است.

كاربردهاي قطب نما

به كمك قطب نما مي‌توانيم گراي مغناطيسي كليه امتدادهاي مورد نظر را اندازه گرفته و با در دست داشتن گراي مغناطيسي يك امتداد ، جهت يابي بكنيم .

در كشتي ها و هواپيماها براي جهت يابي از آن استفاده مي‌شود.

در صنايع نظامي كاربرد وسيعي دارد از جمله ديده‌بان‌ها در مناطق عملياتي به كمك آن جهت يابي مي‌كنند.

در صنايع مخابرات ، كارهاي پژوهشي و ساختمان قبله نماها به كار برده مي شود.

قطب نماي پيشرفته

قطب نماهاي پيشرفته كه بيشتر در صنايع مخابرات و امور نظامي به كار برده مي‌شوند، مجهز به سلول‌هاي شب نما مي‌باشند كه حتي در تاريكي شب عمل جهت نمايي را صورت دهند. اين نوع قطب نماها در دوربين‌هاي دو چشمي نظامي ، تانك‌ها ، نفربرها و حتي در ساختمان برخي خودروهاي پيشرفته نيز به كار مي رود .

از قطب نماهاي پيشرفته در اندازه گيري طول جغرافيايي و عرض جغرافيايي محل نيز استفاده مي‌كنند كه در نقشه خواني ، پياده سازي عمليات نظامي ، ديده باني در مناطق جنگي و ... نقش تعيين كننده دارند.

منبع:[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Hidden-H
14-02-2006, 19:21
دوست خوبم اميدوارم تاپيكت پيشرفت كنه
فيزيك علم قشنگيه

براي ديدن مقاله اينجا كليك كنيد ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]مبانی%20نظریه%20فروم ناطیس)

Hidden-H
14-02-2006, 19:30
كليك كنيد ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]آشکار%20ساز%20الکترو غناطیسی)

Hidden-H
14-02-2006, 19:32
كليك كنيد ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]آهن%20ربای%20مولکولی)

saeed666
10-04-2006, 17:06
نقش ميدان مغناطيسى در حفاظت از كره زمين


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


ميدان مغناطيسى زمين همانند پوست پياز كره خاكى ما را در برگرفته است. توفان هاى خورشيدى آن را مورد حمله قرار داده و موجب بروز توفان هاى الكتريكى در آن مى گردند. اين توفان ها نيز متعاقباً بر روى سيستم هاى الكتريكى زمين اثر مى گذارد. اگر چه ميدان مغناطيسى زمين كره خاكى ما را از توفان هاى خورشيدى و تشعشعات فضايى حفظ مى كند اما متاسفانه اين ميدان مغناطيسى به تدريج در حال ضعيف ترشدن بوده و عواقب حاصل از آن مايه نگرانى كارشناسان امر است.

چندى پيش رسانه هاى گروهى از وقوع انفجارات شديد در خورشيد (در منظومه شمسى) خبر داده و متذكر شدند در اثر اين انفجارات، تشعشعات خطرناكى وارد جو زمين شده و ذرات الكتريكى باردار آن براى همگان مضر خواهد بود. در اين گزارش ها از قطع ارتباطات راديويى در سراسر جهان، از كار افتادن ماهواره ها و سيستم هاى برق رسانى سخن مى رفت. اين نگرانى ها همه بحق بودند. پس از انفجارهاى شديد خورشيدى كه 14 سال پيش صورت گرفتند ابرى از ذرات باردار پرانرژى ( اين ذرات باردار در زبان فيزيكدانان، پلاسما ناميده مى شود) با قدرتى 1700 بار بيشتر از روزهاى معمولى، به سوى سياره ما وزيدن گرفت. در آن زمان دانشمندان از اين بيم داشتند كه اگر توفان حاصل از اين ذرات پر انرژى به ميدان مغناطيسى زمين برسند، در ميدان مغناطيسى، شدت جريان الكتريكى آنچنان زياد خواهد بود كه تقريباً تمامى فيوزهاى سيستم هاى الكتريكى از كار خواهند افتاد. خوشبختانه اين فاجعه عظيم به وقوع نپيوست. تنها برخى از فركانس هاى راديويى دچار اشكال پخش شدند و كار بعضى از ماهواره ها به صورت موقت و از روى احتياط متوقف شد.

كارشناسان به اين نتيجه رسيدند كه ميدان مغناطيسى زمين، سپر دفاعى نامريى ما در برابر توفان هاى خورشيدى و تشعشعات فضايى بوده است. با اين وجود نقش پروتون ها و ذرات آلفا در اين تشعشعات و همچنين نقش ميدان مغناطيسى زمين هنوز هم معماهاى بسيارى را در خود نهفته دارند.

اما اصولاً چرا كره زمين از دو قطب مغناطيسى برخوردار است؟ چه چيزى باعث مى شود كه زمين همانند يك ميله مغناطيسى عظيم، آن طور كه همه ما آ ن را از كلاس هاى درس فيزيك مى شناسيم، عمل كند؟ چرا عقربه يك قطب نما هميشه جهت شمال و جنوب مغناطيسى را بر روى زمين نشان مى دهد؟ (اين مسئله هزاران سال پيش توسط چينى ها كشف شد.)

شايد بد نباشد توضيح دهيم كه حتى تا قرن شانزدهم ميلادى هم بسيارى از مردم معتقد بودند كه يك كوه عظيم مغناطيسى در شمال زمين وجود دارد.

متخصصان رشته هاى فيزيك و زمين شناسى تنها چند دهه پيش بود كه تئورى ديگرى را ارائه كردند و اين تئورى تازه، چهار سال پيش در انستيتوى تحقيقاتى شهر كارلسروهه مورد تائيد قرار گرفت. طبق اين تئورى تقريباً 95 درصد از ميدان مغناطيسى زمين از طريق يك ماشين دينام يا در حقيقت ژنراتورى كه با كمك اثر مغناطيسى، انرژى الكتريكى توليد مى كند، در ماده مذاب قشر بيرونى هسته زمين كه كلاً از آهن تشكيل شده است توليد مى شود. در اين قشر، جريان هايى به وجود مى آيند كه بر اثر چرخش كره زمين شكلى مارپيچ به خود مى گيرند. آزمايش هاى انجام گرفته نشانگر آنند كه اين جريان هاى مارپيچ، واقعاً يك ميدان مغناطيسى را به وجود مى آورند. ميدان مغناطيسى درونى زمين بر جريان هاى الكتريكى خارجى در يونوسفر جو زمين اثر گذاشته و به اين ترتيب در برابر توفان هاى خورشيدى و تشعشعات زيان آور ذرات الكتريكى نقش حفاظ را بازى مى كند.

البته اين ميدان مغناطيسى همانند ميدان مغناطيسى زمين كه دائماً ضعيف تر مى شود، از يك ثبات دائمى برخوردار نيست. علاوه براين، بررسى سنگ هاى كره زمين نشان مى دهد كه پس از بروز يك چنين ضعفى در ميدان مغناطيسى زمين، تقريباً هر 750 هزار سال يك بار، محل قطب هاى شمال و جنوب مغناطيسى تغيير مى كند. اما براساس محاسبات كنونى اين تغيير محل قطب هاى مغناطيسى زمين حدوداً 500 سال ديگر انجام خواهد گرفت. اينكه علت اين پديده چيست و آيا به اين خاطر، آن طور كه برخى از محققان معتقدند، آب وهواى كره زمين تغيير خواهد كرد يا اينكه اصولاً بقاى حيات بر روى كره خاكى ما با خطر مواجه مى شود، هنوز مشخص نيست.



منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

saeed666
10-04-2006, 17:09
چرا ميدان مغناطيسي زمين عوض مي شود؟


ميدان مغناطيسي يا آهنربايي كره زمين در حال ضعيف شدن است. اگر اين كاهش در شدت ميدان با همين اهنگ به پيش رود ظرف 1200 سال آينده قطب نماهاي سراسر دنيا از كار خواهند افتاد تا مدتي به طرف همه جا ولي در واقع هيچ جا منحرف خواهند شد. سپس به آهستگي پس از گذشت دهها يا صدها سال بار ديگر همراستا خواهند شد اما اين بار به سمت جنوب.
نتيجه اين مي شود كه ميدان مغناطيسي زمين وارونه خواهد شد اين اتفاق پسشتر نيز بارها روي داده است. زمين شناسان در سنگ هاي مغناطيسي چندين ميليون ساله قرايني يافته اند كه اين را تاييد مي كند. روشن است كه اين پديده بيانگر مطلب بسيار مهمي درباره هسته دروني زمين است.اما پرسش اينجاست كه اين مطلب مهم چيست؟ هسته زمين از آهن و نيكل تشكيل شده كه بخش عمده اي از انها به حالت گداخته وجود دارد اين مايع فلزي پيوسته در جنبش است و اين جنبش به نحوي جريانهاي الكتريكي به وجود مي اورند كه ميدان مغناطيسي زمين را ايجاد مي كنند. جزئيات اين فعاليت فلزي گداخته و تغييراتي كه در ميدان مغناطيسي زمين بوجود مي اورد هنوز روشن نشده است برخي از سرنخ هايي كه درباره رويدادهاي درون زمين در اختيار داريم از بررسي ساختار بيروني اين ميدان بسيار گسترده بدست آمده اند اين ميدان زمين را در محاصره خود دارد و تا صدها هزار كيلومتر در فضا ادامه دارد. ميدان مغناطيسي را مي توان به صورت مجموعه اي از خط هاي فرضي تصور كرد كه در فضا از قطب جنوب در جنوبگان تا قطب شمال در كانادا قوس مي زند و سپس در درون هسته زمين ادامه مي يابد تا بار ديگر از قطب جنوب سر در آورد. ميدان مغناطيسي زمين همواره نابسامان است. قطب هاي مغناطيسي زمين 11 درجه با قطب هاي جغرافيايي زمين فاصله دارند در اين ميدان پيچش ها و خميدگي هايي وجود دارد كه در آن نواحي ممكن است جهت عقربه قطب نما حتي تا 20 درجه از شمال حقيقي فاصله داشته باشد. دريانوردان اين نواحي را از قرن يازدهم هجري تا كنون نقشه برداري كرده اندتا مبادا قطب نماهايشان آنان را از مسير واقعي منحرف كند. از روي نوشته هاي آنان در ميابيم كه شدت ميدان مغناطيسي زمين افت و خيز بسيار زيادي دارد.و سالانه در حدود 20 كيلومتر به طرف غرب جابجا مي شود در نظر دانشمندان امروزي اين بدان معناست كه مايع گداخته هسته زمين با سرعتي در حدود نيم ميليمتر در ثانيه در حركت است. يعني در روز تقريبا مسافتي برابر نصف طول زمين فوتبال را مي پيمايد. زمين فيزيكدانان در مقياس گسترده تر با بررسي مغناطيس هايي كه در گدازه هاي منجمد باستاني محبوس شده اند ردپاي ميدان مغناطيسي زمين را 30 تا 50 ميليون سال گذشته دنيبال كرده اند همچنانكه سنگ ها گداخته مي شوند اتم هاي آهن موجود در آنها تمايل مي يابند با راستاي ميدان مغناطيسي ان دوره همراستا شوند. اين مدارك نشان مي دهد كه در گذشته ميدان مغناطيسي زمين در فاصله هاي زماني نامعين از 30 هزار سال گذشته تا 1 ميليون سال وارونه شده است. ميدان از اين رو به آن رو مي شود. يعني در مدت نزديك به 100 هزار سال ضعيف مي شود و سپس در جهت ديگر افزايش مي يابد.
بسياري از زمين شناسان كه درباره علت وارون شدن ها بررسي مي كنند اكنون معنقدند كه ميدان مغناطيسي ضعيفي كه بر سطح زمين مي سنجيم ( آن قدر ضعيف كه آهنرباي نعلي شكل اسباب بازي هم 100 برابر از آن نيرومند است) تنها مشتي از خروار است. بخش عمده از فعاليت مغناطيسي زمين در هسته آهني و نيكلي آن صورت مي گيرد برابر مقبول ترين توضيحي كه براي اين مساله ارائه شده و به نظريه دينامو معروف است بخشي از ميدان كه در هسته زمين امتداد دارد در مايع باردار و گداخته آن محبوس شده و با چرخش زمين كشيده مي شود. درنتيجه به طور مستقيم از هسته نمي گذرد بلكه بارها دور هسته پيچيده مي شود تا مانند دسته اي از كش هاي محكم تشكيل خطوط شار نيرومندي را بدهد. بنابر اين نظريه جريان همرفتي فلز گداخته كه از اعماق هسته بالا مي آيد حلقه هاي كوچكي از اين ماده مغناطيسي دور هم پيچيده را به سطح مي راند كه از اينجا به فضا امتداد مي يابند و تشكيل ميدان آشنايي را مي دهد كه مي سنجيم. سپس يك بار ديگر به درون هسته شيرجه مي روند و سخت دور هسته پيچيده مي شوند بدين ترتيب ميدان خود را نگه مي دارند. در اين فرضيه درباره اينكه چه چيزي ممكن است باعث وارونه شدن ميدان شود چنين استدلال مي شود كه طبيعت غير قابل پيش بيني جريان همرفتي كه نقش دارد. اگر در يك نقطه چند حلقه بيشتر از نقطه ديگر جمع شود ذره هاي ميدان كه به سطح مي رانند در جهت مخالف حلقه مي زنند. احتمال ديگر آن است كه اين وارونه شدن ها به هيچ وجه كاتوره اي و تصادفي نيست. و اگر اطلاعات كافي داشتيم مي توانستيم آن ها را پيش گويي كنيم و شايد بر همكنش هاي الكترومغناطيسي مايع جوشان درون زمين چندان پيچيده اند كه وارونگي تصادفي به نظر مي رسد اگر چنين باشد شايد روزي دانشمندان بتوانند به ما بگويند كه وارونگي بعدي چه هنگام رخ مي دهد اما اكنون تنها كاري كه مي توانيم بكنيم اين است كه قطب نماهايمان را تماشا كنيم و حدس بزنيم در دل گداخته زمين چه مي گذرد

Hidden-H
23-04-2006, 23:50
الکترودینامیک
نگاه اجمالی
الکترو مغناطیس یکی از شاخه‌های فیزیک است که مباحث مربوط به بارهای الکتریکی ساکن و متحرک ، میدانهای الکتریکی و مغناطیسی را مورد بحث قرار می‌دهد. اما در این بحث بیشتر مفاهیم فیزیکی و توصیف کیفی این پدیده‌ها مورد توجه قرار می‌گیرد. و تا حد امکان از توصیف کمی این موارد که به ریاضیات عالی نیاز دارد، خودداری می‌شود. بنابرابن توصیف کمی پدیده‌های فوق در الکترودینامیک انجام می‌گیرد. می‌توان گفت که الکترو‌دینامیک نسبت به سایر علوم تقریبا یک علم تازه است که در کمتر از یکصد سال اخیر بوجود آمده است.

تاریخچه
هر چند کهربا و مغناطیس طبیعی برای یونانیان شناخته نشده بودند ، با وجود این الکترو‌دینامیک در مقام یک موضع کمی تنها در کمتر از یکصد سال رشد پیدا کرد. آزمایشات قابل ملاحظه کاوندیش در زمینه الکترو استاتیک از 1771 تا 1773 انجام شدند. تحقیقات ماندگار کولن در سال 1785 شروع به چاپ شدند. این کار شروع تحقیق کمی در الکترسیته و مغناطیس را در مقیاس جهانی مشخص کرد. پنجاه سال بعد از آن فارادی مشغول مطاله اثرات نظریه دینامیکی میدان‌های الکترومغناطیسی منتشر کرد. بیست و چهار سال بعد هرتز کشف خود را در مورد امواج الکترومغناطیسی عرضی که با سرعتی مشابه با سرعت نور انتشار می‌یابد به چاپ رسانید و با این کار نظریه ماکسول را در یک وضعیت کاملا آزمایشی قرار داد.

سیر تحولی و رشد
از دهه 1960 یک انقلاب واقعی در درک ما از نیروهای اساسی و اجزا تشکیل دهنده ماده صورت گرفته است.


در دهه 1990 الکترودینامیک کلاسیک در مقابل جبهه‌ای از توصیف وحدت یافته ذرات و بر همکنشهای که به عنوان مدل استاندارد نامیده می‌شود، ساکن مانده بود، مدل استاندارد یک توصیف کوانتوم مکانیکی منسجم از برهمکنشهای الکترومغناطیسی ، ضعیف و قوی بر اساس اجزاء اصلی ، بعضی کوارکها و لپتونها ( که از طریق حاملهای نیرو یعنی فوتونها ، بوزونها ، و گلوئونها ، برهمکنش می‌کنند) ارائه می‌کند. چهار چوب نظریه وحدت یافته از طریق اصول مربوط به ناوردایی پیمانه‌ای الکترومغناطیس (متصل به نیروها و تفاوتهای گسسته خواص ذرات) ایجاد‌ گردید.

از نقطه نظر مدل استاندارد ، الکترودینامیک کلاسیک ، حداکثر و دینامیک کوانتومی است. بنابرین تلاش عظیمی که در اواخر قرن نوزدهم در جهت وحدت موضوعات فیزیک شروع شده سبب ایجاد الکترودینامیک کوانتومی شود و بدین ترتیب الکترودینامیک کلاسیک را متحول ساخت. بنابراین در حالت کلی الکترودینامیک را می‌توان به دو قسمت اصلی تقسیم کرد.
الکترودینامیک کلاسیک
الکترودینامیک با استفاده از مفاهیم بنیادین ریاضیات عالی یک توصیف کمی از مباحث الکترومغناطیسی کلاسیک ارائه می‌کند. الکترومغناطیس کلاسیک در محاسبه میدانهای الکتریکی و مغناطیسی حاصل از توزیعهای معین بار تبحر دارد و توصیف فیزیکی این کمیتها مورد بحث قرار می‌گیرد. اما در مواردی که مرزهای معین وجود داشته باشند. به عنوان مثال اگر بخواهیم میدان و پتانسیل حاصل از یک کره رسانا که نصف آن دارای پتانسیل و نصف دیگرش دارای پتانسیل V1 است ، در یک نقطه معین از فضا تعیین کنیم، باید از شگرد‌های خاص ریاضی که در V1 الکترو دینامیک کلاسیک کاربرد دارد، استفاده کنیم.

همانگونه که الکترومغناطیس به دو قسمت الکتریسیته و ‌مغناطیس تقسیم می‌شود که در قسمت الکترواستاتیک بارهای الکتریکی ساکن و چگالیهای بار مستقل از زمان فرض می‌شوند و در الکترومغناطیس بارهای الکتریکی متحرک بوده و چگالیهای بار می‌توانند تابعیت زمانی نیز داشته باشند. الکترودینامیک کلاسیک نیز به دو بخش تقسیم می‌گردد. مکانیک کلاسیک و الکترودینامیک کلاسیک به عنوان پیشروان درک کنونی ما از پدیده‌ها مفید واقع شوند و هنوز هم نقشهای مهمی را در زندگی علمی و در مرز مربوط به تحقیقات علمی ایفا می‌کنند.

الکترودینامیک کوانتومی
الکترودینامیک کوانتومی ، نتیجه‌ای است از تقارن شکسته شده ، خودی به خودی در یک نظریه که در آن برهمکنشهای ضعیف و الکترومغناطیسی در ابتدا وحدت یافته‌اند و این که حاملهای نیروی مربوط به هر دو بدون جرم هستند . شکست تقارن ، و حامل نیروی الکترومغناطیسی (فوتون) را بدون جرم باقی می‌گذارد همراه 80 الی 90 Gv/c2 را با یک برهمکنش ضعیف هسته‌ای در انرژیهای پایین با برد بسیار کوتاه (2x10 -18 ) بدست می‌آورند.

الکترودینامیک کلاسیک برای انتقالات کوچک انرژی و اندازه حرکت و تعداد میانگین بزرگ فوتونهای مجازی یا حقیقی حد الکترودینامیک کوانتومی است. علی رغم حضور تعداد نسبتا زیادی از کمیتهای که بایستی از آزمایش بدست آیند، مدل استاندارد وحدت یافته (همراه با نسبیت عام در مقیاسهای بزرگ) توضیعی با دقت بالا از طبیعت را در تمام جنبه‌هایش ارائه می‌دهد. از درون هسته ، تا میکروالکترونیک و میزها و صندلیها و دورترین کهکشانها. بخاطر مبدأها در یک نظریه وحدت یافته ، برد و قدرت برهمکنشهای ضعیف به جفت شدگی الکترومغناطیسی مربوط شدند.

بطور خلاصه می‌توان گفت که در الکترودینامیک کوانتومی با استفاده از مفاهیم آنالیز تانسوری یک میدان برداری (که به تانسور الکترومغناطیسی معروف است ) معرفی می‌شوند ، سپس با تعریف چگالیهای لاگرانژی و هامیلتونی خاص سیستمها مورد بحث قرار می‌گیرند.

سختی الکترودینامیک
همانطوری که اشاره شد، الکترودینامیک جهت توصیف کمی پدیده‌های الکترو مغناطیسی از ریاضیات عالی و روشهای پیچیده ریاضی بهره می‌گیرد. بنابراین افرادی که تمایلی به استفاده از این پیچیدگیها ندارند و آن را دشوار می‌دانند، به الکترو‌دینامیک به دید یک شاخه‌ای از فیزیک که درک آن بسیار سخت است، نگاه می‌کنند. اما امروزه با پیشرفت علوم کامپیوتری و گسترش روشهای عددی ، بسیاری از مسائل الکترودینامیک را می‌توان با استفاده از حلهای عددی مورد تجزیه و تحلیل قرار داد.

Hidden-H
23-04-2006, 23:52
الکترودینامیک کوانتومی (QED) نظریه‌ای است برای توصیف نور (یا تابش الکترومغناطیسی) و برهمکنش آن با ماده (یعنی الکترونها و یا دیگر ذرات باردار).


تاریخچه نظریه
این نظریه را دیراک ، ورنر هایزنبرگ ، پاسکوال جوردن و ولفانگ پاولی در اواخر دهه 1920 فرمول بندی و فریمن دایسون ، ریچارد فاینمن و جولیان شوینگر و سین - ایتیروتوموئاگا در اویل دهه 1950 آن را تکمیل کردند. گر چه آنها بطور مستقل از یکدیگر درباره این مسئله به پژوهش پرداخته بودند. گسترش الکترودینامیک کوانتومی را می‌توان نتیجه چشم گیر کنش متقابل بین نظریه و تجربه به شمار آورد. بخشی از این تحول ، به برکت فن آوری میکرو موجها بود که در آن وقع تازه پدید آمده بود و امکان اندازه گیری بسیار بسیار دقیق طیف هیدروژن و گشتاور مغناطیسی الکترون را توسط بولی کارپ کوش و هنری فراهم شد.

نتایج آزمایشها ، که هر دو در سال 1947 منتشر شده پیشرفتهای نظری سریعی را پدید آورد. این پیشرفتها نیز به نوبه خود سبب شد که پژوهشگران تجربی روشهای جدیدی را برای اندازه گیری باز هم دقیقتر ابداع کنند. در حال حاضر ، با آنکه هنوز امکان بهبود روش وجود دارد. نظریه و تجربه در گسترش بسیار وسیعی از انرژیها با دقت چشم گیری باهم سازگاری دارند.

زمینه الکترودینامیک کوانتومی
در آغاز قرن نوزدهم دو نظریه متفاوت برای نور وجود داشت: نظریه ذره‌ای و نظریه موجی. نظریه ذره‌ای پس از به نمایش در آمدن اثرات تداخلی ، در سالهای اولیه قرن نوزدهم ، محبوبیت خود را از دست داده ، در سالهای آخر قرن نوزدهم ، این نظریه تقریبا بطور کامل به کنار گذاشته شده زیرا جیمز کلارک ماکسول نشان داد که تمام پدیده‌های الکتریکی و مغناطیسی و اپتیکی را می‌توان از چهار معادله (به نام معادلات ماکسول) استخراج کرد و این معادلات امواجی الکترومغناطیسی را پیش بینی می‌کنند که با سرعت 2.9979X108 m/s جابجا می‌شوند. چون این مقدار نزدیک سرعت نور بود که قبلا اندازه گیری شده بود.

ماکسول این فرضیه را پیش کشید که نور هم خود موجی الکترومغناطیسی است و در اوایل قرن بیستم نظریه موجی الکترومغناطیسی برای نور کاملا پذیرفته شد. اولین نشانه‌هایی که حاکی از آن بودند که نظریه موجی به تنهایی نمی‌تواند رفتار نور را توضیح دهد، در سه آزمایش دیده شدند: تابش جسم سیاه ، اثر فوتوالکتریک و اثر کامپتون. با این آزمایشها در مجموع مؤید این فرضیه بودند که نور از ذراتی ساخته شده است که امروزه فوتون می‌نامیم. که این مرحله گرچه خواص فوتونها فقط از این آزمایش استنتاج شده بودند، موفقیتهای مدل فوتون فیزیکدانان را تشویق کرد تا به جست و جوی نظریه بنیادی بپردازند که با استفاده از آن بتوان فوتونها و خواص آن را استخراج کرد.

مبانی نظریه QED
اساس نظریه کوانتوومی (یا فوتونی) نور ، یعنی QED ، را دیراک ، هایزنبرگ ، پاولی ، انریکو فرمی و جردن در دوره زمانی 1926 تا 1940 پی‌ریزی کردند. آنچه که از این معادلات حاصل شد، نظریه‌ای است که نقطه آغازش بررسی کلاسیکی میدانهای الکترومغناطیسی بر اساس معادلات ماکسول و رهیافت هامیلتون در تعیین این معادلات حرکت به کمک تابعی است که چگالی انرژی را در هر نقطه از فضا به صورت چگالی هامیلتونی مشخص می‌کند. کمیت:



Hfree = (E2 + B2)/8П

کل انرژی مربوط به میدان الکترومغناطیسی را وقتی که بار و جریان وجود ندارد. در هر واحد حجم (در موقعیتن مکانی r نشان می‌دهد. Hfree کل انرژی مربوط به میدان الکترومغناطیسی آزاد است E و B عبارت از بردارهای میدانهای الکتریکی و مغناطیسی در نقطه (r,t) در این صورت ، همانند روش ماکسول که در آن میدانهای E و B بر حسب پتانسیلهای الکترومغناطیسی A و φ بیان می‌شوند. در این فرمول بندی هامیلتونی ، برهمکنش میدان الکترومغناطیسی با چگالیهای جریان و بار الکتریی j و p بوسیله اثرهای برهمکنش (HI(ρφ - s , A/C نشان داده می‌شود. هنگامی که میدان الکترومغناطیسی آزاد کوانتیده شد، قدم بعدی آن است که بر همکنش را با ذرات باردار در نظر بگیریم. در این مرحله چگالی هامیلتونی H = HI + He1 + Hfree می‌باشد.

بینش جدید درباره طبیعت
هر نظریه مهم جدیدی ، به وجوهی از طبیعت را که قبلا ناشناخته مانده بود توضیح می‌دهد، مثلا نسبیت خاص (علاوه بر موضوعهای دیگر) موضوع تبدیل ماده به انرژی و انرژی به ماده را ازطریق معادله E = δmc2 مطرح کرد. و معادله دیراک برای الکترون نسبیتی منجر به پیش بینی پاد ذره‌ها شد. شاید ویژیگی جدید و اصلی نظریه QED شناسایی فوتون و نحوه دخالت آن در برهمکنش الکترومغناطیسی به عنوان میانجی نیروی الکترومغناطیسی را به صورت نیروی نیوتنی در نظر می‌گرفتند که در فاصله بین ذره‌های باردار عمل می‌کرد. پس از آن ، در نظریه ماکسول میدان الکتریکی و مغناطیسی را بین صورت در نظر می‌گیرند که در هر نقطه‌ای از فضا وجود دارند و نیروی وارد بر ذره باردار را می‌توان به میدان الکترومغناطیسی موجود در نقطه‌ای که ذره اشغال کرده است، نسبت داد.

نظریه QED در برهمکنش الکترومغناطیسی
در نظریه QED ، برهمکنش الکترومغناطیسی را ناشی از مبادله فوتون بین ذرات باردار در نظر می‌گیرند، در این مبادله فوتون جانشین میدان الکترومغناطیسی ماکسول به عنوان سرچشمه برهمکنش الکترومغناطیسی است و این تصویر که برهمکنش برآمده از معادله ذرات میانجی است بطور موفقیت آمیزی گسترش داده شده تا برهمکنشهای ضعیف و قوی را نیز توصیف کند. دیدگاه امروزی در مورد چگونگی وقوع این برهمکنشها بر همین اساس استوار است.

نظریه QED در دو گانگی موجی و ذره نور
نظریه QED همچنین دو گانگی موج - ذره‌ای نور را به این واقعیت را که نور در بعضی از آزمایشها مانند موج رفتار می‌کند و از بعضی از آزمایشهای دیگر مانند ذره ، برطرف می‌کند. از آنجا که امروزه همه آزمایشها بر اساس مبادله فوتون توصیف می‌شوند، به نظر می‌رسد که این ساماندهی و وقوع مشکل از طریق نظریه ذرات جامعتری حاصل شده است. با این همه ، فوتون QED ذره‌ای به مفهوم متعارف کلاسیکی نیست. مثلا ، این ذره دارای مسیر فضا زمانی دقیق نیست به چیزی نیست که گستردگی فضایی و جرم (سکون) غیر صفر داشته باشد، با هیچ سرعتی جز سرعت نور حرکت نمی‌کند، هر دو فوتونی که انرژی ، تکانه و قطبش یکسان داشته باشند تمایز ناپذیرند. اساسا هر فوتونی را فقط می‌توان واحدی از میدان الکترومغناطیسی دانست که انرژی ، تکانه و قطبش معینی دارد.

نظریه QED در خلاء
نظریه QED دیدگاه ما را از خلاء بر آن بطور کلاسیکی فقط به صورت حالت تهی در نظر گرفته می‌شود تغییر می‌دهد. اگر چه در حالت خلاء مقادیر انتظاری E2 و B2 غیر صفرند. این بدان معنی است که وقوع افت و خیر در خلاء امکان پذیر است. و در واقع ، همانطور که افت و خیزهای خلاء بطور تجربی به این معنی تأیید شده‌اند که این افت و خیز نادر در اثرات مشاهده شده در آزمایشگاه سهم در خور توجهی دارند. به علاوه ، در حضور میدان الکترومغناطیسی (کلاسیکی) خارجی این افت و خیزها منجر به تولید زوجهای ذره - پاد ذره می‌شوند که مانند اجزای محیط دی الکتریکی قطبش پذیرند. این اثر که قطبش پذیری خلاء نام دارد، بطور تجربی مورد تأیید قرار گرفته است. به این ترتیب ، مفاهیمی که از نور خلاء در ذهن ما بوده‌اند. هر دو با ظهور QED بطور حاشیه‌ای تغییر کرده‌اند.

آزمون تجربی QED
گشتاورهای مغناطیسی
الکترونها و پوزیترونها ، پروتونها ، موئونها و مانند آنها جملگی دارای خواص ذاتی به صورت جرم ، بار الکتریکی و اسپین هستند. اگر چه ]مفهوم[ اسپین را به اقتضای ضرورت به نظریه کوانتومی تا نسبیتی افزوده بودند. دیراک نشان داد که این مفهوم را می‌توان مستقیما از نظریه کوانتومی سازگار با نسبیت خاص بدست آمد. علاوه بر آن نظریه دیراک پیش بینی کرد که اسپین S الکترون با گشتاور مغناطیسی آن µ به صورت زیر ارتباط پیدا می‌کند.



µ = (e/2mc)(L+ gs

که در آن m جرم الکترون ، L اندازه حرکت زاویه‌ای مداری آن و ثابت g (که نسبت ژیرو مغناطیسی الکترون نامیده می‌شود) دقیقا برابر 2 است. اما این مقدار µ وقتی حاصل می‌شود که الکترون را به صورت میدان کوانتومی و میدان مغناطیسی را به صورت میدان کلاسیکی در نظر بگیریم. در سال 1947 کوش و تولی به شواهدی تجربی دست یافتند که نشان می‌داد g در واقع اندکی از دو بزرگتر است. هانس بته ، شوینگر ، فاینمن و دیگران برای تعیین دلیل نظری این اختلاف ، گشتاور مغناطیسی بی‌هنجار الکترون نامیده می‌شود.

دشواری نظریه QED
دشواری اصلی نظریه QED در آن است که جملات مرتبه بالاتر در سری اختلال را محاسبه می‌کنیم بعضی از انتگرالهای بدست آمده واگرا هستند (یعنی بینهایت می‌شوند) ولی این بینهایتها را می‌توان (تمام مراتب مربوط به نظریه اختلال) با تعریف مجدد پارامترهای بار و جرم موجود در نظریه ، منزوی و حذف کرد. علی الاصول حتی اگر بینهایتها هم پدید نمی‌آمدند، بخاطر نحوه تقسیم چگالی هامیلتونی H در رهیافت اختلال ضرورت داشت که پارامترهای بار و جرم را بهنجار کنیم.

شکل دیگر نظریه QED این است که تا کنون هیچ کس نتوانسته است نشان دهد که سری اختلالی همگرا می‌شود، یا اگر هم همگرا شوند به سمت حد صحیحی همگرا می‌شود.

نتیجه گیری
بسیاری از فیزیکدانان نظریه الکترودینامیک کوانتمی QED به علت سازگاری بسیار درخشان آن با نتایج تجربی یک از موفقترین نظریه‌های فیزیک تلقی می‌کنند، گر چه هنوز هم دشواریهایی در این نظریه دیده می‌شود. اغلب فیزیکدانان آنرا به عنوان نظریه‌ای که از لحاظ اصولی درست است می‌پذیرند. به علاوه بسیاری از ویژگیهای QED با موفقیتهای چشمگیری در نظریه‌های جدید مربوط به برهمکنشهای قوی و ضعیف و الکترولیت تلفیق شده است. بدین ترتیب راهکارها و دیدگاههای اساسی آن تقویت و بعضی مشکلات موجود در تعریفهای نظری لنزی QED بر طرف می‌شود. ولی معضلات موجود در نظریه ترکیبی همچنان پا برجاست

Hidden-H
23-04-2006, 23:53
آشکارسازهای فروسرخ :‏

آشکارسازی در ناحیه فروسرخ مسئله مشکل تری است زیرا در طول موج های بالای حدود 13000 ‏آنگستروم ، فوتون ها انرژی کافی برای خروج الکترون از کاتد یا فعال ساختن امولسیون را ندارد. و ‏منابع نوری نیز ضعیف اند.

در طول موجی حدود 1mm آشکارسازهای بلوری روش کهموج قابل استفاده اند، لذا در اینجا فاصله ‏‏ 1μmالی 1000μm را بررسی می کنیم. آشکارسازهای گرمایی و فوتورسانا ، تقسیم بندی کرد. در هر ‏دو دسته ، جواب حاصل متناسب با توان جذبی w است. با این تفاوت که آشکارسازهای گرمایی ‏آهنگ انرژی جذب شده را مستقل از طول موج آن اندازه می گیرند. در صورتی که آشکارسازهای ‏فوتورسانا ، مانند تکثیرکننده های فوتون ، میزان جذب فوتون ها را اندازه می گیرند. ‏

بنابرین به طور مطلوب ، جواب آنها برای یک توان مطلوب در گستره حساسشان ، به طور خطی با ‏طول موج افزایش می یابد. این دو نوع از لحاظ زمان تغییرات علامت سرعت متفاوتی دارند. بصورت ‏یک دستور کلی می توان گفت که این مقدار در مقایسه با نانو ثانیه برای تکثیرکننده های فوتون ، ‏برحسب میلی ثانیه برای آشکارسازهای گرمایی ، میکرو ثانیه برای آشکارسازهای فوتورسانا اندازه ‏گیری می شود. ‏


قیاس آشکارساز فروسرخ با سایر آشکارسازها:


در مقایسه با تکثیر کننده های فوتون ، آشکارسازهای فروسرخ در طول موج های کوتاه تر هم نوفه ‏دارند و هم کندتر هستند. از آنجایی که توان تابشی منابع فروسرخ نسبتا پایین است، لذا تراز نوفه این ‏آشکارساز یک سرشتی بسیارمهم است.


آشکارسازهای گرمایی برای تمامی ناحیه فروسرخ حساس اند. ترموکوپل ها و ترموپیل ها افزایش ‏دمای حاصل از جذب تابش را به صورت نیروی محرکه الکتریکی ترموالکتریک اندازه گیری می کنند. ‏و بولومترها آن را از روی تغییر مقاومت اندازه می گیرند. بولومترها عموما بیشتر مورد استفاده اند. ‏و جهت کاهش نوفه گرمایی و افزایش حساسیت ، آنها را اغلب در دمای هلیوم مایع به کار می برند.‏


یک نوع آشکارساز نسبتا متفاوتی ، سلول گولای براساس انبساط یک گاز نادر در اثر گرمای حاصل ‏از تابش فرودی کار می کند. یکی از دیوارهای سلول کوچک حاوی گاز از یک غشای قابل انعطاف ‏باریکه نور باز تابیده ازآن دریافت می شود. سلول گولای یک مرتبه مقداری آهسته تر و ناحساس تر ‏از یک بولومتر خنک شده است. اما منیمم علامت آشکارسازی توسط آن زیاد متفاوت نیست و سلول ‏گولای دارای مزیت کار در دمای اتاق است.


سلول های فوتورسانا عبارت از نیم هادیهایی است که مقاومت الکتریکی آنها در اثر نوردهی کم می ‏شود. تغییر در مقاومت متناسب با آهنگ جذب فوتون هاست و می توان آن را به صورت یک تغییر ‏ولتاژ در دو سر یک مقاومت بار ، سری با دستگاه فوتورسانا ، اندازه گیری کرد. این ساز و کار را ‏می توان به صورت یک اثر فوتو الکتریک داخلی توصیف کرد. ‏


آشکارساز فوتونی:‏

برخلاف فوتوسل یا فوتوکاتد یک تکثیرکننده فوتونی ، فوتون ها دارای انرژی کافی برای خارج کردن ‏مستقیم الکترون ازسطح نیستند ولی آنها پایدارتر از طول موج های قطع مشخصی انرژی کافی برای ‏آزاد ساختن یک الکترون از شبکه بلور را به دست می آورند و لذا باعث افزایش تعداد الکترون ها و ‏یا حفره های آزادی می شوند که به عنوان حاملین بار عمل می کنند. این اثر با پر کردن نیمه هادی ، ‏جهت کاهش تعداد الکترون های برانگیخته گرمایی تقویت می یابد. تا این اواخر دستگاه های ‏فوتورسانا فقط می توانستند در ناحیه فروسرخ نزدیک کار بکنند. که طول موج قطع برای این بلورها ‏مانند سولفور سرب در حدود چند میکرومتر است. ‏

اما انواع جدید نیمه هادی نا خالص شده یعنی بلورهای شامل مقدار کمی از ناخالصی های برگزیده ، ‏می توانند ( در دمای هلیوم ) تا حدود 100μm کار بکنند. در واقع ، اینک معلوم شده است که آشکارسازهای bs – nI می توانند تا درون ناحیه موج میلی متری هم کار کنند. زیرا قابلیت حرکت الکترون های آزاد با جذب انرژی فوتون افزایش می یابد و این الکترون ها می توانند در دمایی بالا تر ‏از دمای بلور وجود داشته باشند. به این دلیل این آشکارسازها به آشکارسازهای با الکترون گرم ‏موسومند.‏


آشکارساز امواج فرابنفش:


علاوه بر صفحات عکاسی مخصوص و تکثیرکننده های فوتون که می توانند تا ناحیه فرابنفش به کار ‏برده شوند. برای طول موج های کمتر از حدود 1300 آنگستروم که انرژی فوتون تا حد یونیدن ‏گازهای پایدار بالاست ( E<9ev) می توان به وسیله نور آشکارسازی کرد.


برای آشکارسازی مداوم از یک اتاقک یونش استفاده می شود. اتاقک در ناحیه مسطح یا اشباع ‏منحنی جریان برحسب ولتاژ کار می کند. که در آن جریان یون مستقل از ولتاژ اتاقک بوده و متناسب ‏با شدت فرودی است.


کارآیی آشکارساز ، برحسب زوج های یون به ازای هر فوتون می تواند به سادگی تا %100‏برسد. در واقع اگر انرژی فوتون تا حد یونش مضاعف بالا باشد، ممکن است کار آیی بیشتر از این نیز ‏شود. ‏


آشکارساز گایگر مولر:‏

از آشکارسازهای پالسی یک نوعش شمارنده گایگر مولر است. فوتوالکترون اولیه حاصل از فوتون ‏فرودی شتاب داده می شود تا با برخوردهای متوالی با مولکول های گاز بهمنی را به وجود بیاورد، که ‏این تقویت گازی است. به علت نبودن مواد برای ایجاد پنجره ، استفاده از هر دو نوع مزبور در ناحیه ‏طول موج های 1040 – 300 آنگستروم مشکل است. این امر مخصوصا در مورد شمارنده گایگر یا ‏شمارنده فوتون ، که در فشارهای گاز نسبتا زیاد ( حدود 100 تور ) فلزی نازک قابل عبور می شوند ‏و از این ناحیه یک راست تا ناحیه اشعه ایکس می توان از آشکارساز مزبور استفاده کرد.

گاز به کار برده شده در طول موج های بلند معمولا اکسید نیتریک یا مولکول های مشابه است، اما در ‏طول موج های کوتاه گازهای نادر به علت بالا بودن پتانسیل یونش آنها ترجیح داده می شوند. با ‏انتخاب زیرکانه ماده پنجره و گاز محتوی می توان نقطه نقطه قطع طول موج های کوتاه و بلند را ‏طوری مرتب کرد که نوار باریکی از حساسیت به وجود آید. آشکارسازهای برگزیده ای از این قبیل ‏جایگزین طیف سنج در پاره ای از آزمایش های اختر پاراکت رها گشته است. ‏


آشکارسازی نور قطبیده:‏

آشکارسازهای نور یونش هم چنین برای اندازه گیری های شدت های مطلق و برای درجه بندی منابع ‏به صورت استانداردهای شدت در فرابنفش خلا به کار برده شده اند. اگر هر فوتون جذب شده یک ‏فوتوالکترون تولید کند، جریان خروجی یک اطاقک یونی برابر تعداد فوتون های جذبی می شود. ‏گازهای نادر این شرط را به جا می آورند. و به علاوه ضرایب جذب آنها به قدری بالاست که فشار ‏کمی از گاز برای جذب کامل کافی می باشد.

اتاقک یونی را می توان در این طریق با گازهای نادر به ترتیب کاهش وزن اتمی آنها از 1022 ‏آنگستروم ، حد یونش گزنون تا 250 آنگستروم که در آن فوتوالکترون های خروجی دارای انرژی ‏کافی برای ایجاد یونش ثانوی در هلیوم است، به کار برد. به هر حال شمارنده فوتونی می تواند در این ‏نقطه کار را به عهده گیرد. زیرا این آشکارساز به جای تعداد الکترون ها ، پالس حاصله از هر فوتون ‏جذب شده را ثبت می کند.‏

Hidden-H
23-04-2006, 23:54
فیزیکدانان دانشگاه اوهایو با همکاری دیگر دانشمندان برای اولین بار نوعی از خاصیت آهن ربایی را به نمایش درآوردند که 50 سال قبل پیش بینی شده بود. این خاصیت عبارت است از یک نوع خاص از گذار انرژی که برای اتم های موجود در یک آهن ربای کوچک روی می دهد. این نوع آهن ربا های بسیار کوچک کرومیوم ۸ (Cr8) نامیده می شوند. دانشمندان انتظار داشتند این اثر از قوانین مکانیک کوانتومی تبعیت کند، اما در عمل خواص آهن ربایی مشاهده شده، نشان از قوانین فیزیک کلاسیک داشت. قوانین کلاسیکی حرکت و انرژی را مردم در زندگی روزانه خودتجربه می کنند. این قوانین درباره اجسامی صدق می کنند که به اندازه کافی بزرگ هستند تا با چشم غیرمسلح دیده شوند. اما مکانیک کوانتومی علمی است که برهمکنش میان ذرات کوچک (در اندازه اتم) را بررسی می کند. آهن رباهای مولکولی Cr8 تا آن اندازه کوچک هستند که باید برای توصیف خواص آنها از مکانیک کوانتومی استفاده کرد. یافته های اخیر می تواند به پر شدن شکاف میان مکانیک کلاسیک و کوانتوم درباره توصیف ساختارهای ریز کمک کند.

همچنین از نتایج به دست آمده می توان برای ساخت تجهیزات آتی بر پایه نانوتکنولوژی استفاده کرد. یکی از این اهداف ساخت کامپیوتر هایی در اندازه کوچک با توان بسیار بالاست. الیور والدمن (Oliver Waldmann) از دپارتمان فیزیک دانشگاه اوهایو می گوید: این آزمایش نشان داد که می توان جنبه های مهمی از خواص مکانیک کوانتومی را با معلومات کلاسیکی درک کرد. نتایج به دست آمده توسط والدمن و همکارانش در شماره اخیر مجله فیزیکال ریو لترز (Physical Review Letters) منتشر شده است.

مولکول هایی همچون Cr8 را آهن رباهای مولکولی می نامند. این ترکیبات هر چند از تعداد کمی اتم تشکیل شده اند اما مولکول بزرگی را تشکیل می دهند. آنچه باعث ایجاد خاصیت آهن ربایی می شود اسپین الکترون های اتم است اما کل مولکول همانند یک آهن ربای مجزا عمل می کند. Cr8 شامل هشت اتم باردار کروم است که به صورت حلقه ای به هم متصل شده اند و اندازه حلقه کمتر از یک نانومتر است.

اسپین این هشت اتم به گونه ای است که چهار اتم دارای اسپین هم جهت (به عنوان مثال جهت بالا) و چهار اتم دیگر دارای اسپین در جهت مخالف (پایین) هستند. اسپین های بالا و پایین اثر هم را خنثی می کنند و باعث می شوند که Cr8 به عنوان ماده ای آنتی فرومغناطیس شناخته شود. محققان ساختارهای متشکل از اسپین بالا و پایین را به عنوان ساختار نیل (Neel) می شناسند. لوئیس نیل فیزیکدان فرانسوی در سال 1970 به خاطر کشف اثر آنتی فرومغناطیس جایزه نوبل را دریافت کرد. در سال 1952 فیزیکدان دانشگاه پرینستون و برنده جایزه نوبل فیلیپ آندرسون (Philip Anderson) پیش بینی کرد که اگر اتم ها در یک ماده آنتی فرومغناطیس اندکی از حالت تعادل اسپین های بالا و پایین خارج شوند، گذار های انرژی آنها همانند یک ساختار موج مانند خواهند بود. اما نظریه آندرسون پیشنهاد می کند که وقتی در این نوع آهن رباها، الکترون ها در پایین ترین حالت انرژی باشند نوع دومی از القا که القای نیل نامیده می شود به وقوع خواهد پیوست. این نوع از القای نیل تا به حال مشاهده نشده بود.هنگامی که والدمن در دانشگاه نورنبرگ آلمان بود اساس تئوری این تحقیق را بنا نهاده بود و دیگر همکارانش در اروپا در پی انجام آزمایش های مربوطه بودند.این قبیل آهن رباهای مولکولی با ساختار های گوناگون می توانند اثرات جدیدی را نشان دهند که یکی از آنها مشاهده القای نیل بود.

تحقیق درباره آهن رباهای مولکولی می تواند امکان استفاده از شیمی تجزیه را در شناخت خصوصیات آهن رباها فراهم کند و برخی از ویژگی هایی را که قبلاً ناشناخته بودند، معرفی کند. این روش می تواند منجر به پیدایش علوم بنیادی جدید و تکنولوژی نوینی گردد. برای انجام دادن آزمایش دانشمندان نمونه Cr8 را تا دمای چند درجه کلوین سرد کردند. در این حالت الکترون ها به احتمال زیاد در پایین ترین تراز انرژی قرار می گیرند. سپس نمونه ها را با استفاده از نوترون ها طوری بمباران کردند که الکترون ها انرژی لازم را برای بروز القای نیل کسب کنند. با انجام بسیار ماهرانه آزمایش تعدادی از اتم ها نوترون ها را جذب کردند و سیگنال های ضعیفی از اثرات انرژی پایین آشکار شد، که القای نیل هم یکی از این اثرات بود. فیزیکدانان از این جهت Cr8 را برای انجام آزمایش انتخاب کرده بودند که توانایی تولید سیگنال ضعیف را دارا بود. هنگامی که والدمن سیگنال های مربوط به سطوح انرژی را پس از انجام آزمایش بررسی می کرد، مشاهده کرد که نتیجه آزمایش با آنچه که نیم قرن پیش توسط آندرسون پیش بینی شده بود مطابقت دارد و همه چیز سر جای خودش قرار گرفته است. والدمن در این باره می گوید: من مدت زیادی امیدوار بودم که القای نیل را مشاهده کنم. این پروژه از چهار سال قبل آغاز شده بود با این حال رسیدن به جواب برای ما موفقیت و پیروزی ناگهانی بود و این نتایج بسیار هیجان انگیز بودند، زیرا با وجود آنکه القای نیل یک اثر کوانتوم مکانیکی است اما فیزیکدانان قبلی توانسته بودند آن را با استفاده از مکانیک کلاسیک تبیین کنند. این ایده می تواند در تولید نوع جدیدی از الکترونیک به کار آید.

در الکترونیک معمولی اطلاعات بر پایه کد باینری (Binory) که از صفر و یک تشکیل می شود، کدگذاری می شوند. صفر یا یک بودن که وابسته به این است که الکترون در ماده ای از قبیل سیلیکون حضور داشته باشد یا نه. اما می توان از جهت اسپین الکترون ها که هم شامل جهت بالا و هم پایین و هم جهات مابین این دو را شامل می شوند، استفاده کرد. از نظر تئوری این روش کدگذاری اطلاعات بسیار بیشتری را تدارک می بیند، طوری که یک الکترون به تنهایی می تواند انواع مختلفی از اطلاعات را ذخیره کند. این قبیل کامپیوتر های کوانتومی از نظر حجمی بسیار کوچک تر از کامپیوتر های معمول امروزی خواهند بود اما در عمل بسیار توانمند تر. در این قبیل کامپیوتر ها به جای تراشه های سیلیکونی از آرایه های مولکولی همانند Cr8 استفاده خواهد شد. البته تولید این نوع کامپیوتر ها نیاز به تکنولوژی خاص دارد که شاید تا چند دهه آینده به طول انجامد. این تحقیق نشان داد که القائاتی از این دست را می توان با استفاده از استدلال های کلاسیکی درک کرد و این روش می تواند برای درک دیگر اثر ها در این قبیل مواد کمک موثری باشد.

Hidden-H
28-04-2006, 00:09
دید کلی :
آیا تابحال به این فکر کرده اید که جرثقیل ، چگونه قطعات بزرگ آهن را جابجا می کند؟


آیا تا کنون ملاحظه کرده اید که یک میخ آهنی بعد از چند بار مالش برروی یک آهنربا ، میخهای آهنی کوچکتر از خود را جذب کند؟

برای پاسخ گفتن به پرسشهای فوق و سوالات دیگر شبیه آنها ، باید اطلاعاتی در مورد آهنربا و خاصیت آهنربایی داشته باشیم. مقاله حاضر تا حدی ما را با این مقوله آشنا می کند.

سنگ مغناطیسی و کهربا ، دو ماده طبیعی هستند که از دیر باز ، مورد توجه مردم بوده اند. سنگ مغناطیسی ، یک ماده معدنی با خصوصیات غیر عادی است که آهن را جذب می کند. اگر یک قطعه کوچک از این سنگ را از نقطه ای آویزان کنیم. آن قدر می چرخد تا سرانجام بطور تقریبی در راستای شمال و جنوب قرار گیرد. نخستین بار در کشورهای غربی ، دریانوردان از این سنگ بعنوان قطبنما استفاده می کردند.


سیر تحولی و رشد :

انسانهای اولیه به سنگهایی برخورد کردند که قابلیت جذب آهن را داشتند. معروف است که ، نخستین بار ، شش قرن قبل از میلاد مسیح ، در شهر باستانی ماگنزیا واقع در آسیای صغیر «ترکیه امروزی) ، یونانیان به این سنگ برخورد کردند. بنابراین بخاطر نام محل پیدایش اولیه ، نام این سنگ را ماگنتیت یا مغناطیس گذاشتند که ترجمه فارسی آن آهنربا می باشد. سنگ مذکور از جنس اکسید طبیعی آهن با فرمول شیمیایی Fe3O4 می باشد.

بعدها ملاحظه گردید که این سنگ در مناطق دیگر کره زمین نیز وجود دارد. پدیده مغناطیس همراه با کشف آهنربای طبیعی مشاهده شده است. با پیشرفت علوم مختلف و افزایش اطلاعات بشر در زمینه مغناطیس ، انواع آهنرباهای طبیعی و مصنوعی ساخته شد. امروزه از آهنربا در قسمتهای مختلف مانند صنعت ، دریانوردی و ... استفاده می گردد.


منشا پیدایش :

کهربا شیرهای است که مدتها پیش از بعضی از درختان مانند کاج که چوب نرم دارند، بیرون تراوید. و در طی قرنها سخت شده و بصورت جسم جامدی نیم شفاف در آمده است. کهربا به رنگهای زرد تا قهوهای وجود دارد. کهربای صیقل داده شده سنگ زینتی زیبایی است و گاهی شامل بقایای حشرههایی است که در زمانهای گذشته در شیره چسبناک گرفتار شده اند.

یونانیان باستان خاصیت شگفت انگیز کهربا تشخیص داده بودند. اگر کهربا را به شدت به پارچهای مالش دهیم اجسامی مانند تکه های کاه یا رانههای گیاه را که نزدیک آن باشد جذب میکند. اما سنگ مغناطیس یک ماده معدنی است که در طبیعت وجود دارد. نخستین توصیف نوشته شده از کاربرد سنگ مغناطیس به عنوان یک قطب نما در دریانوردی در کشورهای غربی ، مربوط به اواخر قرن دوازدهم میلادی است. ولی خواص این سنگ خیلی پیش از آن در چین شناخته شده بود.


انواع آهنربا :
اساس کار تمام آهنرباها یکسان است، اما به دلیل کاربرد در دستگاههای مختلف ، آرایش و صنعت ، آن را به اشکال و اندازه‌های گوناگون می سازند، و لذا انواع آن از لحاظ شکل عبارتند از :


تیغهای
میلهای
نعلیشکل
استوانهای
حلقهای
کروی
پلاستیکی
سرامیکی و ...


حوزه عمل :

آهنربا به طور مستقیم و غیر مستقیم در زندگی روزانه بشر موثر است و به جرات می توان گفت که اگر این خاصیت نبود زندگی بشر امروزی با مشکل مواجه می شد. از جمله وسایلی که در ساختمان آن از خاصیت آهنربایی استفاده شده است، می توان به یخچال ، قطب نما ، کنتور برق ، انواع بلندگوها ، موتورهای الکتریکی (مانند کولر ، پنکه ، لوازم خانگی و ...) ، وسایل اندازه گیری الکتریکی مانند ولت سنج ، آمپر سنج و ... اشاره کرد.


آیا آهنربا بغیر از آهن ، اجسام دیگری را جذب می کند؟

بعد از پیدایش آهنربا ، دانشمندان به این فکر افتادند که آیا آهنربا غیر از آهن ، اجسام دیگری را نیز می تواند جذب کند. پس از بررسیها و مطالعات مختلف ، سرانجام مشخص شد که آهنربا در عنصر دیگر به نامهای نیکل و کبالت را نیز می تواند جذب کند. بر این اساس به سه عنصر آهن ، کبالت ، نیکل و آلیاژهای آنها که توسط آهنربا جذب می گردد، مواد مغناطیسی می گویند. بدیهی است که سایر مواد را که فاقد این خاصیت است، مواد غیر مغناطیسی می گویند.


روشهای مختلف تشخیص قطبهای یک آهنربا :


اگر یک آهنربا را از وسط بوسیله تکه نخ بسته و از محلی آویزان کنید، آهنربا در راستای شمال و جنوب مغناطیسی زمین قرار می گیرد.


با توجه به اینکه در آهنرباها ، قطبهای همنام همدیگر را دفع و قطبهای غیر همنام همدیگر را جذب می کنند، لذا اگر یک آهنربای دیگر که قطبهای آن معلوم است، در اختیار داشته باشیم، به راحتی می توان قطبهای آهنربای دیگر را تشخیص داد.


به کمک یک عقربه مغناطیسی و با استفاده از رانش و ربایش قطبها نیز میتوان این کار را انجام داد

Hidden-H
28-04-2006, 00:11
دید کلی
آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند. ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است. از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.

عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند. از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند. زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد. با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد. بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.

ساخت آهنربای الکتریکی ساده
آهنربای الکتریکی ساده را می‌توان در منزل ساخت. کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم. بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود. مثلا در کوره گرم و سپس به آرامی سرد شود. سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد. گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.

ساختار آهنربای الکتریکی
میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است. ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند. در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.

وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند. ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود. وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.

هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود. بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند. به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.

آهنربای الکتریکی پر قدرت
تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است. در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند. در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود. گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند. ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.

از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم. پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.

تکنیک کاپیتزا
کاپیتزا (P.L. kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد. او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید. در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.

البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند. در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا).

Hidden-H
28-04-2006, 00:11
اثر فاراده یا اثر مغناطیسی _ نوری یکی از ابتدائی‌ترین نشانه‌های بستگی درونی الکترومغناطیس و نور است. اعمال یک میدان مغناطیسی قوی در امتداد انتشار نور ، خطی که روی یک قطعه از شیشه فرود می‌آید، باعث چرخش صفحه ارتعاش آن می‌شود. این اثر حاکی از فعالیت نوری (خاصیتی از ماده که باعث می‌شود، میدان الکتریکی یک موج تخت خطی فرودی ، بچرخد) است، ولی بین این تمایز دو اثر وجود دارد.


تاریخچه
نخستین بار مایکل فاراده در سال 1224_1842 کشف کرد که شیوه انتشار نور در یک محیط مادی می‌تواند تحت تاثیر یک میدان خارجی قرار گیرد. وی دریافت که اعمال میدان مغناطیسی باعث چرخش صفحه ارتعاش می‌شود.

مدوله‌ساز فاراده
از هنگام کشف لیزر در اوایل دهه 1960 کوشش زیادی در جهت استفاده از پتانسیل عظیم نور لیزر به عنوان وسیله ارتباطاتی به عمل آمده است. یکی از اجرای تشکیل دهنده اساسی چنین ابزاری مدوله‌ساز است که عملکرد آن نشاندن اطلاعات برروی باریکه است. چنین ابزاری باید بتواند در سرعت‌های بالا و به شیوه‌ای نظام یافته ، به نحوی تغییر موج نوری را ایجاد کند.<br><br>مثلا ممکن است دامنه موج ، قطبش ، امتداد انتشار ، فاز ، یا فرکانس موج را به شیوه‌ای مربوط به سیگنالی که باید تراگسیلیده شود، تغییر دهد. به همین ترتیب اثر فاراده ، شالوده ممکن برای این مدوله‌ساز می‌تواند باشد. آشکار است که اگر قرار باشد دستگاهی از این نوع بطور موثر کار کند، هر واحد طول از محیط باید تاحد ممکن ، نور اندکی را بیاشامد و در همان حال باید تا حد ممکن به باریکه نور ، چرخش بیشتر دهد.

ثابت وردت
ثابت وردت مثبت متناظر است با یک ماده دیامغناطیس که برای آن در صورتی که نور موازی میدان اعمال شده (B) حرکت کند اثر فاراده l-گردان است. وقتی که در راستای پاد موازی با B انتشار می‌یابد، d –گردان است. ثابت وردت ضریبی است، که زاویه‌ای را که صفحه ارتعاشی در داخل آن می‌چرخد به میدان مغناطیس B و طول محیط d ربط می‌دهد. با تغییر بسامد دما تغییر می‌کند.<br><br>به فرض اگر میدان B بوسیله یک پیچه سیملوله‌ای در اطراف نمونه ایجاد شود، وقتی که ثابت وردت مثبت باشد صفحه ارتعاشی بدون توجه به امتداد انتشار باریکه ، در راستای محور پیچه در همان سویی می‌چرخد که جریان در پیچه شارش دارد. بنابراین می‌توان با چند بار بازتابش نور به جلو و عقب در درون نمونه این اثر را تقویت کرد.

کاربردها
این اثر برای تجزیه آمیزه‌های هیدروکربن‌ها استفاده می‌شود. زیرا هر کدام از اجزای تشکیل دهنده آن دارای چرخش مغناطیسی خاص خود است. به علاوه وقتی که این اثر در مطالعات طیف‌نمایی استفاده می‌شود، اطلاعاتی در مورد خواص حالت‌های انرژی بالای تراز زمینه بدست می‌دهد. اخیرا اثر فاراده کاربردهای حتی مهیج‌تر و امید‌ بخش‌تری نیز داشته است.

Hidden-H
28-04-2006, 00:12
وقتی که یک ابر رسانا در یک میدان مغناطیسی سرد شود، در دمای گذار ، جریانهای ماندگار روی سطح به راه افتاده و به طریقی حرکت می‌‌کنند که شار مغناطیسی داخل نمونه را خنثی کنند. این درست به همان روشی است که پس از این که فلز را سرد کرده باشیم، یک میدان مغناطیسی به آن اعمال شود. این اثر یعنی این که یک ماده ابر رسانا حتی وقتی که در میدان مغناطیسی اعمال شده قرار گرفته باشد، دارای شار عبوری مغناطیسی در داخل نیست، اثر مایسنر نامیده می‌‌شود.


مقدمه
یک ماده رسانای کامل به صورت حلقه در نظر بگیرید. فرض کنید این نمونه در غیاب هر گونه میدان مغناطیسی ، مقاومت خود را از دست می‌‌دهد (نمونه را سرد می‌‌کنیم). حال یک میدان مغناطیسی اعمال می‌‌کنیم. چون چگالی شار مغناطیسی در فلز باید ثابت باشد و نیز چون در حالت قبل از اعمال میدان ، شار صفر بوده است، لذا باید بعد از اعمال میدان نیز شار صفر بماند. به چنین نمونه‌ای که در آن هیچ شار مغناطیسیی ، وقتی که میدان مغناطیسی اعمال می‌‌شود، وجود ندارد، دیامغناطیس کامل گفته می‌‌شود.

در سال 1923 مایسنر و اوشن فلد ، دو دانشمند آلمانی ، توزیع شار مغناطیسی را در خارج از فلزات قلع و سرب که در یک میدان مغناطیسی تا دمای گذار (دمایی که ماده تبدیل به ابر رسانا می‌شود) اندازه گیری کردند. لازم به ذکر است که در این حالت ، در حالت اول شار مغناطیسی در درون ماده وجود دارد، لذا اگر بعد از این که ماده به ابر رسانا تبدیل شد، میدان را حذف کنیم، باید باز هم شار مغناطیسی در داخل آن وجود داشته باشد، اما مایسنر و اوشن ملاحظه کردند که نمونه‌های مورد آزمایش با وجود این که در میدان مغناطیسی سرد شده بودند، در دمای گذارشان بطور آنی به یک دیامغناطیس کامل تبدیل شده و شار داخلی آنها حذف گردید.

بنابراین آنان دریافتند که ابر رسانا چیزی بیشتر از موادی که صرفا یک رسانای کامل هستند، می‌‌باشد. آنها خاصیت اضافی دیگری که یک فلز بدون مقاومت فاقد آن است، دارا هستند. یعنی در داخل یک فلز ابر رسانا همیشه میدان صفر است، در حالی که در داخل فلزی که بدون مقاومت است، ممکن است شار مغناطیسی موجود باشد، یا نباشد که بستگی به شرایط دارد.

فرق یک ابر رسانا و یک رسانای کامل از نظر مغناطیس شدگی
اگر فلزی را که فقط دارای مقاومت نیست، رسانای کامل بگوییم، @می‌‌توان گفت که مغناطیس شدگی یک رسانای کامل به ترتیبی که حالت نهایی میدان مغناطیسی و درجه حرارت اعمال شده به جسم بدست آید، بستگی خواهد داشت، اما مغناطیس شدگی یک ابر رسانا فقط به مقادیر میدان اعمال شده و درجه حرارت بستگی دارد و به ترتیبی که اندازه گرفته می‌‌شود، وابسته نیست.

دلیل صفر بودن شار در داخل ماده ابر رسانا
فرض کنید که یک نمونه در غیاب میدان مغناطیسی مقاومت الکتریکی خود را از دست می‌‌دهد و به ابر رسانا تبدیل می‌‌گردد. حال میدان مغناطیسی اعمال می‌‌شود. چون چگالی شار در فلز نمی‌‌تواند تغییر کند، پس باید شار حتی بعد از اعمال میدان نیز صفر باقی بماند. در حقیقت اعمال میدان مغناطیسی جریانهای القایی بدون مقاومتی را در روی سطح نمونه ایجاد می‌‌کند، طوری که چگالی شار مغناطیسی ایجاد شده توسط این جریانها دقیقا با چگالی شار میدان اعمال شده مساوی و مختلف‌الجهت است.

به دلیل میرا نبودن این جریانها ، چگالی شار خالص داخل فلز در سطح ، صفر باقی می‌‌ماند. به فرض اگر جریان سطحی را با i و چگالی شار مغناطیسی ایجاد شده از این جریان را با B_i و چگالی شار اعمال شده را با B_a نشان دهیم، چگالی شار B_i دقیقا چگالی شار B_a را در همه جا داخل فلز خنثی می‌‌کند. این جریانهای سطحی را جریان پوششی می‌‌گویند.

چگالی شار ایجاد شده توسط جریانهای ماندگار در مرزهای نمونه محو نمی‌‌شوند، اما خطوط شار حلقه‌های بسته‌ای را تشکیل می‌‌دهند که از طریق فضای خارج بر می‌‌گردند. با وجود این که چگالی این شار در داخل فلز همه جا با چگالی شار میدان اعمال شده ، مساوی و مختلف‌الجهت است، این شرایط در خارج فلز برقرار نیست. بنابراین به نظر می‌‌رسد که نمونه از ورود شار حاصل از میدان اعمال شده ، به درون خود جلوگیری می‌‌کند.

Renjer Babi
27-05-2006, 06:53
مغناطيس و الكتريسيته تاريخي طولاني و درازي دارند. الكتريسيته و مغناطيس ابتدا در قرن هشتم قبل از ميلاد مورد توجه يونانيان باستان قرار گرفتند. مهمترين عاملي كه موجب جذب و توجه مردم به الكتريسيته ومغناطيس شد، دو ماده طبيعي كهربا و كاني مگنتيت(سنگ مغناطيس) بود. كهربا، شيره برخي از درختاني است كه چوب نرمي دارند؛ هنگامي كه اين شيره از درخت بيرون مي آيد، پس از مدتي سفت مي شود. اين جامد سفت كه رنگي بين قهوه اي و زرد دارد، كهرباست. و اگر كهربا را به پارچه اي بماليم، باردار شده و مي تواند تكه هاي برگ يا كاغذ را جذب كند.

سنگ مغناطيس، همان اكسيد آهن است؛ كه براده هاي آهن را جذب مي كند. سنگ هاي مغناطيسي مي توانند يكديگر را جذب كنند. و علت اين نامگذاري آنست كه اين سنگ در منطقه اي به نام "مگنزيا" يا "مغناطيس" براي نخستين بار كشف شد. كه به ماهيت اين سنگ، مغناطيس گفته مي شود. اگر يك تكه از اين سنگ ها را بر روي آب شناور كنيم، جهت آن در راستاي شمال-جنوب قرار مي گيرد. همين خاصيت سنگ مغناطيسي سبب شد كه در قرون گذشته دريانوردان از آن بعنوان جهت ياب استفاده كنند.

دموكريتوس، كه يكي از فلاسفه بزرگ باستان و بنيانگذار تئوري اتمي است، معتقد است كه ميان سنگ مغناطيسي جرياني از ذرات بسيار ريز به نام اتم وجود دارد. و در اين جريان هنگامي كه اتم به آهن يا سنگ مغناطيسي ديگر برخورد مي كند، در برگشت به سوي سنگ مناطيس، سبب مي شود كه آهن را به دنبال خود بكشاند. ويليام گيلبرت يكي از نخستين دانشمنداني است كه در زمينه مغناطيس دست به آزمايش ها و بررسي هاي اساسي كرد. او مشاهده كرد كه براده هاي آهن در اطراف سنگ مغناطيس در راستاي منظمي قرار مي گيرند. و همچنين سنگ مغناطيس در حالت آويزان يا حتي سوزن هاي آهني در حالت شناور در راستاي شمال-جنوب قرار مي گيرند. او چنين پنداشت كه علت اين امر آنست كه زمين يك سنگ مغناطيس بسيار بزرگيست كه اينگونه عمل مي كند. او براي اثبات نظريه خود، يك سنگ مغناطيس را به صورت يك كره بزرگ در آورد و سپس در اطراف و بر روي سطح اين كره، سنگ هاي مغناطيسي كوچك و براده هاي آهني قرار داد و مشاهده كرد كه اين براده ها در راستاي شمال-جنوب قرار مي گيرند.

قبل از اينكه به بحث در مورد خطوط و ميدان مغناطيسي آهنربا و زمين بپردازيم، لازم است كه به قطب هاي مغناطيسي و خاصيت آن اشاره اي كنيم.

در آهنربا يا همان سنگ مغناطيسي، دو ناحيه وجود دارد كه نسبت به ساير نقاط ديگر آهنربا، خاصيت جذب براده هاي آهن بيشتر و راستاي اين براده ها به سمت اين نواحي است. كه به اين دو ناحيه، قطب هاي مغناطيسي مي گويند. اگر آهنربا را شناور قرار دهيم، قطبي كه به سمت شمال است را قطب شمال يا شمال ياب، و قطب مقابل آن را قطب جنوب يا جنوب ياب مي گويند. پس هر ماده مغناطيسي از دو قطب شمال وجنوب تشكيل شده است. در مغناطيس مانند الكتريسيته، قطب هاي ناهمنام يكديگر را جذب و قطب هاي همنام يكديگر را دفع مي كنند. پس در خاصيت مغناطيسي، نيروي دفع وجذب نيز وجود دارد. آزمايش ها نشان مي دهد كه اگر در اطراف يك آهنربا، قطب نما يا سنگ هاي مغناطيسي كوچك قرار دهيم، نيروي حاصله از مغناطيس بر قطب هاي آن ها اثر گذاشته، به طوري كه قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعكس قرار مي گيرد. و اين نشان مي دهد، كه در نقاط اطراف آهنربا، نيرويي وجود دارد كه بر قطب هاي قطب نما وارد مي شود و آن را در راستاي مشخصي قرار مي دهد. كه به مجموعه اي از اين نيروها يا نقاط، ميدان مغناطيسي مي گويند. ميدان مغناطيسي اطراف آهنربا را توسط خطوطي نشان مي دهند كه اين خطوط قطب جنوب(s) را به قطب شمال(n) وصل مي كند. و جهت اين خطوط از شمال(n) به جنوب(s) است. خطوط ميدان مغناطيسي ويژگي هايي دارند كه عبارتند از:

1) خطوط همانطور كه قبلا گفته شد راستاو جهتشان از شمال به جنوب است.

2) خطوط يكديگر را قطع نمي كنند.

3) تراكم خطوط در نزديكي قطب ها بيشتر از نواحي ديگر است و اين نشان دهنده آن است كه نيروي مغناطيسي در اين نواحي زياد است.

4) برآيند نيروهاي مماس بر خطوط ميدان در يك نقطه برابر با نيروي مغناطيسي در آن نقطه است.

اكنون به سراغ علت تاثير نيروي مغناطيسي بر براده هاي آهن مي رويم. مي دانيم كه الكترون در ساختار تمام اجسام وجود دارد كه الكترون ها داراي دو قطب مغناطيسي مي باشند. بنابراين مي توان نتيجه گرفت كه تمام اجسام از ذراتي تشكيل شده اند كه داراي دو قطب مغناطيسي هستند كه به اين ذرات، دو قطبي مغناطيسي مي گويند و به موادي كه داراي دوقطبي مغناطيسي هستند، مواد مغناطيسي مي گويند. البته لزومي ندارد كه بگوييم اين دوقطبي ها همان الكترون ها هستند بلكه اين دوقطبي ها ذرات بنيادي مغناطيس هستند همانطور كه از الكترون بعنوان بار بنيادي در الكتريسيته ياد مي كنيم. اين دوقطبي هاي مغناطيسي مانند يك آهنربا عمل مي كنند و در اطراف خود ميدان مغناطيسي توليد مي كنند. آهن نيز داراي اين دوقطبي هاي مغناطيسي است اما در آهن دو قطبي هاي مغناطيسي به گونه اي رفتار مي كنند، كه خاصيت مغناطيسي يكديگر را خنثي مي كنند. و هنگامي كه در يك ميدان مغناطيسي قرار مي گيرند، بر اين دوقطبي ها نيروي مغناطيسي وارد مي شود، به طوري كه قطب شمال تمام اين دوقطبي ها در جهت خطوط ميدان قرار مي گيرند. و آهن ساختار ساختماني منظمي پيدا مي كند و به يك آهنربا تبديل مي شود. كه از آن مي توان بعنوان يك قطب نما استفاده كرد. اگر اين آهنربا را به دوقسمت تقسيم كنيم، اين آهنربا باز هم خاصيت مغناطيسي خود را حفظ مي كند، زيرا دوقطبي هاي مغناطيسي در يك جهت قرار دارند و اين دو قطبي ها عامل ايجاد خاصيت مغناطيسي در آهنربا هستند.

سوالي كه پيش مي آيد اين است كه آيا فقط آهن تحت تاثير ميدان مغناطيسي قرار مي گيرد؟ براي پاسخ به اين سوال برمي گرديم به مواد مغناطيسي كه از دو قطبي هاي مغناطيسي تشكيل شده اند در مواد مغناطيسي، حركت و رفتار دوقطبي ها به گونه اي است كه اثر ميدان مغناطيسي يكديگر را خنثي مي كنند. مواد مغناطيسي از نظر رفتار دوقطبي هاي مغناطيسي به سه دسته تقسيم مي كنند:

الف) مواد پارامغناطيس ب) مواد ديامغناطيس پ) مواد فرومغناطيس



الف) مواد پارامغناطيس: موادي هستند كه حركت و جنبش دوقطبي هايشان راحت و آسان تر است. هنگامي كه اين مواد را در ميدان مغناطيسي قرار دهيم، بر دوقطبي هاي آن نيرو وارد شده و تعداد زيادي از آن ها در خطوط ميدان به طوري كه قطب هاي شمال در جهت خطوط قرار مي گيرند. و اين امر سبب مي شود كه اين مواد به يك آهنرباي قوي تبديل شود. اما چون حركت وجنبش اين دو قطبي ها سريع است، با برداشتن اين مواد از ميدان مغناطيسي، اين دوقطبي ها به سرعت از مسير خطوط خارج و به حالت كاتوره اي قبلي برمي گردند و اين مواد در خارج از خطوط ميدان به سرعت خاصيت مغناطيسي خود را از دست مي دهند. مانند آلومينيوم.

ب) مواد ديامغناطيس : مواد ديامغناطيس موادي هستند كه اگر در ميدان مغناطيسي قرار بگيرند از آهنربا دفع مي شوند. در اين مواد برآيند گشتاور دو قطبي مغناطيسي صفر است و در واقع فاقد دوقطبي ذاتي هستند و هنگامي كه در ميدان مغناطيسي قرار مي گيرند، گشتاور دو قطبي در آن ها القا مي شود اما جهت اين دوقطبي هاي القا شده بر خلاف جهت ميدان مغناطيسي خارجي مي باشد و اين امر باعث مي شود كه ماده ديامغناطيس از ميدان مغناطيسي دفع شود. البته اين خاصيت در تمام مواد وجود دارد، و هنگامي اين خاصيت در مواد ظاهر مي شود كه خاصيت پارامغناطيسي آن ها ضعيف باشد.مانند: بيسموت.

پ) مواد فرومغناطيس : اين مواد مانند مواد پارامغناطيس است اما با اين تفاوت كه در اين مواد مجموعه اي از دوقطبي هاي مغناطيسي در يك جهت و راستا قرار دارند كه اين مجموعه ها در راستا و جهت هاي متفاوتي قرار دارند به طوري كه اثر ميدان يكديگر را خنثي مي كنند. كه به اين مجموعه از دوقطبي هاي مغناطيسي كه در يك استا قرار دارند، حوزه مغناطيسي مي گويند. هنگامي كه اين مواد در ميدان مغناطيسي قرار مي گيرند، بر حوزه هاي مغناطيسي نيرو وارد مي شود و آن ها را در جهت ميدان قرار مي دهند. خاصيت مغناطيسي اين مواد به سرعت تغيير مسير اين حوزه ها و قرار گرفتن در جهت ميدان بستگي دارد. كه از اين لحاظ مواد فرومغناطيس را به دو دسته تقسيم مي كنند:

1) مواد فرومغناطيس نرم: در اين مواد سرعت تغيير حوزه ها بسيار آسان و سريع است و به همين خاطر در ميدان مغناطيسي اين حوزه ها به سرعت در جهت خطوط ميدان قرار مي گيرند و خاصيت مغناطيسي بسيار قوي بدست مي آورند. اما همينكه اين مواد را از ميدان دور كنيم، جهت اين حوزه ها به سرعت تغيير و به حالت كاتوره اي قبلي بر مي گردند. مانند آهن

2) مواد فرومغناطيسي سخت: در اين مواد سرعت تغيير حوزه ها بسيار سخت و كُند است و همين كه در ميدان قرار مي گيرند، اين حوزه ها به كندي در جهت خطوط قرار مي گيرند و خاصيت مغناطيسي آن ها نسبت به مواد فرومغناطيس نرم ضعيفتر است؛ اما همين كه از ميدان دور مي شوند بر خلاف مواد فرومغناطيس نرم خاصيت مغناطيسي خود را حفظ مي كنند.مانند آلياژ هاي نيكل.

پس مواد پارامغناطيس و فرومغناطيس تحت تاثير ميدان مغناطيسي قرار مي گيرند و به يك آهنربا تبديل مي شوند.

در قرن هيجدهم هانس اورستد نشان داد كه در اطراف سيم حامل جريان ميدان مغناطيسي ايجاد مي شود و بعد ها آمپر و مايكل فارادي در اين زمينه دست به فعاليت هاي گسترده اي زدند. آن ها نشان دادند كه در اطراف يك سيم حامل جريان، ميدان مغناطيسي توليد مي شود و حتي موفق شدند كه روابط كمي آن را محاسبه كنند. بنابراين منبع توليد ميدان مغناطيسي عبارتند از:سنگ مغناطيس يا همان آهنرباي طبيعي و جريان الكتريكي. البته بعدها ماكسول نتيجه گرفت كه بر اثر تغيير جريان الكتريكي، ميدان مغناطيسي در فضا منتشر مي شود و همچنين براثر تغيير ميدان مغناطيسي، جريان الكتريكي در فضا توليد مي شود كه نتيجه اين، امواج الكترومغناطيسي است.

و از طرفي تغيير ميزان عبور ميدان مغناطيسي از يك رسانا، باعث توليد جريان الكتريكي در همان رسانا مي شود. پس منبع توليد ميدان الكتريكي عبارتند از: اختلاف پتانسيل بين دو سر رسانا و تغيير شار(ميزان عبور ميدان) مغناطيسي است.

پس مي توان اينگونه نتيجه گرفت كه الكتريسيته و مغناطيس باهم در ارتباطند و به جر‌‌أت مي توان گفت كه يكي بدون ديگري معني ندارد. چون وجود يكي باعث پيدايش ديگري مي شود.

مي دانيم كه ذرات باردار تحت تاثير ميدان الكتريكي يا نيروي كولني قرار مي گيرند. اگر اين ذرات وارد ميدان مغناطيسي شوند تحت تاثير نيروي ديگري كه همان نيروي مغناطيسي است مي شوند. آزمايش ها نشان مي دهند كه ميزان انحراف ذره باردار به بزرگي ميدان، اندازه بار، سرعت و زاويه حركت ذره بستگي دارد. اگر اين ذره در راستاي خطوط ميدان حركت كند، هيچ نيرويي مغناطيسي بر آن وارد نمي شود. نيروي مغناطيسي بر راستاي حركت ذره عمود است و بر سرعت آن تاثيري نمي گذارد و فقط جهت بردار حركت آن را تغيير مي دهد. به همين دليل اگر ذره باردار وارد ميدان مغناطيسي شود حركت مارپيچي يا دايره اي خواهد داشت. اگر ذره به طور عمود بر راستاي خطوط وارد ميدان شود، چون اندازه سرعتش ثابت و نيروي وارده بر آن عمود بر جهت حركت است، شتاب مركز گرا خواهد گرفت و اين امر موجب مي شود كه ذره در ميدان يك مسير دايره اي داشته باشد. البته ذره باردار بر اثر حركتش مقداري از انرژي خود را به صورت امواج الكترومغناطيسي گسيل مي كند و انرژي آن كاهش و سرعتش كم مي شود و به همين خاطر شعاع حركت دايره اي آن در طي مدت زماني، كوچك و كوچكتر مي شود. و اگر به صورت غير عمود بر خطوط ميدان وارد شود، حركت مارپيچي خواهد داشت.

همين خاصيت ذرات باردار در ميدان مغناطيسي سبب مي شود كه ما را از آسيب هاي ذرات باردار و پرانرژي كيهاني كه به زمين برخورد مي كنند، مصون نگاه دارد.

در اطراف كره زمين ميدان مغناطيسي وجود دارد و طبق نظريه اي كه گيلبرت پيشنهاد كرد، زمين يك آهنرباي بزرگي است كه قطب شمالش در قطب جنوب جغرافيايي و قطب جنوب مغناطيسي در قطب شمال جغرافيايي قرار دارد كه ميدان مغناطيسي در اين دو قطب نسبت به ساير نواحي ديگر كره زمين قوي تر مي باشند. ذرات باردار و پر انرژي كيهاني كه به سوي زمين مي آيند گرفتار ميدان مغناطيسي زمين شده و حركت مارپيچي به خود مي گيرند كه به اين منطقه، كمربند "وان آلن" مي گويند.اين ذرات با حركت مارپيچي خود به سمت دو قطب حركت مي كنند. اين ذرات با نزديك شدن به دو قطب بر اثر برخورد به لايه هاي بالايي جو قطب شمال و جنوب، مقدار زيادي از انرژي خود را ازدست مي دهند كه به صورت تابش آزاد و روشنايي را در دو قطب ايجاد مي كنند كه به اين روشنايي، شفق هاي قطبي مي گويند.

علت ايجاد ميدان مغناطيسي در اطراف زمين و يا آهنربا بودن زمين، سوالي است كه ذهن دانشمندان را در طي چند ده مشغول كرده بود. نظريه اي كه توانست در توضيح علت ميدان مغناطيسي موفق ظاهر شود، را بيان مي كنيم:

در درون زمين فلزاتي نظير آهن و نيكل به صورت مذاب و گداخته وجود دارند كه در حال حركت و جنبش هستند. حركت اين مواد از هسته شروع شده و به نزديكي سطح زمين نزديك شده و دوباره به هسته و مركز زمين بر مي گردند. اين مواد مذاب با حركت رفت وبرگشتي كه دارند باعث پيدايش جريان الكتريكي در درون زمين مي شوند. از همين خاصيت الكتريكي مواد مذاب درون زمين، براي پيش بيني وقوع فوران آتشفشان يا زلزله استفاده مي كنند. جريان الكتريكي كه اين مواد مذاب ايجاد مي كنند، باعث پيداش ميدان مغناطيسي در اطراف زمين مي شود. خطوط ميدان مغناطيسي به اينگونه هستند كه از هسته به قطب جنوب جغرافيايي وصل و سپس از قطب جنوب به قطب شمال و از آنجا دوباره به هسته وصل مي شوند. و به اين گونه اين خطوط در اطراف زمين رسم مي شوند.

قطب هاي مغناطيسي زمين بر روي قطب هاي جغرافيايي آن منطبق نيستند و امروزه حدود 11 درجه اختلاف دارند.

بررسي ها و مطالعه آثار نشان مي دهند كه ميدان مغنطيسي زمين ثابت نيست و تغيير مي كند. آثاري كه از روي سنگ هاي زمين بدست آمده حاكي از آنست كه ميدان مغناطيسي زمين به مدت حدود 800000 سال وارونه بوده و حدود 100000 سال دچار افت شديدي مي شود. علت اين امر آنست كه مواد مذاب و گداخته حركت رفت و برگشتي كاتوره اي دارند كه سرعتشان حدود 5 سانتي متر در روز است. و جابجايي اين مواد باعث تغيير جريان الكتريكي و درنتيجه ميدان مغناطيسي زمين مي شود. البته دانشمندان در تلاش هستند تا بتوانند به ساختار كاتوره اي تغيير ميدان مغناطيسي در آينده دست يابند.

Renjer Babi
27-05-2006, 06:54
مغناطيس و الكتريسيته تاريخي طولاني و درازي دارند. الكتريسيته و مغناطيس ابتدا در قرن هشتم قبل از ميلاد مورد توجه يونانيان باستان قرار گرفتند. مهمترين عاملي كه موجب جذب و توجه مردم به الكتريسيته ومغناطيس شد، دو ماده طبيعي كهربا و كاني مگنتيت(سنگ مغناطيس) بود. كهربا، شيره برخي از درختاني است كه چوب نرمي دارند؛ هنگامي كه اين شيره از درخت بيرون مي آيد، پس از مدتي سفت مي شود. اين جامد سفت كه رنگي بين قهوه اي و زرد دارد، كهرباست. و اگر كهربا را به پارچه اي بماليم، باردار شده و مي تواند تكه هاي برگ يا كاغذ را جذب كند.

سنگ مغناطيس، همان اكسيد آهن است؛ كه براده هاي آهن را جذب مي كند. سنگ هاي مغناطيسي مي توانند يكديگر را جذب كنند. و علت اين نامگذاري آنست كه اين سنگ در منطقه اي به نام "مگنزيا" يا "مغناطيس" براي نخستين بار كشف شد. كه به ماهيت اين سنگ، مغناطيس گفته مي شود. اگر يك تكه از اين سنگ ها را بر روي آب شناور كنيم، جهت آن در راستاي شمال-جنوب قرار مي گيرد. همين خاصيت سنگ مغناطيسي سبب شد كه در قرون گذشته دريانوردان از آن بعنوان جهت ياب استفاده كنند.

دموكريتوس، كه يكي از فلاسفه بزرگ باستان و بنيانگذار تئوري اتمي است، معتقد است كه ميان سنگ مغناطيسي جرياني از ذرات بسيار ريز به نام اتم وجود دارد. و در اين جريان هنگامي كه اتم به آهن يا سنگ مغناطيسي ديگر برخورد مي كند، در برگشت به سوي سنگ مناطيس، سبب مي شود كه آهن را به دنبال خود بكشاند. ويليام گيلبرت يكي از نخستين دانشمنداني است كه در زمينه مغناطيس دست به آزمايش ها و بررسي هاي اساسي كرد. او مشاهده كرد كه براده هاي آهن در اطراف سنگ مغناطيس در راستاي منظمي قرار مي گيرند. و همچنين سنگ مغناطيس در حالت آويزان يا حتي سوزن هاي آهني در حالت شناور در راستاي شمال-جنوب قرار مي گيرند. او چنين پنداشت كه علت اين امر آنست كه زمين يك سنگ مغناطيس بسيار بزرگيست كه اينگونه عمل مي كند. او براي اثبات نظريه خود، يك سنگ مغناطيس را به صورت يك كره بزرگ در آورد و سپس در اطراف و بر روي سطح اين كره، سنگ هاي مغناطيسي كوچك و براده هاي آهني قرار داد و مشاهده كرد كه اين براده ها در راستاي شمال-جنوب قرار مي گيرند.

قبل از اينكه به بحث در مورد خطوط و ميدان مغناطيسي آهنربا و زمين بپردازيم، لازم است كه به قطب هاي مغناطيسي و خاصيت آن اشاره اي كنيم.

در آهنربا يا همان سنگ مغناطيسي، دو ناحيه وجود دارد كه نسبت به ساير نقاط ديگر آهنربا، خاصيت جذب براده هاي آهن بيشتر و راستاي اين براده ها به سمت اين نواحي است. كه به اين دو ناحيه، قطب هاي مغناطيسي مي گويند. اگر آهنربا را شناور قرار دهيم، قطبي كه به سمت شمال است را قطب شمال يا شمال ياب، و قطب مقابل آن را قطب جنوب يا جنوب ياب مي گويند. پس هر ماده مغناطيسي از دو قطب شمال وجنوب تشكيل شده است. در مغناطيس مانند الكتريسيته، قطب هاي ناهمنام يكديگر را جذب و قطب هاي همنام يكديگر را دفع مي كنند. پس در خاصيت مغناطيسي، نيروي دفع وجذب نيز وجود دارد. آزمايش ها نشان مي دهد كه اگر در اطراف يك آهنربا، قطب نما يا سنگ هاي مغناطيسي كوچك قرار دهيم، نيروي حاصله از مغناطيس بر قطب هاي آن ها اثر گذاشته، به طوري كه قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعكس قرار مي گيرد. و اين نشان مي دهد، كه در نقاط اطراف آهنربا، نيرويي وجود دارد كه بر قطب هاي قطب نما وارد مي شود و آن را در راستاي مشخصي قرار مي دهد. كه به مجموعه اي از اين نيروها يا نقاط، ميدان مغناطيسي مي گويند. ميدان مغناطيسي اطراف آهنربا را توسط خطوطي نشان مي دهند كه اين خطوط قطب جنوب(s) را به قطب شمال(n) وصل مي كند. و جهت اين خطوط از شمال(n) به جنوب(s) است. خطوط ميدان مغناطيسي ويژگي هايي دارند كه عبارتند از:

1) خطوط همانطور كه قبلا گفته شد راستاو جهتشان از شمال به جنوب است.

2) خطوط يكديگر را قطع نمي كنند.

3) تراكم خطوط در نزديكي قطب ها بيشتر از نواحي ديگر است و اين نشان دهنده آن است كه نيروي مغناطيسي در اين نواحي زياد است.

4) برآيند نيروهاي مماس بر خطوط ميدان در يك نقطه برابر با نيروي مغناطيسي در آن نقطه است.

اكنون به سراغ علت تاثير نيروي مغناطيسي بر براده هاي آهن مي رويم. مي دانيم كه الكترون در ساختار تمام اجسام وجود دارد كه الكترون ها داراي دو قطب مغناطيسي مي باشند. بنابراين مي توان نتيجه گرفت كه تمام اجسام از ذراتي تشكيل شده اند كه داراي دو قطب مغناطيسي هستند كه به اين ذرات، دو قطبي مغناطيسي مي گويند و به موادي كه داراي دوقطبي مغناطيسي هستند، مواد مغناطيسي مي گويند. البته لزومي ندارد كه بگوييم اين دوقطبي ها همان الكترون ها هستند بلكه اين دوقطبي ها ذرات بنيادي مغناطيس هستند همانطور كه از الكترون بعنوان بار بنيادي در الكتريسيته ياد مي كنيم. اين دوقطبي هاي مغناطيسي مانند يك آهنربا عمل مي كنند و در اطراف خود ميدان مغناطيسي توليد مي كنند. آهن نيز داراي اين دوقطبي هاي مغناطيسي است اما در آهن دو قطبي هاي مغناطيسي به گونه اي رفتار مي كنند، كه خاصيت مغناطيسي يكديگر را خنثي مي كنند. و هنگامي كه در يك ميدان مغناطيسي قرار مي گيرند، بر اين دوقطبي ها نيروي مغناطيسي وارد مي شود، به طوري كه قطب شمال تمام اين دوقطبي ها در جهت خطوط ميدان قرار مي گيرند. و آهن ساختار ساختماني منظمي پيدا مي كند و به يك آهنربا تبديل مي شود. كه از آن مي توان بعنوان يك قطب نما استفاده كرد. اگر اين آهنربا را به دوقسمت تقسيم كنيم، اين آهنربا باز هم خاصيت مغناطيسي خود را حفظ مي كند، زيرا دوقطبي هاي مغناطيسي در يك جهت قرار دارند و اين دو قطبي ها عامل ايجاد خاصيت مغناطيسي در آهنربا هستند.

سوالي كه پيش مي آيد اين است كه آيا فقط آهن تحت تاثير ميدان مغناطيسي قرار مي گيرد؟ براي پاسخ به اين سوال برمي گرديم به مواد مغناطيسي كه از دو قطبي هاي مغناطيسي تشكيل شده اند در مواد مغناطيسي، حركت و رفتار دوقطبي ها به گونه اي است كه اثر ميدان مغناطيسي يكديگر را خنثي مي كنند. مواد مغناطيسي از نظر رفتار دوقطبي هاي مغناطيسي به سه دسته تقسيم مي كنند:

الف) مواد پارامغناطيس ب) مواد ديامغناطيس پ) مواد فرومغناطيس



الف) مواد پارامغناطيس: موادي هستند كه حركت و جنبش دوقطبي هايشان راحت و آسان تر است. هنگامي كه اين مواد را در ميدان مغناطيسي قرار دهيم، بر دوقطبي هاي آن نيرو وارد شده و تعداد زيادي از آن ها در خطوط ميدان به طوري كه قطب هاي شمال در جهت خطوط قرار مي گيرند. و اين امر سبب مي شود كه اين مواد به يك آهنرباي قوي تبديل شود. اما چون حركت وجنبش اين دو قطبي ها سريع است، با برداشتن اين مواد از ميدان مغناطيسي، اين دوقطبي ها به سرعت از مسير خطوط خارج و به حالت كاتوره اي قبلي برمي گردند و اين مواد در خارج از خطوط ميدان به سرعت خاصيت مغناطيسي خود را از دست مي دهند. مانند آلومينيوم.

ب) مواد ديامغناطيس : مواد ديامغناطيس موادي هستند كه اگر در ميدان مغناطيسي قرار بگيرند از آهنربا دفع مي شوند. در اين مواد برآيند گشتاور دو قطبي مغناطيسي صفر است و در واقع فاقد دوقطبي ذاتي هستند و هنگامي كه در ميدان مغناطيسي قرار مي گيرند، گشتاور دو قطبي در آن ها القا مي شود اما جهت اين دوقطبي هاي القا شده بر خلاف جهت ميدان مغناطيسي خارجي مي باشد و اين امر باعث مي شود كه ماده ديامغناطيس از ميدان مغناطيسي دفع شود. البته اين خاصيت در تمام مواد وجود دارد، و هنگامي اين خاصيت در مواد ظاهر مي شود كه خاصيت پارامغناطيسي آن ها ضعيف باشد.مانند: بيسموت.

پ) مواد فرومغناطيس : اين مواد مانند مواد پارامغناطيس است اما با اين تفاوت كه در اين مواد مجموعه اي از دوقطبي هاي مغناطيسي در يك جهت و راستا قرار دارند كه اين مجموعه ها در راستا و جهت هاي متفاوتي قرار دارند به طوري كه اثر ميدان يكديگر را خنثي مي كنند. كه به اين مجموعه از دوقطبي هاي مغناطيسي كه در يك استا قرار دارند، حوزه مغناطيسي مي گويند. هنگامي كه اين مواد در ميدان مغناطيسي قرار مي گيرند، بر حوزه هاي مغناطيسي نيرو وارد مي شود و آن ها را در جهت ميدان قرار مي دهند. خاصيت مغناطيسي اين مواد به سرعت تغيير مسير اين حوزه ها و قرار گرفتن در جهت ميدان بستگي دارد. كه از اين لحاظ مواد فرومغناطيس را به دو دسته تقسيم مي كنند:

1) مواد فرومغناطيس نرم: در اين مواد سرعت تغيير حوزه ها بسيار آسان و سريع است و به همين خاطر در ميدان مغناطيسي اين حوزه ها به سرعت در جهت خطوط ميدان قرار مي گيرند و خاصيت مغناطيسي بسيار قوي بدست مي آورند. اما همينكه اين مواد را از ميدان دور كنيم، جهت اين حوزه ها به سرعت تغيير و به حالت كاتوره اي قبلي بر مي گردند. مانند آهن

2) مواد فرومغناطيسي سخت: در اين مواد سرعت تغيير حوزه ها بسيار سخت و كُند است و همين كه در ميدان قرار مي گيرند، اين حوزه ها به كندي در جهت خطوط قرار مي گيرند و خاصيت مغناطيسي آن ها نسبت به مواد فرومغناطيس نرم ضعيفتر است؛ اما همين كه از ميدان دور مي شوند بر خلاف مواد فرومغناطيس نرم خاصيت مغناطيسي خود را حفظ مي كنند.مانند آلياژ هاي نيكل.

پس مواد پارامغناطيس و فرومغناطيس تحت تاثير ميدان مغناطيسي قرار مي گيرند و به يك آهنربا تبديل مي شوند.

در قرن هيجدهم هانس اورستد نشان داد كه در اطراف سيم حامل جريان ميدان مغناطيسي ايجاد مي شود و بعد ها آمپر و مايكل فارادي در اين زمينه دست به فعاليت هاي گسترده اي زدند. آن ها نشان دادند كه در اطراف يك سيم حامل جريان، ميدان مغناطيسي توليد مي شود و حتي موفق شدند كه روابط كمي آن را محاسبه كنند. بنابراين منبع توليد ميدان مغناطيسي عبارتند از:سنگ مغناطيس يا همان آهنرباي طبيعي و جريان الكتريكي. البته بعدها ماكسول نتيجه گرفت كه بر اثر تغيير جريان الكتريكي، ميدان مغناطيسي در فضا منتشر مي شود و همچنين براثر تغيير ميدان مغناطيسي، جريان الكتريكي در فضا توليد مي شود كه نتيجه اين، امواج الكترومغناطيسي است.

و از طرفي تغيير ميزان عبور ميدان مغناطيسي از يك رسانا، باعث توليد جريان الكتريكي در همان رسانا مي شود. پس منبع توليد ميدان الكتريكي عبارتند از: اختلاف پتانسيل بين دو سر رسانا و تغيير شار(ميزان عبور ميدان) مغناطيسي است.

پس مي توان اينگونه نتيجه گرفت كه الكتريسيته و مغناطيس باهم در ارتباطند و به جر‌‌أت مي توان گفت كه يكي بدون ديگري معني ندارد. چون وجود يكي باعث پيدايش ديگري مي شود.

مي دانيم كه ذرات باردار تحت تاثير ميدان الكتريكي يا نيروي كولني قرار مي گيرند. اگر اين ذرات وارد ميدان مغناطيسي شوند تحت تاثير نيروي ديگري كه همان نيروي مغناطيسي است مي شوند. آزمايش ها نشان مي دهند كه ميزان انحراف ذره باردار به بزرگي ميدان، اندازه بار، سرعت و زاويه حركت ذره بستگي دارد. اگر اين ذره در راستاي خطوط ميدان حركت كند، هيچ نيرويي مغناطيسي بر آن وارد نمي شود. نيروي مغناطيسي بر راستاي حركت ذره عمود است و بر سرعت آن تاثيري نمي گذارد و فقط جهت بردار حركت آن را تغيير مي دهد. به همين دليل اگر ذره باردار وارد ميدان مغناطيسي شود حركت مارپيچي يا دايره اي خواهد داشت. اگر ذره به طور عمود بر راستاي خطوط وارد ميدان شود، چون اندازه سرعتش ثابت و نيروي وارده بر آن عمود بر جهت حركت است، شتاب مركز گرا خواهد گرفت و اين امر موجب مي شود كه ذره در ميدان يك مسير دايره اي داشته باشد. البته ذره باردار بر اثر حركتش مقداري از انرژي خود را به صورت امواج الكترومغناطيسي گسيل مي كند و انرژي آن كاهش و سرعتش كم مي شود و به همين خاطر شعاع حركت دايره اي آن در طي مدت زماني، كوچك و كوچكتر مي شود. و اگر به صورت غير عمود بر خطوط ميدان وارد شود، حركت مارپيچي خواهد داشت.

همين خاصيت ذرات باردار در ميدان مغناطيسي سبب مي شود كه ما را از آسيب هاي ذرات باردار و پرانرژي كيهاني كه به زمين برخورد مي كنند، مصون نگاه دارد.

در اطراف كره زمين ميدان مغناطيسي وجود دارد و طبق نظريه اي كه گيلبرت پيشنهاد كرد، زمين يك آهنرباي بزرگي است كه قطب شمالش در قطب جنوب جغرافيايي و قطب جنوب مغناطيسي در قطب شمال جغرافيايي قرار دارد كه ميدان مغناطيسي در اين دو قطب نسبت به ساير نواحي ديگر كره زمين قوي تر مي باشند. ذرات باردار و پر انرژي كيهاني كه به سوي زمين مي آيند گرفتار ميدان مغناطيسي زمين شده و حركت مارپيچي به خود مي گيرند كه به اين منطقه، كمربند "وان آلن" مي گويند.اين ذرات با حركت مارپيچي خود به سمت دو قطب حركت مي كنند. اين ذرات با نزديك شدن به دو قطب بر اثر برخورد به لايه هاي بالايي جو قطب شمال و جنوب، مقدار زيادي از انرژي خود را ازدست مي دهند كه به صورت تابش آزاد و روشنايي را در دو قطب ايجاد مي كنند كه به اين روشنايي، شفق هاي قطبي مي گويند.

علت ايجاد ميدان مغناطيسي در اطراف زمين و يا آهنربا بودن زمين، سوالي است كه ذهن دانشمندان را در طي چند ده مشغول كرده بود. نظريه اي كه توانست در توضيح علت ميدان مغناطيسي موفق ظاهر شود، را بيان مي كنيم:

در درون زمين فلزاتي نظير آهن و نيكل به صورت مذاب و گداخته وجود دارند كه در حال حركت و جنبش هستند. حركت اين مواد از هسته شروع شده و به نزديكي سطح زمين نزديك شده و دوباره به هسته و مركز زمين بر مي گردند. اين مواد مذاب با حركت رفت وبرگشتي كه دارند باعث پيدايش جريان الكتريكي در درون زمين مي شوند. از همين خاصيت الكتريكي مواد مذاب درون زمين، براي پيش بيني وقوع فوران آتشفشان يا زلزله استفاده مي كنند. جريان الكتريكي كه اين مواد مذاب ايجاد مي كنند، باعث پيداش ميدان مغناطيسي در اطراف زمين مي شود. خطوط ميدان مغناطيسي به اينگونه هستند كه از هسته به قطب جنوب جغرافيايي وصل و سپس از قطب جنوب به قطب شمال و از آنجا دوباره به هسته وصل مي شوند. و به اين گونه اين خطوط در اطراف زمين رسم مي شوند.

قطب هاي مغناطيسي زمين بر روي قطب هاي جغرافيايي آن منطبق نيستند و امروزه حدود 11 درجه اختلاف دارند.

بررسي ها و مطالعه آثار نشان مي دهند كه ميدان مغنطيسي زمين ثابت نيست و تغيير مي كند. آثاري كه از روي سنگ هاي زمين بدست آمده حاكي از آنست كه ميدان مغناطيسي زمين به مدت حدود 800000 سال وارونه بوده و حدود 100000 سال دچار افت شديدي مي شود. علت اين امر آنست كه مواد مذاب و گداخته حركت رفت و برگشتي كاتوره اي دارند كه سرعتشان حدود 5 سانتي متر در روز است. و جابجايي اين مواد باعث تغيير جريان الكتريكي و درنتيجه ميدان مغناطيسي زمين مي شود. البته دانشمندان در تلاش هستند تا بتوانند به ساختار كاتوره اي تغيير ميدان مغناطيسي در آينده دست يابند.

Mohammad Hosseyn
15-09-2006, 00:58
بمبهاي الكترومغناطيسي

سلاح تازه اي كه ساخت آن بسيار ساده و تأثير آن كاملاً گسترده است ، نگراني هايي را براي دانشمندان و دولتمردان بوجود آورده است . به نوشته هفته نامه علمي نيوساينتيست اين سلاح مؤثر « بمب الكترو مغناطيسي » نام دارد كه اساس و عصاره آنها چيزي نيست جز يك پرتو شديد و آني از موجهاي راديويي يا مايكروويو كه قادر است همه مدارهاي الكتريكي را كه در سر راهش قرار گيرد ، نابود سازد . در دوراني كه بافت و ساخت تمامي جوامع تا حدود بسيار زيادي به دستاوردهاي علمي از نوع الكترونيكي وابسته است و همه امور از تجهيزات بيمارستانها تا شبكه هاي مخابراتي و از رايانه هاي بانكها و مؤسسات بزرگ مالي يا نظامي تا دستگاههاي نظارت و مراقبت ، نحوه كار ماشينها و ادوات صنعتي همگي متكي به ساختارهاي الكترونيك هستند ، كاربرد بمبهاي الكترو مغناطيس مي تواند سبب فلج شدن روند زندگي در مناطق بزرگ مسكوني شود . به اعتقاد برخي كارشناسان به نظر مي رسد كشورهاي پيشرفته پيشاپيش چنين سلاحي را تكميل كرده اند و حتي برخي بر اين باورند كه ناتو در جريان جنگ عليه صربستان از اين قبيل بمبها براي تخريب دستگاههاي رادار صربها بهره گرفته است . توجه به بمبهاي الكترو مغناطيس حدود نيم قرن قبل مطرح شد . متخصصان در آن هنگام به اين نكته توجه كردند كه اگر بمبي هسته اي منفجر شود ، امواج الكترومغناطيسي كه در اثر انفجار پديد مي آيد تمامي مدارهاي الكترونيك را نابود مي سازد . اما مسئله اين بود كه به چه ترتيب بتوان موج انفجار را ايجاد كرد بدون آنكه نياز به انجام يك انفجار هسته اي باشد ؟

دانشمندان مي دانستند كه كليد حل اين مسئله در ايجاد پالسهاي ( تپ هاي ) الكتريكي كه با عمر بسيار كوتاه و قدرت زياد نهفته است . اگر اينگونه پالسها به درون يك آنتن فرستنده تغذيه شوند ، امواج الكترومغناطيس قدرتمندي در فركانسهاي ( بسامد ) مختلف از آنتن بيرون مي آيند ، هر چه فركانس موج بالاتر باشد ، امكان تأثيرگذاري آن بر مدارهاي الكترونيك دستگاهها بيشتر خواهد شد . بزودي اين نكته روشن شد كه مناسب ترين امواج الكترومغناطيس براي ساخت بمبهاي الكترومغناطيس امواج با فركانس در حدود گيگا هرتز است . اين نوع امواج قادرند به درون انواع دستگاههاي الكترونيك نفوذ كنند و آنها را از كار بيندازند . براي توليد امواج با فركانس گيگاهرتز نياز به توليد پالسهاي الكترونيكي بود كه تنها 100 پيكو ثانيه تدوام پيدا كنند . يك شيوه توليد اين نوع پالسها استفاده از دستگاهي به نام « مولد ژنراتور ماركس » بود . اين دستگاه عمدتاً متشكل است از مجموعه بزرگي از خازنها كه يكي پس از ديگري تخليه مي شوند و نوعي جريان الكتريكي موجي شكل بوجود مي آورند . با گذراندن اين جريان از درون مجموعه اي از كليدهاي بسيار سريع مي توان پالسهايي با دوره زماني 300 پيكوثانيه توليد كرد . با عبور دادن اين پالسها از درون يك آنتن ، امواج الكترومغناطيسي بسيار قوي توليد مي شود . مولدهاي ماركس سنگين هستند اما مي توانند پشت سرهم روشن شوند تا يك سلسله پالسهاي قدرتمند را به صورت متوالي توليد كنند . اين نوع مولدها هم اكنون در قلب يك برنامه تحقيقاتي قرار دارند كه بوسيله نيروي هوايي آمريكا كانزاس در دست اجراست . هدف اين برنامه جاي دادن مولدهاي ماركس روي هواپيماهاي بدون خلبان يا در درون بمبها و موشكهاست تا از اين طريق نوعي « ميدان مين الكترومغناطيس » براي مقابله با دشمن ايجاد شود . اگر هواپيما يا موشك دشمن از درون اين ميدان مين الكترومغناطيس عبور كند ، بلافاصله نابود خواهد شد . اگر لازم باشد تنها يك انفجار عظيم به انجام رسد ، به دستگاهي نياز است كه بتواند يك پالس الكترونيكي بسيار قدرتمند را بوجود آورد ؛ اين كار را مي توان با استفاده از مواد منفجره متعارف نظير « تي . ان . تي » انجام داد . دستگاهي كه اين عمل را به انجام مي رساند ، « متراكم كننده شار » نام دارد . در اين دستگاه از انفجار اوليه يك ماده منفجره متعارف براي فشرده كردن يك جريان الكتريكي و ميدان الكترومغناطيسي توليد شده بوسيله آن استفاده مي شود. زماني كه اين جريان فشرده شد ، به درون يك آنتن فرستاده مي شود و يك موج الكترومغناطيس بسيار قدرتمند از آنتن بيرون مي آيد . نيوساينتيست مي افزايد : طرح تكميل دستگاههاي متراكم كننده شار از سوي نيروي هوايي آمريكا در ايالت نيو مكزيكو در دست تكميل است . از جمله طرحهايي كه براي كاربرد اين دستگاه در نظر گرفته شده ، جاي دادن آنها در بمبهايي است كه از هواپيما به پايين پرتاب مي شود و نصب آنها در موشكهاي هوا به هواست . امتياز بزرگ بمبهاي الكترومغناطيس در دو نكته است : نخست آنكه اين بمبها مستقيماً جان انسانها را به خطر نمي اندازد و تنها بر دستگاههاي الكترونيك اثر مي گذارد ؛ و نكته دوم آنكه ساخت آنها بسيار ساده است . بمبهاي الكترومغناطيس در صورتي مي توانند بالاترين خسارت را وارد آورند كه فركانس امواجشان با فركانس دستگاههايي كه به آنها وارد مي شوند يكسان باشد . بنابراين براي ايجاد مصونيت در دستگاههاي الكترونيكي كه در مراكز حساس كار مي كنند ، مي توان طراحي مدارها را به گونه اي انجام داد كه اولاً ميان بخشهاي مختلف ، سپرهاي محافظتي موجود باشد و ثانياً در ورودي اين قبيل دستگاهها بايد صافيها و سنجنده هايي را قرار داد كه بتواند علامتهاي مورد نياز و امواج حاصل از انفجار را تشخيص دهند و مانع ورود اين قبيل امواج شوند .

منبع : ( www . sciencedaily . com )

مترجم : اسرين عبدالملكي

soleares
28-09-2006, 19:30
به اشیایی که میدان مغناطیسی تولید کنند، آهنرُبا گفته می‌شود.

معنای لغوی
آهنربا از دو بخش آهن و -ربا از فعل ربودن تشکیل شده. کاربرد واژه‌هایی مانند آهنربا و کهربا در فارسی پیشینه طولانی دارد.

برابر اروپایی آن: اولین شرح مغناطش به یونانیان قدیم باز می‌گردد که این اسم را به مغناطیس دادند. این اسم از مگنزیا که نام یک دهکده‌ی یونانی است، مشتق شده‌است. از لحاظ لغوی Magnet به معنی «سنگی از مگنزیا» است. این سنگ حاوی مگنتیت (Fe2O3) بود و هنگام مالش آن به آهن، آن را آهنربا می‌کرد.

تاریخچه
تلاش جدی برای استفاده از قدرت پنهان مواد مغناطیسی بسیار پس از کشف آن انجام شد. به عنوان مثال در قرن ۱۸ام با ادغام تکه‌های کوچک مواد مغناطیسی تکه‌ی بزرگتری بدست آمد که مشخص شد توانایی بلند کردن قابل توجهی دارد.

پس از اینکه اورستد در سال ۱۸۲۰ کشف کرد که جریان الکتریکی می‌تواند میدان مغناطیسی به وجود آورد، پیشرفت‌های زیادی در این زمینه حاصل شد. استورگن دانش خودش را با موفقیت برای ساخت اولین آهنربای الکتریکی در سال ۱۸۲۵ بکار برد. با اینکه دانشمندان زیادی (از قبیل گاوس، ماکسول و فارادی) با این پدیده از دیدگاه تئوریک درگیر شدند، اما توصیف درست مواد مغناطیسی به فیزیکدانان قرن ۲۰ ام نسبت داده می‌شود.

کیوری و ویس در شفاف‌سازی پدیده‌ی مغناطش دائمی و وابستگی دمایی آن موفق بودند. ویس فرضیه‌ی وجود حوزه‌های مغناطیسی را مطرح کرد تا توضیح دهد که مواد چگونه می‌توانند آهنربا شده یا خاصیت مغناطیسی کل آنها صفر شود.

جزئیات خواص دیواره‌های این حوزه‌های مغناطیسی توسط بلوچ، لاندو و نیل بررسی شد.


کاربرد
مواد مغناطیسی جزء جدانشدنی فناوری مدرن هستند. آهنرباها یکی از اجزای مهم بسیاری از وسایل الکترونیکی و الکترومکانیکی هستند. کاربرد عمده‌ی آهنرباهای دائم در تبدیل انرژی مکانیکی به انرژی الکتریکی و بالعکس است. (مانند موتورهای الکتریکی و ژنراتورها) مغناطیس‌ها همچنین در حافظه‌های مغناطیسی (صفحات هارد دیسک و فلاپی‌دیسک‌ها و کارت‌های پلاستیکی حافظه)

منابع
Buschow, K.H.J., de Boer, F.R., Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2004.

Marichka
14-11-2006, 19:50
نويسنده: هاريس بنسون / مترجم : احمد توحيدي دي 1382

در سده هيجدهم از تخليه بار الکتريکي بطري هاي ليد براي گرم کردن سيم ها و ايجاد تغييرات شيميايي در محلول هاي يوني استفاده مي کردند. اين ها نمونه هايي از کاربرد اثر هاي گرمايي و تغيير شيميايي الکتريسيته در آن زمان بودند. البته ، اين که گرما مي تواند آغازگر واکنش هاي شيمايي ، و واکنش هاي شيمايي هم مي توانند مولد گرما باشند، در آن زمان پديده هاي شناخته شده اي بودند. مثلاً با استفاده از پيل ولتا و پيل هاي گالواني معلوم شد که با تغييرات شيمايي مي توان الکتريسيته توليد کرد. در سال 1822 توماس سي بک 1 کشف کرد که با گرم کردن محل اتصال دو فلز مختلف مي توان جريان الکتريکي توليد کرد.
اين شواهد اين گمان را در ميان دانشمندان تقويت کرد که همه " نيروهاي موجود در طبيعت " با هم ارتباط دارند. يادآوري کنيم که همين فکر انگيزه اورستد براي جست و جوي ارتباطي ميان الکتريسيته و مغناطيس گرديد. يک سال پيش از آن يعني در سال 1821 فرانسوا آراگو 2 نشان داد که ميله اي آهني داخل سيملوله حامل جريان الکتريکي مي تواند خاصيت مغناطيسي پيدا کند. اين واقعيت که جريان الکتريکي مي تواند ميله آهني را آهنربا کند به طور طبيعي موجب جست وجو براي عکس اين اثر گرديد. يعني جريان الکتريکي هم مي تواند خاصيت مغناطيسي ايجاد کند.
در سال 1821 ، آمپر نشان داد که يک سيملوله حامل جريان مانند يک آهنرباي ميله اي است و دو سيم حامل جريان به يکديگر نيروي مغناطيسي وارد مي کنند. آمپر نتيجه گرفت که کليه اثر هاي مغناطيسي به علت جريان هاي الکتريکي است و نظريه خود را که درباره خاصيت مغناطيسي بود ، برحسب اجزاي جريان هاي الکتريکي بر هم کنش کننده از نيروهاي الکتريکي در يک آهنربا مشخص نبود . آنها مي توانستند جريان هاي مولکولي ميکروسکوپي يا جريان هاي ماکروسکوپي باشند که در مسيرهاي دايره اي اطراف محور آهنربا حرکت مي کنند.
برخلاف رهيافت پيچيده ء رياضياتي آمپر ، فاراده به درک فيزيکي و ارائه مدل هاي تجسم پذير در مورد جريان الکتريکي تکيه کرد. او شديداً تحت تأثير " دايره اي بودن " خطوط نيروي اطراف سيم هاي حامل جريان قرار گرفت. در سپتامبر سال 1821 فارادي اين جنبه از نظريه خود را به زيبائي به نمايش گذاشت و بر حسب اتفاق يک موتور الکتريکي اختراع کرد. فارادي تحت تأثير نيروهاي مرکزي در نظريه آمپر و يا اين فکر که خاصيت مغناطيسي بر اثر جريان هاي الکتريکي به وجود مي آيد ، قرار نداشت. او براي رد کردن اين ايده ها ، آزمايش هاي ظريفي انجام داد. مثلاً ، او نشان داد که " قطب هاي " يک سيملوله حامل جريان درست در همان محل قطب هاي يک آهنربا ميله اي قرار ندارند. بنابر اين آمپر مجبور به کنار گذاشتن مفهوم جريان هاي ماکروسکوپي شد. او در تلاش براي حفظ نظريه اش به سرعت توصيفي را براي آزمايش هاي فارادي بر حسب جريان هاي ميکروسکوپي ارائه کرد. ديگر دانشمندان از روش ساده اي که آمپر براي اصلاح نظريه خود انجام داده بود تا با دستاوردهاي تجربي سازگار شود. خشنود نبودند. در سال 1822 آمپر آزمايش ( ناموفق) اوليه خود را که براي توضيح سرشت جريان ها طراحي کرده بود ، تکرار کرد. او يک حلقه مسي را داخل پيچه اي با دور زياد آويزان کرد و قطب هاي يک آهنربا را مطابق شکل (1) در دو سر نقطه اي روي لبه آن قرار داد. حلقه هنگام برقراري جريان الکتريکي تحت زاويه اي مي چرخيد و هنگام قطع جريان الکتريکي به مکان اوليه خود باز مي گشت. آمپر از اين آزمايش نتيجه گرفت که حلقه مسي نامغناطيسي به علت جريان هاي القايي ميکروسکوپي پايا " مغناطيدگي موقتي " به دست آورده است . آمپر براي پيدا کردن جهت جريان ها خود را به زحمت نينداخت.
قرص آراگو در سال 1824 کشف بسيار جالب توجه ديگري وجود داشت. فرانسوا آرگو همکار آمپر دريافت که نوسان هاي يک آهنرباي ميله اي آويزان در حضور يک صفحه رسانا ميرا مي شود. او در سال بعد نشان داد که آهنربايي که به سرعت مي چرخد ، مي تواند يک قرص مسي را به چرخش وادارد و يک قرص سريعاً چرخان هم مي تواند يک عقربه مغناطيسي را به چرخش در آورد. آراگو يک سيملوله الکترومغناطيسي را نيز بالاي يک قرص چرخان آويزان و انحراف آن را ملاحظه کرد. آمپر از اين آزمايش ها صرفاً براي تأييد اين فکر که جريان ها علّت غايي خاصيت مغناطيي هستند استفاده کرد.
بابيج 3 و هرشل 4 در لندن کارهاي آراگو را دنبال کردند. آن ها آهنربايي را بالاي قرص هاي فلزي چرخان مختلف مطابق شکل(2- الف) قراردادند. آن دو دريافتند که انحراف آهنربا به جنس قرص فلزي بستگي دارد. براي مثال ، براي قرص مسي بيشتر از قرص سربي است ( رسانندگي مس بيشتر از سرب است ) و در قرص هاي غير فلزي هيچ انحرافي مشاهده نکردند. همين طور بابيج و هرشل به اين نتيجه رسيدند که بايد قرص خاصيت مغناطيسي القايي موقتي به دست آورده باشد. سپس با ايجاد شکاف هاي شعاعي در صفحات فلزي مطابق شکل (2- ب) مشاهده کردند که با زياد شدن شکاف ها انحراف کاهش مي يابد. اين پديده را مي توان ناشي از کاهش مغناطيدگي حاصل از گاف هاي هوا در فاصله شکاف ها توضيح داد. معماي قرص آراگو حل نشد و علاقه مندي نسبت به آن به تدريج کاهش يافت. رابطه ميان انحراف آهنرباي آويزان و رسانندگي نشانگر وجود جريان هاي القاي مغناطيسي در قرص هاست. اين واقعيت را وقفه ايجاد شده در جريان در نتيجه ايجاد شکاف ها در قرص تأييد مي کرد . همين طور جريان هاي القايي در سيملوله آويزان آراگو به حدّ کافي بزرگ بود که مي توانست آن را به چرخش وادارد. در سال 1822 آمپر در مقاله اي که درباره آزمايش هاي خود ، بابيج و هرشل نوشت ، به طور آشکار از " جريان هاي الکتريکي کوچک " نام برد. به عبارت ديگر آمپر کاملاً متوجه شده بود که جريان هاي الکتريکي القا شده اند.
آمپر تمام شواهد لازم براي کشف " پديده القايي الکترومغناطيسي" را در اختيار داشت ، اولاً ، پذيرش جريان هاي ماکروسکوپي براي آمپر مشکل بود. زيرا توجيه او از آزمايش هاي فارادي او را مقيد به مدلي از جريان هاي ميکروسکوپي کرد. ثانياً ، آمپر همراه با ديگران بر اين باور بودند که جريان پايا بايد جريان ديگري را القا کند. چشمان آمپر چنان با اين مفاهيم پيشبيني که چه چيزي را بايد بيابد و تمايل او به حفظ نظريه اش نابينا شده بود که به رغم ديدن تمام واقعيت هاي ضروري ، چيزي را از آنها استنباط نمي کرد. اين مثال روشني از اين واقعيت است که چيزي را که هرکس مشاهده مي کند ، شديداً به ديدگاه يا نظريه اش بستگي دارد.
در اين بين ، فارادي براي مدت چند سال در پي جريان هاي القايي بود. هنگامي که از آزمايش آمپر با حلقه مسي آگاه شد کوشيد تا آن را تکرار کند. متأسفانه لغزشي در ترجمه به زبان انگليسي باعث آزمايشي ناموفق شد ، زيرا او به جاي حلقه مسي ، از قرص مسي استفاده کرد ( گشتاور لختي قرص مسي بسيار بزرگتر از گشتاور لختي حلقه است ). در سال 1828 فارادي آهنرباي ميله اي را در حلقه آويزان شده اي قرار داد. سپس کوشيد تا جريان القايي را با آهنرباهاي ديگر آشکار سازد( فکر مي کنيد اگر فارادي به سرعت آهنربا را داخل حلقه کرده بود چه اتفاق مي افتاد ؟). هر يک از اين آزمايش ها مي توانست کشف جريان هاي القايي بينجامد ، امّا در آن زمان ترتيب آزمايش ها به حدّ کافي حساس نبودند.
در اينجا بد نيست از بداقبالي کولادون 5 نيز ذکري به ميان آوريم . در سال 1825 او آهنرباي توانمندي را به يک سيملوله با دورهاي زياد نزديک کرد. براي محافظت گالوانومتر از هر تأثير مستقيم آهنربا آن را در اتاق مجاور محل آزمايش قرار داد. او بسيار محتاط بود. امّا زماني که براي بررسي انحراف عقربه گالوانومتر به اتاق مجاور رفت ، اثر گذرا پايان يافته بود.
در اوت 1830 جوزف هنري 6 به طور کاملاً مستقل و بدون آگاهي از آزمايش هايي که در اروپا در حال انجام شدن بود " تبديل مغناطيس به نظر مي رسد که او فرصت کافي براي دنبال کردن کامل اين پديده يا انتشار فوري کشف خود را نداشت. به هر حال ، هنري چيز جديدي را مشاهده کرده بود که فارادي آن را ناديده گرفته بود.
در سال 1831 فارادي بدون آگاهي از کشف هنري با فوراني از خلاقيت و اطمينان شگفت انگيز به اين مسئله روي آورد. او نه تنها معماي قرص آراگو را حل کرد ، بلکه با ابداع مبدل همقطب خود شکل (3) جريان القايي پيوسته توليد کرد – نشان افتخاري که براي مدّت ده سال هنوز به چنگ هيچ کس نيفتاده بود. در سال 1822 آمپر شتابزده و بدون آگاهي از جزئيات کارهاي فارادي نظريه خود را درباره جريان هاي القايي انتشار داد. ديگران هم کوشيدند که در اين مورد ادعاي تقدم کنند، به استثناي آراگو که قرص او تماشايي ترين نمايش جريان هاي القايي بود. هنگامي که تنش ها فروکش کرد ، آمپر پذيرفت که از درک نقش عامل اساسي زمان در القاي مغناطيسي غافل بوده است. هر سه آزمايش ساده اي که در اين مقاله شرح داده شد آزمايش هاي سر راست و آشکاري به نظر مي رسند ، امّا ارائه منظم آنها شامل گزيده آزمايش هايي است که طي يک دهه انجام شده است. بيشتر ذهن هاي برجسته نظري و تجربي نمي توانند يا علاقه مند نيستند که اصول نهفته شده در يک پديده را تشخيص دهند.
زير نويس
* The Search for Electormagnetic induction 1. Seeback 2. Francois Arago 3.Babbage 4.Herschel 5. colladon 6. Joseph Henry

منبع
University physics / Harris Benson

Mohammad Hosseyn
14-01-2007, 00:35
تابش الكترومغناطيسي:
هر شي در نجوم بوسيله تابش الكترو مغناطيسي مشاهده مي شود بنابر اين توجه به برخي از مباني فيزيك درباره تابش وجذب لازم است .تابش الكترو مغناطيسي فقط يك موج متحرك در ميدان مغناطيسي و الكتريكي است كه در معادلات ماكسول به هم مربوط مي شوند.موج الكترو مغناطيسي باسرعت نور منتشر مي شود. C=2.998*108
حاصل ضرب طول موج و فركانس برابر سرعت نور است.

C = F * g

كه به صورت سنتي طيف سنجها طول موج را اندازه گيري مي كنند.
با وسائل جديد تمام محدوده طيف قابل مشاهده است. تعدادي ازطول موجهايي كه فقط مي توانند در بالاي جو اندازه گيري شوند؛درفنآوري ماهواره اي به كارمي روند.

تابش نور به چندطريق صورت مي گيرد:
1-فرآيند پهن شدگي (فرآيند گرما يوني )-تابش جسم سياه. 2-تابش خطي .
3-تابش سينكروترون ناشي از بارهاي الكتريكي شتابدار.
ما درباره’ مورد اول بحث خواهيم كرد
تابش جسم سياه:

جسم گرم در دماي مشخص T گستره پهني از امواج الكترو مغناطيس تابش مي كندو جسم گرمتر آبي تر تابش ميكند .
براي مثال داخل زمين يك مخزن نور است كه مانند يك باطري ضعيف شده كم نورتر وقرمزتر است . اين مسئله در ابتداي قرن بيستم در فيزيك كلاسيك حل شده ويكي از موفقيتهاي مكانيك كوانتومي شكل گرفته بود.
طيف تابش گسيل يافته براي فيزيك كلاسيك يك مشكل بزرگ بود .
استفان و بولتزمن كشف كردند كه تمام گرماي تابش شده بوسيله سطح جسمي با مساحت A و دمايT برابر است با:
Q=AsT4 s =5.67*108
شدت تابش درواحد حجم كه تابع طول موج است ،اندازه گيري شد. موقعيت ماكزيمم ناگهاني در طيف ،توسط قانون جابجايي وينز ((Wiens تشريح شد و مكان بيشترين شدت در طول موج
-3^10*2.9 كه در آن Tدر مقياس كلوين است.
بنابرا ين طول موج تابش گسيل يافته، نظريه تابشي جسم را ارائه مي دهد.
تلاشهاي رايلي (Rayleigh)براي توضيح مشاهدات از نظر كلاسيكي نا موفق بود .او محاسباتي انجام داد با اين فرض كه موجها درون كاواك قرار بگيرند وتابش گريزي از سوراخ كوچكي در ديواره كاواك را بدست آورد.فقط طول موجهايي مجازبودند كه دقيقا موج بر ديواره كاواك قرار مي گرفت (ديواره’ كاواك مكان گره ها بود).
رايلي فرض كرد كه هر گونه طول موج داراي انرژي KT است( K ثابت بولتزمن است).محاسبات پش بيني مي كرد كه در دماي T تابندگي (شدت تابش ) به طول موج وابسته است.
I(l)= T/landa^4
فرض بالا يك مشكل دارد؛وقتي طول موج صفر مي شود شدت بينهايت مي گرددواين مساله به عنوان فاجعه فرابنفش شناخته شد.
در سال 1900م.پلانگ اين مشكل را با گسسته فرض كردن تابش الكترو مغناطيسي حل كرد.او فرض كرد كه تابش بوسيله نوسانگرهاي الكترو مغناطيسي درون ديواره كاواك توليد ميشود.انرژي نوسانگرها فقط مي توانست به صور ت گسسته مضربي از بسامد باشدn=0,1,2,3,… ; E=nhn.
محا سبات پلانگ تفاوت بنيادي با محاسبا ت رايلي داشت كه مقادير انرژي را پيوسته فرض كرده بود. محاسبات پلانك تابندگي در طول موج خاص را بصورت زير داد:
I(l)=2*π*h*c^2/[l^5[exp(hc/lkT)-1]]
فرم بالاقانون استفان بولتزمن و قانونوينز را تاييد مي كند
. در طول موجهاي زياد فرمول بال منجر به نتايج رايلي مي شود.
در واقع در اندازه گيري دماي يك ستاره نوعي طيف سنجي يا نور سنجي ميتواند به كار رود.
مقايسه بين تابندگي نسبي مقدار نور گسيل شده يك ستاره در دو طول موج:.
اين نسبت مشخصه دمايي است بنابر اين اندازه گيري تمام طيف جسم سياه الزامي نيست.چون تابندگي در هر دماي مشخص به طور نسبي در شدت 550 nm بهنجار شده است.called V or Visual Band
اندازه گيري دوم در تابندگي 440nm
(( called B or Blue band ))
اندازه گيري دما را ممكن ميسازد.


منبع :parash.persianblog.com

Mohammad Hosseyn
17-01-2007, 01:14
مفاهيم بنيادي طيف الكترومغناطيس

‎ديد كلي‎:‎ ‎به طور غير منطقي ولي به ترتيب تاريخي ، از ناحيه مرئي شروع مي كنيم و به خارج از آن فرا مي رويم. ‏در واقع اگر ناحيه مرئي را يك كمي به طرف فروسرخ و فرا بنفش گسترش دهيم ‏ناحيه نسبتا مشخص بين ( 1 ميكرومتر ) 2000 آنگستروم به وجود مي آيد. كه آسان ترين ناحيه براكار ‏كردن است.

كوارتز در تمامي اين ناحيه و شيشه در بيشتر قسمت هاي آن شفاف است. لذا امكان انتخاب ‏بين منشور ، توري و تداخل سنج به عنوان پاشنده وجود دارد و مشكلي در مورد پنجره ها يا عدسي ها پيش نمي ‏آيد‎.

‎جذب و اتلاف طيف الكترومغناطيسي‎:

‎طيف الكترومغناطيسي مي تواند به شكل عكاسي يا فوتوالكتريكي ثبت شود. براي طيف نمايي ‏جذبي و گسيلي رده وسيعي از منابع در دسترس اند. در زير طول موج 2000 آنگستروم ، ابتدا هوا ( ‏يا به طور دقيق اكسيژن ) سپس كوارتز شروع به جذب مي كنند.

براي‎ ‎فايق آمدن به شكل اولي، ‏مسير نوري بايد تخليه شود و نام فرا بنفش خلا ، براي اين ناحيه از همين جا ناشي مي شود. براي ‏گسترش برد عبور به اندازه چند صد آنگستروم ( تا 1040 آنگستروم كه حد عبوري ليتيوم فلورايد است ) مي ‏توان بلورهاي ديگر را با اپتيك كوجايگزين ساخت، اما اين امر فقط براي تكنيك هاي پايين عملي ‏است‎.

‎تداخل سنج ها به علت انعطاف هاي سطحي و باز تابندگي پايين داراي مشكلات زيادي هستند. در پايين تر ‏از حدود 1800 آنگستروم توري ها تنها پاشنده هاي قابل دسترس براي تفكيك بالاي اند. عدسي ها و ‏‏آينه ها( كه داراي باز تابندگي هاي كمي در اين ناحيه اند ) با به كادن توري ، حذف مي شوند. در ‏پايين تر از حدود 400 آنگستروم ، براي غلبه بر باز تابندگي كم ، توري ها بايستي در وضع فرود ‏خراشان به كار روند از طرف ديگر آشكار شدن گرما مسئله ساز نمي باشد‎.

‎بررسي نواحي طيفي‎:

‎روش هاي عكاسي يا فوتو الكتريكي مي توانند در سر تا سر ناحيه ‏فرابنفش مورد استفاده قرار گيرند. مسائل مربوط به استفاده از منابع نوري مناسب ممكن است در ناحيه ‏پايين تر از 1040 آنگستروم كه در آن پنجره ها نمي توانند براي در بر گرفتن يا مجزا كردن گاز هاي مختمورد استفاده قرار گيرند، به صورت حاد درآيند. نواحي طول موج كوتاه و بلند اطراف 1040 آنگستروم به ‏ترتيب به نام كاشفين آنها شومن و ليمن ناميده مي شود‎.

‎حركت به سوي فروسرخ ، در مي يابيم كه انتخاب بين منشورها و شبكه ها و تداخل ‏سنج ها تا حدود 40 ميكرومتر ، حد موثر بلور آزاد است. تداخل سنج هاي ساخته شده از فيلم هاي ‏نازك نظير پلي تن را مي توان ، تا طول موج هاي باز هم بلند تري مورد استفاده قرار داد به طوره ‏طيف نمايي تبديل فوريه مي تواند با طيف سنجي شبكه در ناحيه فرو سرخ رقابت ‏كند‎.

‎با ايجاد ليزر هاي رنگي كوك پذير طيف نمايي بدون شبكه ها يا تداخل سنج ها در ‏موارد معيني امكان پذير مي شود. به دليل بالا بودن ضريب باز تابشان مي توان آينه هاي متعددي را بدون ‏اتلاف قابل توجه در شدت به كار برد. مسئله اساسي در قسمت عمده ناحيه ، ناكافي بودنت است. اغلب ‏منابع در ناحيه فروسرخ انرژي نسبتا كمي را تابش مي كنند و در اثر آشكار شدن گرما در معرض مسائل ‏جدي ناشي از پارازيت قرار مي گيرند. اغلب لازم است كه تفكيك را فداي به دست آوردن نسبت مناسبي از ‏علامت به پارازيت بكنيم.

‎طيف نمايي در فروسرخ معمولا به علت فقدان منابع خطي با كافي ، به صورت جذب انجام مي شود. از ‏طرف ديگر ضرورت تخليه در فروسرخ چندان جدي نيست زيرا اكسيژن و ازت خشك جاذب نيستند، و ‏فقط كافي است كه بخار آب و گاز كربنيك حذف شوند.

‎در طول موج هاي حدود چند دهم ميلي متر ، ناحيه فروسرخ با ناحيه كه موج روي هم مي افتند و يك تغيير ‏كلي در روش پيش مي آيد. منبع و آشكارگرهاي برگزيده نخست به شكل ليزرهاي زير ميليمتر در طول موج ‏هاي مخصوص و سپس به صورت نوسان سازهاي كليسترون كوك پذير به آسانيبل حصول هستند. در ‏اين حالت پاشنده ها به كلي زائد شده و طيف نمايي جذب فقط شامل مشاهده تغييرات در علامت در حين ‏جاروب منبع و آشكارگر بر روي محدوده طول موج مورد لزوم مي شود‎.

‎طيف نمايي فركانس راديويي در دوره نسبتا متفاوت قرار مي گيرد. از يك طرف به سادگي گسترش ‏طيف نمايي كه موج است به طرف طول موج هايي بلندتر ، از طرف ديگر ادغام روش هاي متعدد تشديد است ‏كه براي مطالعه گذارهاي بين زير ترازهاي مغناطيسي و يا ساختار فوق ريز توسداده شده اند. در اين ‏روش ها ، انتقالات هر چند كه به وسيله ميدان فركانس راديويي القا شوند، معمولا نه از طريق جذب انرزي ، ‏بلكه به وسيله روش هاي ديگر ، نظير انحراف حاصل از تغيير در جهت اسپين يا تغييري در جهت ‏‏قطبش تابش تشديد آشكار مي شوند‎.‎


منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Mohammad Hosseyn
17-01-2007, 01:21
اجاقهاي ميكرو ويو


در بيست ساله اخير ، اجاقهاي ميكروويو حضوري فراگير پيدا كرده اند . فن آوري ميكروويو ما را قادر مي سازد كه غذا را بسيار سريعتر از اجاقهاي معمولي بپزيم يا گرم كنيم . شايد اين سؤال به ذهن شما خطور كرده باشد كه اجاقهاي ميكروويو چگونه مي توانند غذا را با اين سرعت گرم كنند ؟ ميكروويو كه شكلي از انواع تابش الكترومغناطيسي است بوسيله ماگنترون magnetron توليد مي شود كه در زمان جنگ جهاني دوم همزمان با توسعه فن آوري رادار اختراع شد . ماگنترون استوانه اي تو خالي است كه ميان مغناطيسي نعلي شكل قرار دارد . در مركز استوانه ميله اي كاتدي قرار دارد و ديواره استوانه هم به عنوان آند عمل مي كند . وقتي استوانه گرم مي شود ، كاتد الكترونهايي گسيل مي كند كه آنها هم به سوي ديواره استوانه حركت مي كنند . نيروي حاصل از ميدان مغناطيسي سبب مي شود تا الكترونها در مسيري دايره اي بچرخند . اين حركت ذرات باردار با بسامد 45/2 گيگاهرتز ميكروويوي مناسب پخت توليد مي كنند . يك « هدايت كننده موج » ميكروويوها را به سوي محفظه پخت هدايت مي كند . و پره هاي يك بادبزن هم سبب پخش ميكروويوها به تمام قسمتهاي اجاق مي شود . عمل پخت در اجاق ميكروويو ناشي از برهمكنش مؤلفه ميدان الكتريكي تابش با مولكولهاي قطبي ( عمدتاً آب ) موجود در غذاست . تمام مولكولها در دماي اتاق مي چرخند . اگر بسامد تابش و بسامد حاصل از چرخش مولكولي مساوي باشند ، انرژي مي تواند از ميكروويو به مولكول قطبي منتقل شود و در نتيجه مولكول مي تواند سريعتر بچرخد . بسامد 45/2 گيگاهرتز براي افزايش انرژي چرخشي مولكولهاي آب بسيار مناسب است . اصطكاك ناشي از چرخش سريع مولكولهاي آب سرانجام سبب گرم شدن مولكولهاي غذايي احاطه كننده مولكولهاي آب مي شود . دليل اينكه اجاقهاي ميكروويو مي توانند غذا را اين چنين سريع بپزند ، اين است كه تابش بوسيله مولكولهاي غير قطبي جذب نمي شود ؛ بنابراين مي تواند همزمان به قسمتهاي مختلف غذا برسد ( ميكروويوها ، بسته به مقدار آب موجود در غذا ، مي توانند تا عمق چند سانتيمتر در غذا نفوذ كنند ) . در يك اجاق متعارف ، گرما از طريق رسانش فقط تا مغز غذا مي توانداثر كند ـ و اين امر بوسيله انتقال گرما از مولكولهاي هواي داغ به مولكولهاي سردتر غذا در اجاق چند لايه صورت مي گيرد ـ كه البته فرآيند بسيار كندي است . تذكر نكات زير در كار كرد يك اجاق ميكروويو سودمند است : مواد پلاستيكي و ظروف پيركس چون در بر گيرنده مولكولهاي قطبي نيستند ، بنابراين تحت تأثير تابش ميكروويو قرار نمي گيرند (برخي مواد پلاستيكي كه از گرماي غذا ذوب مي شوند ، نبايد در اجاقهاي ميكروويو مورد استفاده قرار گيرند ) . فلزات ، بازتاب دهنده ميكروويوها هستند ؛ بنابراين همچون حفاظي براي غذا محسوب مي شوند و حتي ممكن است آنقدر انرژي را به گسيل كننده ميكروويو بازگردانند كه سبب افزايش بار آن شوند . چون ميكروويوها مي توانند در فلزات جرياني القا كنند ؛ لذا ممكن است سبب جرقه هايي بين محفظه و جداره داخلي اجاق شوند .

behnam karami
25-03-2007, 19:08
تاریخچه
علم مغناطیس از این مشاهده که برخی سنگها (ماگنتیت) تکه‌های آهن را جذب می کردند سرچشمه گرفت. واژه مغناطیس از ماگنزیا یا واقع در آسیای صغیر ، یعنی محلی که این سنگها در آن پیدا شد، گرفته شده است. زمین به عنوان آهنربای دائمی بزرگ است که اثر جهت دهنده آن بر روی عقربه قطبهای آهنربا ، از زمانهای قدیم شناخته شده است. در سال 1820 اورستد کشف کرد که جریان الکتریکی در سیم نیز می‌تواند اثرهای مغناطیسی تولید کند، یعنی می‌تواند سمت گیری عقربه قطب نما را تغییر دهد.

در سال 1878 رولاند (H.A.Rowland) در دانشگاه جان هاپکینز متوجه شد که یک جسم باردار در حال حرکت (که آزمایش او ، یک قرص باردار در حال دوران سریع) نیز منشاأ اثرهای مغناطیسی است. در واقع معلوم نیست که بار متحرک هم ارز جریان الکتریکی در سیم باشد.

Today , July 1976Rowland،s البته دو علم الکتریسیته و مغناطیس تا سال 1820 به موازات هم تکامل می یافت اما کشف بنیادی اورستد و سایر دانشمندان سبب شد که الکترومغناطیس به عنوان یک علم واحد مطرح شود. برای تشدید اثر مغناطیسی جریان الکتریکی در سیم می‌توان را به شکل پیچه‌ای با دورهای زیاد در آورد و در آن یک هسته آهنی قرار داد. این کار را می‌توان با یک آهنربای الکتریکی بزرگ ، از نوعی که معمولا در پژوهشگاههای برای کارهای پژوهشی مربوط به مغناطیس بکار می‌رود، انجام داد.

تولد میدان مغناطیسی
دومین میدانی که در مبحث الکترومغناطیس ظاهر می شود، میدان مغناطیسی است. این میدانها و به عبارت دقیقتر آثار این میدانها از زمانهای بسیار قدیم ، یعنی از همان وقتی که آثار مغناطیسهای طبیعی سنگ آهنربا (Fe3O4 یا اکسید آهن III) برای اولین بار مشاهده شد، شناخته شده‌اند. خواص شمال و جنوب یابی این ماده تاثیر مهمی بر دریانوردی و اکتشاف گذاشت با وجود این، جز در این مورد مغناطیس پدیده ای بود که کم مورد استفاده قرار می گرفت و کمتر نیز شناخته شده بود، تا اینکه در اوایل قرن نوزدهم اورستد دریافت که جریان الکتریکی میدان مغناطیسی تولید می‌کند.

این کار تواأم با کارهای بعدی گاؤس ، هنری . فاراده و دیگران نشان دادند که این شراکت واقعی بین میدانهای الکتریکی و مغناطیسی وجود دارد و این دو توأم تحت عنوان میدان الکترومغناطیسی حضور دارند. به عبارتی این میدانها به طرز جدایی ناپذیری در هم آمیخته شده‌اند.

حوزه عمل و گسترش میدان مغناطیسی
تلاش مردان عمل به توسعه ماشینهای الکتریکی ، وسایل مخابراتی و رایانه‌ها منجر شد. این وسایل که پدیده مغناطیسی در آنها دخیل است نقش بسیار مهمی در زندگی روزمره ایفا می‌کنند. با گسترش و سریع علوم از اعتبار این علوم اولیه کاسته نمی‌شود و همیشه سازگاری خود را با کشفیات جدید حفظ می‌کند.

مغناطیسهای طبیعی و مصنوعی
بعضی از سنگهای آهن یاد شده در طبیعت خاصیت جذب اشیای آهنی کوچک ، مانند براده‌ها یا میخهای مجاور خود را دارند. اگر تکه‌ای از چنین سنگی را از ریسمانی بیاویزیم ، خودش را طوری قرار می‌دهد که راستایش از شمال به جنوب باشد، تکه‌های چنین سنگهایی به آهنربا یا مغناطیس معروف است.


یک تکه آهن یا فولاد با قرار گرفتن رد مجاورت آهنربا ، آهنربا یا مغناطیده می‌شود، یعنی توانایی جذب اشیای آهنی را کسب می‌کند. خواص مغناطیسی این تکه آهن یا فولاد هر چه به آهنربا نزدیکتر باشد، قویتر است. وقتی که تکه‌ای از آهن و آهنربا با یکدیگر تماس پیدا کنند ، مغناطش یا آهنربا شدگی به مقدار ماکزیمم (میخ آهنی که به آهنربا نزدیک شود خاصیت آهنربایی پیدا می‌کند و براده‌های آهنربا را جذب می‌کند) می‌باشد.




هنگامی که آهنربا دور شود، تکه آهن یا فولاد که توسط آهنربا شده‌اند بخش زیادی از خواص مغناطیسی بدست آورده را از دست می‌دهند، ولی باز هم تا حدی آهنربا می‌مانند. از اینرو به آهنربای مصنوعی تبدیل می‌شوند و همان خواص آهنربای طبیعی را دارد. این پدیده را می‌توان با آزمایش ساده‌ای به اثبات رسانید. خاصیت آهنربایی که به هنگام تماس تکه آهن با آ‌هنربا پیدا می‌شود بر خلاف مغناطش بازمانده که با دور شدن آهن ربا باقی می‌ماند، مغناطش موقت نامیده می‌شود. آزمایشهایی از این نوع نشان می‌دهد که مغناطش بازمانده خیلی ضعیفتر از مغناطش موقت است، مثلا در آهن نرم فقط کسر کوچکی از آن است.


هم مغناطش موقت و هم مغناطش بازمانده برای درجات مختلف آهن و فولاد متفاوت است. مغناطش موقت آهن نرم و آهن تابکاری شده از آهن نرم و فولاد تابکاری نشده به مقدار زیادی قویتر است. بر عکس مانده مغناطش فولاد ، به ویژه درجاتی از آن که شامل مثلا آمیزه کبالت است، خیلی قویتر از مغناطش باز مانده در آهن نرم است. در نتیجه ، اگر دو میله یکسان ، یکی ساخته شده از آهن نرم و دیگری از فولاد را اختیار کنیم و آنها را در مجاورت آهنربای یکسانی قرار دهیم ، میله آهن نرم قویتر از فولاد آهنربا می‌شود.

ولی اگر آهنربا را دور کنیم، میله آهن نرم تقریبا بطور کلی مغناطیده می‌شود، در حالیکه میله فولاد مقدار قابل توجهی از خاصیت آهنربایی اولیه خود را حفظ می کند. در نتیجه ، آهنربای دائمی از میله فولادی از میله آهنی خیلی قویتر است. به این دلیل آهنرباهای دائمی را از درجات خاصی از فولاد درست می‌کنند نه از آهن.


آهنرباهای مصنوعی که بطور ساده با قرار دادن تکه‌ای فولاد در نزدیکی یک آهنربا یا با تماس با آن بدست آمده نسبتا ضعیف هستند. آهنرباهای قویتر را با مالیدن تیغه فولادی با آهنربا در یک جهت بدست می‌آورند. البته در این حالت نیز آهنرباهایی که بدست می‌آید که از آهنربایی که مغناطش به توسط آن انجام شده است، ضعیفتر است. هر نوع ضربه یا تکانی در طول مغناطش عمل را آسانتر می‌کند. برعکس تماس دادن آهنربای دائمی با تغییر ناگهانی و زیاد دمای آن ممکن است باعث وامغناطش آن شود.


وامغناطش بازمانده نه تنها به ماده بلکه به شکل جسمی که آهنربا می‌شود نیز بستگی دارد. میله‌های نسبتا کوتاه و کلفت از آهن نرم بعد از دور شدن آهنربا تقریبا به کلی خاصیت آهنربایی را از دست می‌دهند. با وجود این ، اگر همین آهن را برای ساختن سیمی به طول 300 تا 500 برابر قطر آن بکار بریم، این سیم (ناپیچیده) خاصیت مغناطیسی خود را به مقدار زیادی حفظ خواهد کرد.
منبع :شبکه ی رشد

behnam karami
26-03-2007, 12:04
می‌‌دانیم که همه مواد از اتمها ساخته شده‌اند و هر اتم شامل الکترونهای در حال حرکت است. بنابراین مسیر حرکت الکترونها را می‌‌توان مدار الکترونی در نظر گرفت. این مدارها که هر کدام به یک تک اتم محدود است، جریان اتمی ‌نام دارند. جریان اتمی که جریانهای کامل دورانی هستند و منجر به انتقال بار نمی‌‌شوند، اما به هر حال این جریان نیز می‌‌تواند میدان مغناطیسی تولید کند. جریان اتمی مدار کوچک بسته‌ای به ابعاد اتمی ‌است و لذا می‌‌توان آن را به طرز مناسبی به صورت یک دوقطبی مغناطیسی توصیف کرد و چون ماده از تعداد زیادی اتم تشکیل شده است، لذا در حالت کلی برای هر ماده می‌‌توان یک گشتاور دوقطبی کلی به نام مغناطش تعریف کرد که نماینده گشتاور دوقطبی مغناطیسی کل ماده است.

در رابطه ارائه شده برای مغناطش ، فرایند حد همان فرایند حد ماکروسکوپی معمولی است و ΔV را از دید ماکروسکوپی خیلی کوچک می‌‌کنیم، اما نه آنقدر کوچک که از لحاظ آماری تعداد زیادی اتم نداشته باشد. در این صورت کمیت M یک تابع برداری نقطه‌ای خواهد بود. اگر چنانچه ماده نامغناطیده باشد، چون جهت m_iها کاملا کاتوره‌ای است، بنابراین \sum m_i صفر می‌‌شود و لذا مغناطش کل صفر خواهد بود.

ماده در میدان مغناطیسی خارجی
اگر چنانچه ماده‌ای را در یک میدان مغناطیسی خارجی قرار دهیم، صرف نظر از اینکه ماده مغناطیده باشد (M \ne 0) یا نامغناطیده (M = 0) باشد، در میدان خارجی گشتاور دوقطبی‌های m_i در اثر میدان مغناطیسی خارجی می‌‌چرخند تا با میدان همسو شوند. بنابراین M دیگر صفر نخواهد بود. این فرایند شبیه فرایند قطبش در مواد دی الکتریک است. در آنجا میدان الکتریکی خارجی سبب همسو شدن گشتاور دو قطبی‌های الکتریکی با میدان می‌‌شود.

جریان مغناطش
از دیدگاه ماکروسکوپی می‌‌توان تمام اثرهای مغناطیسی مربوط به ماده را بطور مناسبی برحسب M و مشتقات آن بیان کرد. یکی از این مشتقات \nabla x M می‌‌باشد. این کمیت با یک چگالی جریان انتقالی که بتواند همان میدان مغناطیسی ایجاد شده توسط M را بوجود آورد، معادل است. این چگالی جریان را چگالی جریان مغناطش می‌‌گویند.

اهمیت مغناطش
برای محاسبه میدان مغناطیسی حاصل از مواد مغناطیسی ، مغناطش نقش فوق‌العاده زیادی دارد، یعنی در واقع مغناطش نماینده جسم مغناطیسی است. به عنوان مثال ، محاسبه میدان مغناطیسی حاصل از یک ماده مغناطیده در فاصله r از این ماده ، ابتدا کمیتی به نام پتانسیل برداری محاسبه می‌‌شود. پتانسیل برداری به صورت مجموع دو رابطه انتگرالی بیان می‌‌شود. یک انتگرال حجمی ‌که برحسب چگالی جریان مغناطش نوشته می‌‌شود و یک انتگرال سطحی که برحسب چگالی سطحی جریان مغناطش (جریان مغناطش در واحد طول که در لایه سطحی ماده جاری می‌‌شود) که به صورت M x n تعریف شده، بیان می‌‌گردد. در این رابطه n بردار یکه عمود بر سطح است.

نکته دیگری که برای اهمیت مغناطش می‌‌توان به آن اشاره کرد، در تعریف شدت میدان مغناطیسی است. معمولا در مورد هر ماده مغناطیسی یک کمیت نرده‌ای به نام پذیرفتاری مغناطیسی تعریف می‌‌شود. اگر این کمیت را با χ_m نشان دهیم و شدت میدان مغناطیسی را با H بیان کنیم، در این صورت در بیشتر موارد یک رابطه خطی بین H و M برحسب χ_m بیان می‌‌شود، یعنی اگر ماده همسانگرد و درعین حال خطی باشد، در این صورت خواهد بود.

behnam karami
27-03-2007, 11:38
در هر نقطه‌ای در نزدیکی سطح زمین ، عقربه مغناطیسی آویزان از رشته یا واقع روی یک نقطه به ترتیب خاصی سمت گیری می‌کند (تقریبا در جهت شمال به جنوب). این واقعیت مهم به این معنا است که زمین میدان مغناطیسی ایجاد می‌کند، مطالعه میدان مغناطیسی زمین برای مقاصد عملی و علمی از اهمیتی اساسی برخودار است.

از زمانهای قدیم ، قطب نماها ، یعنی وسایلی بر اساس استفاده از میدان مغناطیسی زمین برای سمت گیری نسبت به چهار جهت اصلی ، بکار گرفته می‌شدند. قطب نمای مرسوم شامل یک عقره مغناطیسی و یک صفحه مدرج است و در جهت یابیها کاربرد وسیعی دارد.

از میدان مغناطیسی زمین چه استفاده‌هایی می‌شود؟
در دریانوردی و هوانوردی جدید ، دیگر قطب نمای مغناطیسی تنها وسیله‌ای برای سمت گیری و تعیین مسیر کشتی یا هواپیما نیست. برای این منظور وسایل دیگری نیز وجود دارد. با وجود این ، از اهمیت قطب نمای مغناطیسی به هیچ وجه کاسته نشده است. تمام کشتیها و هواپیماهای امروزی به قطب نمای مغناطیسی مجهزند. زمین شناسان ، شکارچیان و مسافران نیز از قطب نما خیلی استفاده می‌کنند. وجود میدان مغناطیسی زمین انجام پاره‌ای از بررسیهای مهم دیگر را میسر ساخته است. از آن جمله می‌توان از روشهای اکتشاف و مطالعه ذخایر آهن نام برد.

قطبهای مغناطیسی زمین
مغناطیس زمین
پیرامون زمین را میدان مغناطیسی که ماینوتسفر یا مغناطو کره نامیده می‌شود احاطه نموده است. باید توجه داشت که نقاط به هم رسیدن خطوط میدان مغناطیسی روی سطح زمین قرار ندارد، بلکه قدری از آن پایینتر هستند. همچنین قطبهای مغناطیسی زمین با قطبهای جغرافیایی آن منطبق نیستند. محور میدان مغناطیسی زمین ، یعنی خط مستقیمی که از هر دو قطب مغناطیسی می‌گذرد، از مرکز زمین نمی‌گذرد و از اینرو قطر زمین نیست. مغناطو کره توسط دو عامل مشخص می‌شود: انحراف مغناطیسی و شیب مغناطیسی.

انحراف مغناطیسی عبارت است از زاویه انحراف عقربه مغناطیسی از نصف النهار جغرافیایی مورد نظر. خطوط واصل نقاط دارای انحراف مغناطیسی مساوی که خطوط هم گوشه نام دارند، در جنوب و شمال قطبین مغناطیسی که مخالف قطبین جغرافیایی است، همگرا می شود. برخی از محققان ، عدم تطابق قطبهای مغناطیسی و جغرافیایی را به توزیع نایکنواخت خشکی و آب در زمین توجیه می‌نمایند.

شیب مغناطیسی عبارت است از زاویه میان عقربه مغناطیسی نسبت به افق (در نیمکره شمالی سر شمالی عقربه و در نیمکره جنوبی عقربه به افق متمایل می شود). ضمن حرکت از استوا به سوی قطبین ، شیب مغناطیس افزایش می یابد. خط واصل نقاط دارای شیب صفر استوای مغناطیسی نام دارد . استوای مغناطیسی ، استوای جغرافیایی را در دو نقطه، یکی با 169˚ طول شرقی و دیگری با ˚23 طول غربی به جنوب و در نیمکره شرقی به شمال منحرف می گردد. در قطبین مغناطیسی شیب به ˚90 می رسد.

مغناطش خود بخودی مواد در میدان مغناطیسی زمین
از مغناطش خودبخودی مواد در میدان مغناطیسی زمین استفاده‌های زیادی می‌شود. از جمله در ساخت مینهای مغناطیسی است که در عمق معینی زیر سطح آب قرار می‌دهند و با عبور کشتی از بالای آنها منفجر می‌شود. ساز و کاری که باعث صعود مین به سطح و انفجار آن می‌شود وقتی عمل می‌کند که عقربه مغناطیسی که می‌تواند حول میله‌ای افقی بچرخد، بر اثر میدان مغناطیسی کشتی که از بالای مین می گذرد، بتواند بگردد. معلوم شده است که کشتی همیشه خودبخود آهنربا می‌شود. برای محافظت در مقابل مینهای مغناطیسی دو روش بکار می‌برند:

مین روبی
این روش عبارت است از حمل مغناطیس نیرومندی که با طنابهای سیمی از هواپیمای در حال پرواز در ارتفاع کم در منطقه مین گذاری شده آویزان می‌شود. گاهی کابل سیمی دایره شکلی را بطور شناور روی آب قرار می‌دهند و جریانی از آن می‌گذرانند. بر اثر میدان مغناطیسی یا جریان ، ساز و کار مینها عمل می‌کند و بدون هیچ خسارتی منفجر می‌شوند.

خنثی سازی میدان مغناطیسی کشتی
این روش به این ترتیب است که حلقه هایی از سیم عایق بندی شده را به کشتی وصل می‌کنند و جریانی را از آنها می‌گذرانند، بطوری که میدان مغناطیسی این جریان مساوی و در خلاف جهت میدان مغناطیسی کشتی (که یک مغناطیس دائمی است) باشد. وقتی که این میدانها باهم ترکیب شوند، همدیگر را خنثی می‌کند و کشتی بدون اینکه ساز و کار مین را به کار اندازد از روی آن می‌گذرد
منبع:[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
28-03-2007, 10:22
یکی از کاربردهای مغناطیس ضبط مغناطیسی است. ضبط مغناطیسی در طی دو بخش مجزا کارهای ضبط و پخش را انجام می‌دهد. بخش اول انتقال اطلاعات یک سیگنال الکتریکی به نوار مغناطیسی است بصورت ترکیبی از مغناطیس‌های دائم روی نوار و تبدیل آن به یک سیگنال الکتریکی است این بخش فرایند پخش کردن است.
ذخیره سیگنال الکتریکی روی نوار مغناطیسی
نوار مغناطیسی یک نوار پلاستیکی است پوششی از ذرات اکسید آهن روی آن قرار دارد. این ذرات بطور تصادفی قرار گرفته‌اند که مغناطش آنها در پاسخ به نیروی مغناطیس کننده هد ضبط تغییر می‌کند. با عبور نوار از جلوی هر ضبط (آهنربای الکتریکی) میدان شکاف هد در نوار نفوذ کرده و پوشش اکسید آهن مغناطیده می‌شود. مغناطش نوار معادل یک سری آهنرباست.

در طول فرآیند ضبط کردن تعدادی آهنربای میله‌ای که از تعداد زیادی ذره اکسید آهن درست شده‌اند، روی نوار ایجاد می‌شود. طول هر آهنربای میله‌ای به سرعت نوار و فرکانس سیگنال وابسته است. هر ضبط با داشتن شکافهایی در آن ، میدان مغناطیسی را در اختیار قرار می‌دهد، علاوه بر این ، منحنی مغناطش خود را خطی می‌کند در نتیجه سیگنال خالص از آنچه که ضبط شده است را در اختیار ما قرار می‌دهد.

خطی کردن نوار مغناطیسی
مواد مغناطیسی بکار رفته در نوارها ، از نوع فرومغناطیس لخت هستند لذا غیر خطی بوده لذا سیگنال رسیده به هر ضبط با ایجاد مغناطش غیر خطی در نوار ، اعوجاجهای شدیدی را هنگام پخش ایجاد می‌کند. با کارهایی که انجام می‌دهند می‌توانند جلوی این اعوجاجها را بگیرند.

بازیابی سیگنال ضبط شده
سیگنال ضبط شده بصورت یکسری آهنربای دائم بر روی نوار قرار دارد. این سیگنال با عبور نوار از جلوی شکاف هد پخش ، بر اساس شبیه ضبط است، بازیابی می‌شود. بدین صورت که تصویر آهنربای ضبط شده بر پشت پوشش اکسید آهن می‌افتد. با عبور نوار از جلوی هد ، قسمتی از میدان آهنرباها وارد شکاف هد پخش شده و از آن می‌گذرد. طبق قانون فاراده ، ولتاژ القایی پیچک پخش ، سیگنال اولیه را بازسازی می‌کند. این ولتاژ را می‌توان تقویت کرد.

اثر تلفات شکاف هد در هنگام پخش
خروجی هد پخش عملا بطور خطی با فرکانس القا کننده متناسب نیست. در واقع خروجی بصورت حاصلضرب تلفات شکاف قرار دارد. تلفات شکاف با توجه به فاصله بین قطب شمال و جنوب هد و طول موج ضبط شده بر روی نوار انجام می‌گیرد
منبع:[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
30-03-2007, 09:58
فریت

پدیده مغناطش فریت‌ها فری مغناطیس نامیده می‌شود. فرق آن با فرومغناطیس این است که اسپین اتمهای مجاور مخالف جهت هم قرار می‌گیرند. اگر اسپینهای مجاور مساوی و مختلف‌ الجهت باشند ، مثلا در کروم ، مفناطش خالص ماده و همچنین میدان مغناطیس خارج آن صفر خواهد بود.

مغناطش در فریت
مغناطش خالص فریت‌ها با وجود پاد موازی بودن اسپینهای مجاور ، صفر نیست. دلیل وجود این مغناطش خالص تفاوت قدرت اسپینهای مجاور است. به همین دلیل ماکزیمم مغناطش فریتها اصولا از مواد فرومغناطیس کمتر است ، مقدار این ماکزیمم نوعا حدود 3000 گوس است، در حالیکه از مواد فرومغناطیس مقدار ماکزیمم 2x104 گوس است.

فرمول شیمیایی فریت‌ها
فرمول شیمیایی فریت‌ها بصورت (MO)(Fe2O3) است که در آن M یک فلز دو ظرفیتی مثل آهن (Fe) علامت اختصاری o نیز مربوط به اتمهای اکسیژن در ترکیب می‌باشد.

طرز ساخت فریت
فریتها با مخلوط کردن پودر (Fe2O3) و اکسید فلز (MO2) و ذوب آنها تهیه می‌شود. اتمهای مغناطیسی یک شبکه در خلاف جهت اتمهای مغناطیس شبکه دیگر است. برای مثال اگر در گروه A ، Na اتم با گشتاور Ma ، در گروه B ، Nb اتم با گشتاور Ma همجهت شده باشند، مغناطش حجمی ماده فری مغناطیس برابر است با M=Nama-Nbmb

قدیمترین آهن ربا
ماگنتیت ، که همان آهنربای طبیعی شناخته شده است ، فریت Fe3O4 است که می‌توان آن را بصورت (Fe2+O)(Fe3+2O3) نوشت. گشتاورهای مغناطیس دو اتم Fe مخالف هم است ، بنابراین مغناطش ماده از Fe++ نامش می‌شود. بنابراین قدیمترین آهنربا نه فرومغناطیس بلکه فریت بوده است.

خاصیت فریت‌ها
خصوصیت منحصر به فرد فریت‌ها ، نسبت به آهن و دیگر مواد فرومغناطیس ، عایق بودن آنها است. مقاومت ویژه نوعی فریت‌ها 1 تا 104 اهم متر است ، در حالیکه از آهن 7-10 اهممتر است. به خاطر این مقاومت ویژه بالا ، فریت‌ها در معرض جریانهای گردابی قرار ندارند و می‌توان از آنها در فرکانسهای بالا از آنها بعنوان هسته پیچک استفاده کرد ، مثلا در پیچکهای rf ، ترانسفورماتور تلویزیون و حافظه‌های مغناطیس کامپیوترها.

کاربرد فریت‌ها
فریتها را در محدود فرکانسهای مایکروویو استفاده می‌کنند ، علت این امر آن است که میدانهای مایکروویو می‌توانند بدون تضعیف و انعکاس زیاد در مواد عایق منتشر شوند ، در حالیکه این میدانها به علت ایجاد جریانهای گردابی نمی‌توانند در‌هادیها منتشر شوند.

منبع:[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
03-04-2007, 21:29
تك قطبي مغناطيسي (Magnetic Monopole)


GUT (Grand Unified Theories) و تئوري هاي ابر ريسمان (Superstring) هر دو وجود ذره اي با يك قطب مغناطيسي را پيش بيني مي كنند اما مشكلي كه در اين مدل وجود دارد اولا توليد بار مغناطيسي و ميدان در آنهاست و ثانيا رصد نشدن اين ذرات تا به امروز بوده است.

همچنين تعريف اسپين اين ذرات هم كار مشكلي به نظر مي رسد.

اگر مقدار بار را در معادلات گاس (Gauss) و فارادي (Faraday) كه هركدام از معادلات ماكسول (Maxwell) بهره مي برند مجهول قرار دهيم مقدار آن صفر به نظر خواهد رسيد. خود اين موضوع براي پذيرش سخت است. زيرا ذرات زيراتمي (حتي كوارك ها كه نوترون خنثي را تشكيل مي دهند) داراي بار هستند.

امروزه در نسبيت براي اثبات اينكه نيروي ميادين مغناطيسي از ديگر نيروها متفاوت است از تبديلات لورنتز (Lorentz Transformations) استفاده مي كنيم.

اما براي آشكارسازي اين ذرات بايد تنها از راه نسبيت وارد شويم.

از معدود افرادي كه مي خواست اين كار را كند ديراك بود.

ديراك قصد داشت با معادلات كوانتومي ديدي كاملا نسبيتي از الكترومغناطيس بدست بياورد.

او در سال 1931 نشان داد بدين منظور نمي توان از مكانيك كوانتومي استفاده كرد زيرا اثبات كرد كه حتي اگر تك قطبي مغناطيسي در دنيا وجود داشته باشد بايد داراي بار كوانتيده (Quantized) شود.

براي اين منظور بايد واحدي نيز مي بود. ديراك با نگاهي جديد سعي در شكافت مساله كرد و با انجام اعمال بسيار پيچيده در رياضي و با استفاده از تابع دلتا (تابع ديراك) دريافت كه واحد بار كوانتيده بايد عكس واحد بنيادين بار الكتريكي باشد.

ديراك در تمام اين محاسبات ذره ي فرضي را الكترون در نظر گرفته بود و لازم بود كه فضا-زمان را از يكديگر باز كنيم.

ديراك براي اين كار ريسمان ديراك (Dirac String) را بوجود آورد. رفتار اين ريسمان تقريبا همانند سيم پيچ در اثر آهارونوف – بوم (Aharonov-Bohm Effect) بود.

اثر مذكور تاثير بار بر ميادين مغناطيسي را در غياب ذره در ميدان بررسي مي كند.



به دليل بيان تمام اين مطالب جديد تئوري هاي ديگري كه در راس آنها تئوري شاخص (Gauge Theory) قرار داشت سعي در شناخت ساده تر بار كوانتيده كردند.

در سري تئوري هاي شاخص نيز فرضيه اي كه از همه بيشتر مورد توجه قرار گرفت در مكانيك هيگز (Higgs Mechanism) اين موضوع را بررسي مي كرد و تك قطبي هوفت – پولياكوف (Hooft-Polyakov Monopole) نام داشت. ويژگي قابل توجهي كه اين مدل داشت نقطه اي نبودن بررسي آن بود. به اين معنا كه ديگر ذره ي خاصي مثل الكترون ديراك را مدنظر نداشت.

در واقع اين مدل ديگر محدود به پراكندگي ايده آل لورنتز نبود.

همچنين در مدل ديراك از معادله ي ديراك استفاده شده بود كه ذره را به حركت الكتروني محدود مي كرد.

در معادله ي ديراك الكترون پس از يك چرخش به نقطه ي اول خود مي رسد در صورتيكه مشخص نبود اين ذرات تك قطبي چه نوع اسپيني دارد!

حال گفته بوديم براي بررسي مدل ديراك بايد فضا-زمان را از هم باز كنيم.

توپولوژي (Topology) فضا-زمان در حالت معمول R4 مي باشد. اگر زمان را از آن حذف كنيم تقريبا مسئله هم ارز با هوموتوپي (Homotopy) خواهد شد و توپولوژي آن برابر با كره (S2) خواهد بود.

لازم به ذكر است كه در توپولوژي هوموتوپي دو تابع پيوسته است كه از يك فضاي توپولوژي به فضاي ديگري مي رود.

تئوري شاخص با اين محاسبات نشان مي دهد كه تك قطبي ديراك الزاما نبايد داراي بار كوانتيده باشد.

اگرچه اين تئوري مسائل را در قالب يك گروه واحد (ماتريس واحد n x n) بررسي مي كند كه اين نوع بررسي بايد الزاما جدا از توپولوژي كره باشد. اين بدان معناست كه گروه واحد U(1) در Gauge Theory اصلا مماس بر كره نيست كه توپولوژي برابري با آن داشته باشد و توپولوژي در كل اتصال و به همرسي فضاها در هندسه را بررسي مي كند.

اين خود يك خلا بزرگ بود. زيرا پيش بيني ديراك در مورد بار كوانتيده اصلا درست توجيه نمي شد.

اما در سالهاي بعد و با بدست آوردن مقدار تقريبا صفر براي يك تك قطبي از معادلات گاس و فارادي اين تئوري ارزش خود را دوباره پيدا كرد.

بعد از مدتي تئوري هاي شاخص و كوانتومي سعي كردند كه با يكديگر يك تئوري واحد را بيان كنند و به همين ترتيب GUT بيان شد. اين تئوري ذراتي را به نام ديون (Dyon) معرفي مي كند كه هم زمان هم بار الكتريكي دارند و هم بار مغناطيسي. طبق اين مدل تك قطبي مغناطيسي ذره اي است كه بار الكتريكي صفر و عدد لپتوني يك دارد.

اين بدان معناست كه تك قطبي مغناطيسي مانند الكترون نبايد واپاشي داشته باشد و تجزيه شود.

همچنين اين مدل طبق معادلات فريدمان (Freidmann Equations) بيان مي كند چگالي ذرات تك قطبي در دنياي ما حدودا بايد 1011 برابر چگالي چرخشي (Critical Density) باشد. بنابراين بايد به طور متداول در دنياي ما قابل رصد باشند. (در بين هر 1029 ذره يك تك قطبي بايد ديده شود).

گرچه پيش بيني مي شود اين ذرات ارتباط زيادي با X Bosons و Y Bosons داشته باشند و محدوده ي جرم آنها در آزمايشات 600 (Gev/C2) تا 1017 (Gev/C2) تعيين شده است اما از آنجا كه ايجاد اين نوع از بوزون ها حتي در CERN به دليل جرم زيادشان امكان ناپذير مي باشد هنوز اين ايده در حد يك فرض مانده است.

اما دانشمندان در تلاش هستند كه اين نوع بوزون ها را در توجيه واپاشي پروتون به كار گيرند. اين ايده ها در صورتي ببان شده اند كه در سال هاي اخير در ژاپن توانسته اند نيمه عمر تقريبي پروتون منفرد را 1035 سال پيش بيني كنند كه اين نتيجه عملا ورود اين بوزون ها را به مسئله نقض مي كند.

گرچه تا به حال ذره اي تك قطبي مشاهده نشده است و دقيقا بر همين مبنا مدل هاي كيهان شناسي پيش بيني مي كنند كه اين ذرات بعد از بيگ بنگ تنها بايد تعداد كمي را شامل شوند!

اگر اين مدل را بخواهيم بپذيريم بايد نتيجه ي آزمايشات را به دو نوع بوزون مذكور ربط دهيم كه تك قطبي ها را محدود به اجرام بسيار بالا مي كند!



ديدگاه VMR-PCR:



در "مدل كيهاني VMR-PCR" بيان كرديم كه اين نظريه تمام عالم را به دو ذره يكي بوزون و ديگري فرميون مرتبط مي كند و اين ذرات را تك قطبي و مكمل يكديگر مي خواند.

اين دو ذره در مركز عالم وجود دارند و داراي جرم زيادي متمركز در خود مي باشند (كه اين جرم و چگالي زياد باعث بيگ بنگ شده است).

از آنجاييكه دنيا در حال انبساط است پس هنوز جرم متمركز در مركز دنيا بايد مقدار عظيمي باشد.

تمام اين جرم را نمي توان به آن دو ذره مرتبط كرد اما گفتيم كه همواره مقدار اختلاف بين نيروي دافعه ي خلا و ماده ناچيز است.

همچنين اينكه تنها دو ذره موجود باشد يا اين خود نيز نياز به بررسي و تجربه ي بيشتري است. اما اينكه چرا اين ذرات در دنيا منتشر شده نيستند تنها مي توانند يك جواب داشته باشد:

مقدار ذرات تك قطبي هميشه در مركز دنيا ثابت است و در موقعيتي قرار دارد كه وقتي نوبت به انتشار آنها مي رسد جرم متمركز در مركز آنقدر كم است كه دافعه ي خلا شروع به منقبض كردن دنيا مي كند.

اما اين مدل در هر حال مي تواند مسئله ي انتشار نيافتن اين ذرات در دنيا را توجيه كند.

تنها تفاوتي كه نمي گذارد اين مدل نظر دانشمندان را تاييد كند اين مسئله است كه مدل VMR-PCR به جاي دو بوزون X و Y يك بوزون و يك فرميون را پيشنهاد مي كند. (X Boson – Y Fermion).



اينكه بار و ديگر پارامترها در اين ذرات بايد كوانتيده باشد از نظر VMR-PCR كاملا صحيح است.

زيرا در "مدل ديناميك و مكانيك VMR-PCR" بيان كرديم كه كوانتوم در همرسي قطرهاي ذوزنقه هاي ايجاد شده تعريف مي شود و مركز دنيا خود راس مثلث است. پس هرچيزي كه در آنجاست بايد كوانتيده باشد.

اما مسلما بار الكتريكي براي يك ذره ي تك قطبي وجود ندارد. زيرا شارش بايد بين دو منبع غيرهمنام صورت گيرد.

چگونه بار الكتريكي در يك ذره ي منفرد تك قطبي شارش كند؟

اما بالعكس در اين مدل براي مقدار بار مغناطيسي بي نهايت پيش بيني شده زيرا همانطور كه در مدل كيهاني گفتيم قدرت ميدان اجرام سماوي از بيگ بنگ تا به حال پيوسته در حال كاهش بوده است.

اما در لحظات بعد از بيگ بنگ داراي بيشترين قدرت خود بوده اند. اين نشانه ي وجود يك شارژ مغناطيسي در مركز دنياست. بنابراين نبايد قدرت ميدان و بار مغناطيسي اي محدودي داشته باشد.

مشكل ديگري كه بيان كرديم مسئله ي اسپين است.

با فرض اينكه اين دو ذره در كنار يكديگر قرار گيرند و همديگر را مكمل شون مدلي براي چرخش و دوران آنها ايجاد نمي شود. زيرا يكي از آنها فرميون با اسپين نيمه صحيح و ديگري بوزون با اسپين صحيح است.

گفتيم كه مركز دنيا بر راس مثلث در مدل VMR-PCR قرار دارد. به همين دليل زمان سفر در نظر گرفته مي شود.

بر همين مبنا متوجه مي شويم كه سرعت اين ذرات نيز صفر است و الزاما اسپين آنها صفر مي شود.

ولي با يك مثال نتيجه را بهتر بيان مي كنيم.

اگر جرمي با سرعت بي نهايت در حال چرخش به دور خود باشد آيا ما متوجه مي شويم كه در حال چرخش است؟

ثابت به نظر مي رسد. زيرا در هر لحظه هر نقطه اي از آن در همه جا وجود دارد.

اين خيلي بعيد است كه با چگالي زياد مركز دنيا چرخشي براي آن نداشته باشيم.

سرعت نهايت در VMR-PCR همان C2 است. بنابراين اينگونه اسپين هم بايد در نهايت خود باشد.

مقدار آن مشخص نيست. زيرا دلايل واضحي براي تعيين آن نداريم اما هرچه هست در نهايت است.

بنابراين آن را بي نهايت مي ناميم.

اين مدل ديگر جاي سوالي را باقي نمي گذارد.

منبع:[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
09-04-2007, 18:19
برعکس دیامغناطیس و پارامغناطیس ، که خاصیت انفرادی اتم‌ها و مولکول‌های ماده هستند، خواص فرومغناطیس ماده با توجه به ویژگیهای اختصاصی ساختار بلورین آن توضیح داده می‌شود. به عنوان مثال ، اتم‌های آهن در حالت بخار خودشان دیامغناطیس یا پارامغناطیس هستند.

ماهیت مواد فرومغناطیس
فرومغناطیس خاصیت آهن در حالت جامد ، یعنی خاصیت بلورهای آهن است. شماری از آزمایشها و مشاهدات این گفته را تصدیق می‌کنند. قبل از همه ، این امر از بستگی خواص مغناطیسی آهن و دیگر مواد پارامغناطیس به اعمالی که ساختار بلورین آنها تغییر می‌دهد، نتیجه می‌شود. (سخت کاری و بافر تفتی). دیگر اینکه فلزات پارامغناطیس و دیامغناطیس را می‌توان برای ساختن آلیاژهایی به کاربرد که خواص فرومغناطیسی کامل داشته باشند.

برای مثال ، این امر برای آلیاژ هیسلر (Heusler) که دارای خاصیت مغناطیسی تقریبا مثل آهن ولی آلیاژی است از فلزات با خواص مغناطیسی ضعیف ، مانند مس (65%) ، منگنز (25%) و آلومینیوم (15%) مصداق دارد. از طرف دیگر ، بعضی از آلیاژهای مواد فرومغناطیس ، مثل آلیاژی ، که دارای 75% آهن و 25% نیکل است، تقریبا غیر مغناطیس هستند.

اختلاف فرومغناطیسها با پارامغناطیسها فقط مقدار نسبتا بالای تراوایی m و بستگی آنها به شدت میدان مغناطیسی نیست، بلکه در بستگی خاص مغناطش آنها به شدت میدان مغناطیسی خارجی نیز هست. این ویژگی پدیده پسماند و همه پیامدهای آن ، مثل مغناطش بازمانده و نیروی وادارنده ، تظاهر می‌کند.
دلیل پسماند مغناطیسی چیست؟
اختلاف بین آهنگ افزایش در مغناطش یک ماده فرومغناطیس با ازدیاد H و طریق وامغناطش آن با H رو به کاهش ، نشان می‌دهد، وقتی که مغناطش ماده فرومغناطیس تغییر می‌کند، یعنی وقتی که شدت میدان مغناطیسی خارجی افزایش یا کاهش می‌یابد، جهت گیری یا درهم شدن جهتهای آهنرباهای بنیادی بلافاصله بعد از عوض شدن میدان پیش نمی‌آید، بلکه بعد از یک تأخیر زمانی معین رخ می‌دهد. تحلیل تفصیلی مغناطش و وامغناطش آهن و دیگر مواد فرومغناطیسی نشان می‌دهد که خواص فرومغناطیسی ماده را فقط خواص مغناطیسی اتم‌ها و مولکول‌های منفرد ، که خودشان پارامغناطیس هستند تعیین نمی‌کنند، بلکه توسط مغناطش ناحیه‌های کاملی به نام حوزه تعیین می‌شود (به این دلیل این نظریه را اغلب نظریه حوزه می‌نامند).

این اصطلاح به ناحیه‌های کوچکی در ماده اطلاق می‌شود که دارای شمار زیادی اتم هستند. اندرکنش گشتاورهای مغناطیسی اتمهای منفرد در فرومغناطیس به شکل گیری میدانهای مغناطیسی ذاتی خیلی قوی منفجر می‌شود که در هر حوزه عمل می‌کنند و در داخل چنین ناحیه‌ای همه آهنرباهای اتمی را موازی با یکدیگر آرایش می‌دهند که خود بخود تا حد اشباع مغناطیسی هستند. اما جهتهای مغناطش در حوزه‌های مختلف ، متفاوت هستند. بنحوی که در نبود میدان مغناطیسی خارجی به علت توزیع نامنظم این نواحی جسم نامغناطیده است.

بر اثر میدان مغناطیسی خارجی ، این ناحیه‌های مغناطش خود بخود از نو مرتب و گروه بندی می‌شوند. در نتیجه ، ناحیه‌هایی که در آنها مغناطش با میدان خارجی موازی است غالب می‌شوند و ماده در کل حالت مغناطیسی پیدا می‌کند. نظر به اندازه بزرگ ناحیه‌های مغناطش خود بخود در مقایسه با ابعاد اتمی ، جهتگیری (و نیز فرایند عکس یعنی بهم خوردن جهتها) این ناحیه‌ها با دشواری‌های بیشتری برخورد می‌کند تا حالت اتمها و مولکولهای منفرد در پارامغناطیسها و دیامغناطیسها. به این دلیل ، پشت سر تغییرات میدان خارجی مغناطش و وامغناطش قرار دارد، یعنی پسماند مشاهده می‌شود .
منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
12-04-2007, 21:14
تعریف نظریه مولکولی مغناطیس:

نظریه ای که اختلاف در خواص مغناطیسی اجسام را بر پایه ساختار تک تک ذرات سازنده آنها ، یعنیاتمها و مولکولها ، توضیح می دهد به نظریه مولکولی مغناطیس معروف است این نظریه بسیار پیچیده هنوز تکمیل نشده است. به این سبب ، در اینجا نمی توان آن را به تفضیل بررسی کرد. فقط دلایل عمده اختلاف در خواص پارامغناطیس ها و دیامغناطیسها بیان می شوند.

مواد پارا مغناطیس و دیا مغناطیس:

هر جسمی. پارا مغناطیس یا دیا مغناطیس ، تا هنگامی که در میدان مغناطیسی خارجی قرار نگرفته، نامغناطیده است اما ساز و کار مغناطش پارا مغناطیس ها و دیا مغناطیس ها متفاوت است.


دیامغناطیس ها:

اجسامی هستند که در آنها هیچ ذره ای (اتم یا مولکول) خواص مغناطیسی ندارند مگر اینکه در میدان خارجی قرار گیرند و فقط میدان خارجی این ذرات را به مغناطیس های بنیادی (که جریان های بنیادی را موجب می شوند) در جهت های معین تبدیل می کند.


پارامغناطیس ها:

ذرات بنیادی پارا مغناطیس ها بدون اینکه میدان خارجی روی آنها اثر کند خودشان مغناطیس(جریان های بنیادی) هستند. در اینجا نقش میدان مغناطیسی خارجی محدود می شود به جهت دادن خاص و مرتب کردن این مغناطیس های کوچک.

تا زمانی که این میدان روی آنها اثر نکرده است آرایش آنها نامنظم و آشفته بوده و کل جسم نامغناطیده است. در میدان مغناطیسی ، این مغناطیس های بنیادی کم و بیش در زنجیره های موازی آرایش می یابند و کل ماده مغناطیده است.


اختلاف ساختاری ذرات سازنده مواد پارامغناطیس و دیامغناطیس:


اتم های همه اجسام دارای شمار زیادی الکترون های متحرک هستند. هر الکترون یک جریان بنیادی آمپر دایروی تشکیل می دهند. اما در اتم های ماده دیامغناطیس ، قبل از قرار گرفتن در میدان مغناطیسی جریان های دایروی منفرد متقابلا یکدیگر را خنثی می کنند. به طوری که کل اتم مغناطیس بنیادی نیست.


هر گاه چنین ماده ای وارد میدان مغناطیسی شود، نیروی لورنتس روی هر الکترون اثر می کند، و محاسبات نشان می دهد که بر آیند آین نیروها به ظهور جریان القایی منجر می شود، یعنی اتم ها خواص مغناطیس بنیادی کسب می کنند. نظر بر اینکه این جریان ها ، جریان های القایی هستند، بنابر قانون لنز جهت آنها باید با جهت جریان در پیچه (که میدان مغناطیسی خارجی به وجود می آورد) مخالف باشد. یعنی شار مغناطیسی ناشی از این جریان ها باید مخالف شار میدان خارجی باشد و جسم دیا مغناطیس از آهنربا دور می شود.


در اتم های مواد پارامغناطیس ، اثرهای مغناطیسی الکترون های منفرد کاملا همدیگر را خنثی نمی کنند به گونه ای که کل اتم یک مغناطیس بنیادی است. اثر میدان مغناطیسی خارجی به این جریان های بنیادی نظم می بخشد، جریان ها به نحوی جهت می گیرند که جهت غالب با جهت جریان تولید شده در پیچه توسط میدان مغناطیسی خارجی منطبق می شود. بنابراین ، در این حالت شار مغناطیسی ناشی از جریان های بنیادی شار مغناطیسی تولید شده با پیچه را تقویت می کند و جسم پارا مغناطیس به سمت آهنربا جذب می شود.

به بیان دقیقتر ، دیامغناطیس خاصیت عمومی همه مواد است. میدان مغناطیسی خارجی اثرهای القایی یکسانی روی اتم های پارا مغناطیس و دیا مغناطیس اعمال می کند. اما در پارامغناطیس ها این اثر با عمل جهت دادن میدان مغناطیسی خارجی که جریان های بنیادی ذاتی اتم ها را مرتب می کند از بین می رود. به این ترتیب دیا مغناطیس و پارا مغناطیس با تفاوت در ساختار اتمی و مولکولی این مواد توضیح داده می شود.
منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])

تعيين اندازه ميدان مغناطيسي ستاره اي نوتروني


براي اولين بار ميدان مغناطيسي يك ستاره نوتروني به شكل مستقيم تعيين شد

با استفاده از رصدخانه پرتو X آزانس فضايي اروپا موسوم به XMM-Newton ، اخترشناسان اروپايي موفق شدند براي اولين بار و بدون واسطه ميدان مغناطيسي يك ستاره نوتروني را مورد سنجش قرار دهند و ديد دقيق تري نسبت به اين موجودات راز آلود كيهان به دست آورند.

ستاره هاي نوتروني اجرامي بسيار چگالند . اين ستاره ها با جرمي معادل خورشيد در كره اي به قطر 20 تا 30 كيلومتر فشرده مي شوند و جرمي با چگالي بسيار بالا را توليد مي كنند. ستاره هاي نوتروني حاصل انفجارهاي ابرنواختري است. پس از آنكه لايه هاي ستاره در اثر انفجاري مهيب در فضا پراكنده شد بقاياي ستاره اصلي به شكل قلبي چگال باقي مي ماند و ستاره نوتروني را تشكيل مي دهد ستاره اي كه با آهنگي غيرقابل تصور به دور خود مي چرخد.

اين گونه اجرام اگرچه خانواده اي آشنا ازاجرام كيهاني به حساب مي ايند اما به شكل فردي و تك تك اطلاع اندكي از آنها در دست داريم.اين اجرام در هنگام تولد دماي بسيار بالايي دارند و تابش قوي از خود ساطع مي كنند اما پس از گذشت زمان با سرعت حرارات خود را از دست مي دهند و به همين دليل تابشهاي قوي خود نظير تابش در محدوده پرتو X را از دست داده و در طول موجهاي راديويي به تابش مي پردازند و به همين دليل است كه براي بررسي آنها بايد از اين طول موجها استفاده كرد. تنها تعداد اندكي از اين اجرام تابشهايي در طول موج X نشان مي دهند.

يكي از اين موارد ستاره اي نوتروني موسوم به 1 E1207.4-5209 است كه در خلال طولاني ترين عكسبرداري رصدخانه XMM-Newton كه 72 ساعت به طول انجاميد آشكار شد.با كمك اين تصوير برداري اخترشناسان اروپايي موفق شدند براي اولين بار به طور مستقيم به اندازه گيري ميدان مغناطيسي اين ستاره بپردازند اين در حاليست كه پيش از اين تنها با كمك روشهاي غير مستقيم نظير استفاده از نظريات شكل گيري ستاره هاي پرجرم و يا بررسي آهنگ كاهش دوران ستاره نوتروني (كه با كمك بررسي داده هاي راديويي امكان پذير مي شد) اين ميدان مغناطيسي مورد محاسبه قرار مي گرفت . اما اين بار اخترشناسان توانستند با رصد تابش پرتو X يك ستاره نوتروني اين ميدان را مستقيما ندازه گيري كنند تابش پرتو X پيش از آنكه در فضا منتشر شود از درون ميدان مغناطيسي ستاره نوتروني عبور مي كند و اين ميدان اثر انگشت خود را بر روي اين پرتو باقي مي گذارد. با بررسي پرتوهاي دريافت شده مي توان ميدان را شناسايي كرد . اما نكته هيجان انگيز در خصوص اين ستاره نوتروني جاي ديگري بود ميدان مغناطيسي كه به روش مستقيم مورد اندازه گيري قرار گرفت 30 برابر ضعيف تر از ميداني بود كه روشهاي غير مستقيم اعلام مي كرد ند و اين پرسشي تاز ه را مطرح مي كرد منشا اين اختلاف چيست.

در مدلهاي رايج اندازه گيري ميدان مغناطيسي ستاره هاي نوتروني فرض مي شود كه كاهش سرعت ستاره تنها در اثر ميدان مغناطيسي ستاره و واكنش ان با محيط اطراف است د حاليكه به نظر مي رسد، حداقل در مورد 1 E1207.4-5209 عامل ديگري نيز در كاهش سرعت ستاره نقش ايفا مي كند و آن قرصي از بقاياي انفجار ابرنواختري است كه در اطراف ستاره نوتروني باقي مانده است.

حال اين سوال مطرح اسن كه آيا اين مورد تنها يك استثنا و گونه جديدي از ستاره هاي نوتروني است و يا نمونه اي عمومي از اين خانواده از اجرام آسماني است. بررسيهاي بعدي بايد پاسخگوي اين سوال باشد.

منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])

behnam karami
15-04-2007, 22:03
موتور مغناطیسی منظومه شمسی
همانطور که می دانیم یک موتور مغناطیسی نیاز حتمی به یک محور مرکزی که دارای مغناطیس زیادی باشد دارد و در کنار نیز چند هسته آهن ربایی که نیروی کافی را جهت کارکردن داشته باشد ویک یا چند محرک قوی تا گردش را ایجاد و کار کردن را برقرار نماید.


موتور هسته ای سیاره
در منظومه ما محور مرکزی که میدان مغناطیسی بسیار نیرومندی خورشید است که اهرم های نیرومندی با جذب و دفع بسیار بالا سیارات را بر گرد میدان مغناطیسی خود قفل کرده و نگه داشته است و سیارات با قدرت تمام جذب میدان مغناطیسی خورشید شده اند و از جایگاه مشخصی برخوردارند حال نیروی عظیمی نیاز است که بر میدان مغناطیسی خورشید فایق و بر آن غلبه کرده و سیاره را بر روی این حلقه مغناطیسی غلت دهد و باعث چرخش سیاره شود تنها نیرویی می تواند بر این جاذبه بسیار نیرومند غلبه کند که قدرت آن از جاذبه بسیار نیرومند خورشید بیشتر باشد و بتواند سیاره را با تمام وزنی که دارد به حرکت در آورد و بر گرد ستاره بچرخاند این نیروی بسیار زیاد فقط از یک نیروی هسته ای بر می آید حال سیاره یک موتور هسته ای بسیار نیرومند دارد که با سوخت وساز دایمی باعث گردش سیاره می شود.

شاید بپرسند چگونه هر سیاره در مرکز خود یک مغناطیس نیرومند دارد که باعث جذب سیاره به میدان و حلقه مغناطیسی خورشید یا همان ستاره شود و سیاره را بر روی این میدان ثابت می کند و سوخت و ساز هسته ای مرکز سیاره باعث گردش این مغناطیس می شود و مغناطیس با سرعت زیادی بطور نا منظم به گردش در می آید و با برخورد به پوسته باعث زلزله های بسیار شدید می شود حال چه چیزی نیاز است تا این هسته مرکزی در وسط سیاره ودر مرکز مواد مذاب نگه دارد و باعث گردش صاف ومنظم شود شما می توانید یک بالگرد را در نظر بگیرید که ملخ آن با سرعت می چرخد، اگر پروانه کوچک روی دم وجود نداشته باشد چه روی می دهد آیا با جدا شدن از زمین و این طرف و آن طرف پرت شدن متلاشی نمی شود.


نقش قمر در نیروی هسته ای
در گردش سیاره نیز این عمل صدق می کند چرا که سیاره درست همانند یک بالگرد عمل می کند با تفاوت آنکه در سیاره پوسته می چرخد ومحور مرکزی کند تر شده است. حا ل می خواهم بگویم که قمر عمل پروانه دم را انجام میدهد و با دوعمل جاذبه و دافعه هسته مرکزی را در وسط مواد مذاب نگه می دارد و با کند تر کردن حرکت مغناطیس باعث چرخش پوسته بر خلاف هسته می شود به این توضیح که مواد مذاب محور را به حرکت وا می دارد وبا سرعت زیادی باعث چرخش هسته مرکزی می شود به این صورت که با تکیه دادن به بدنه درون پوسته فشار آورده و هسته را می چرخاند وهنگامی که قمر با نیروی زیاد خود محور را نگاه میدارد وحرکت آنرا کندتر می کند این بار هسته مرکزی تکیه گاه مواد مذاب می شود با فشار بسیار زیادی که به محور می آورد در طرف دیگر باعث حرکت پوسته در جهت عکس حرکت محور می شود. می توان یکموتورالکتریکی را در نظر گرفت که اگر با انگشت محور را نگه داریم پوسته آن در جهت عکس محور حرکت می کند.
در حرکت سیاره نیز درست این عمل انجام می شود قمر محور را کند می کند و پوسته بر عکس محور یا مغناطیس مرکزی حرکت می کند با این عمل سیاره دارای دو حرکت وضعی و انتقالی می شود و بر گرد خود و بر روی میدان مغناطیسی خورشید غلت می خورد و باعث آمدن شب و روز و سال می شود برای اثبات این سخن سیاره زهره چون قمر ندارد سرعت آن از زمین بیشتر است وجهت حرکت این سیاره بر خلاف حرکت وضعی زمین است و شاید کسی بگوید پس چرا سیاره عطارد با اینکه قمر ندارد حرکت وضعی آن با زمین یکی است می گویم چون عطارد به خورشید و مغناطیس بسیار نیرومند آن نزدیک تر است لذا مغناطیس آن با نیروی بسیار زیادی جذب خورشید شده و مواد مذاب این سیاره برای به حرکت در آوردن آن بسیار فشار وارد میکند لذا مواد مذاب با تکیه دادن به محور مرکزی پوسته را در جهت عکس محور می چرخاند و همانند زمین حرکت وضعی و انتقالی ایجاد می کند به طور مثال خود را درون یک توپ بزرگ به نظر آورید که درون آن یک توپ دیگر باشد که از بیرون آنرا نگه داشته باشند و شما می خواهید این توپ مرکزی را بر گرد خودش بچرخانید چه روی می دهد؟ درست است با فشار دستان شما پاهایتان توپ بیرونی ( پوسته) را می گرداند و در جهت عکس حرکت توپ اولی توپ دومی بر خلاف آن حرکت می کند.
البته این تنها عامل موثر بر حرکت وضعی و انتقالی سیارات نیست بلکه عوامل دیگری نیز تاثیر دارند که یکی از آن ها میدان مغناطیسی زمین است.
منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

behnam karami
16-04-2007, 21:33
مغناطیس گرانشی
فضاپیمای Gravity Probe B or GPB بیستم آوریل 2004 زمین را برای جستجوی نیرویی از طبیعت که در وجودش تردید است، ترک کرده است. این نیرو که هیچ وقت ثابت نشده مغناطیس گرانشی یا Gravitomagnetisem نامیده می‌شود. مغناطیس گرانشی بوسیله ستاره‌ها یا سیاره‌هایی که به دور خود می‌چرخند تولید می‌شود گفته می‌شود که این نیرو از نظر شکل شبیه یک میدان مغناطیسی است که توسط یک کره (توپ) باردار در حال چرخش تولید می‌شود، بار را با جرم جایگزین کنید، می‌شود مغناطیس گرانشی ما در حالی که زندگی می‌کنیم، مغناطیس گرانشی را احساس نمی‌کنیم. اما بر طبق نظریه عام انیشتین این حقیقت دارد، وقتی که یک ستاره یا سیاهچاله یا هر چیزی که جرم زیادی دارد به دور خود می‌پیچد فضا و زمان اطراف را به دور خود می‌کشد.

عملی به نام کشش چارچوب
ساختار فضا - زمان مثل یک گرداب پیچیده می‌شود. انیشتین به ما می‌گوید تمام نیروهای گرانشی هم ارز با خم شدن (پیچیده شدن) فضا-زمان است که مغناطیس گرانشی است.

مغناطیس گرانشی چه کار می‌کند؟
می‌تواند مدار اقمار را منحرف کند و باعث شود که ژیروسکوپ قرار داده شده در زمین بلرزد. هر دو پدیده خیلی کوچک هستند و اندازه گیری آن سخت است. محققان تحت رهبری فیزیکدانان سعی می‌کنند انحراف مسیر اقماری را که مغناطیس گرانشی آن را ایجاد می‌کند آشکار کنند. برای مطالعه این دو پدیده ، آنها از ماهواره‌های لیزری ژئودینامیکی Lagoes استفاده کردند.

دو کره با قطر 60 سانتیمتر که آینه‌هایی روی آنها کار گذاشته شده است. دسته بندی لیزرهای دقیق از هر دو نوع مدارهایشان را نشان می‌دهد. اما یک مشکل وجود دارد: تحدب ناحیه استوایی باعث انحرافی بیلیونها بار بزرگتر از مغناطیس گرانشی زمین می‌شود. آیا کیوفولینی برای یافتن مغناطیس گرانشی این کشش بزرگ را با دقت کافی کم می‌کند؟ گفته می‌شود که دانشمندان زیادی نتایج کیوفولینی را پذیرفتند در حالی که دیگران شک دارند.

آزمایشهای انجام شده برای یافتن این نیرو
GPB که توسط دانشگاه استنفورد و ناسا توسعه داده شده، آزمایش را به گونه دیگری و با استفاده از ژیروسکوپ انجام داده است. فضاپیما ، زمین را در مدار قطبی به ارتفاع 400 مایل دور می‌زند. چهار ژیروسکوپ وجود دارد که هرکدام یک کره یا یک گوی به قطر 1.5 اینچ است که در خلأ معلق هستند و ده هزار بار در دقیقه می‌چرخند (بسامد حدود 167 هرتز). اگر معادلات انیشتین درست باشد و مغناطیس گرانشی واقعی باشد، ژیروسکوپهای در حال چرخش باید هنگامی که زمین را دور می‌زنند بلرزند. کم کم محور دورانشان جابجا می‌شود، تا یک سال دیگر محور دوران ژیروسکوپها در حدود 42 mili-arc second از جایی که آنها شروع کردند دور می‌شوند.

GPB می‌تواند این زاویه را با دقت 0.5 mili-arc second یا حدود یک درصد اندازه بگیرد. هر چند زاویه اندازه گیری شده mili-arc second خیلی کوچک است، این را در نظر بگیرید که یک arc second برابر با یک درجه است. یک mili-arc second هزار بار از arc second کوچکتر است. مقدار 0.5 mili-arc second انحراف مورد انتظار در GPB هم ارز با این است که بخواهیم ضخامت یک ورق کاغذ را از فاصله صد مایلی اندازه گیری کنیم. حس کردن این مقدار به این کوچکی چالش بزرگی است. دانشمندانی که روی GPB کار می‌کردند باید تکنولوژیهای جدیدی کاملی را برای آن اختراع می‌کردند.

فیزیکدانان هم نگران و هم هیجان زده هستند. نگران برای این که شاید مغناطیس گرانشی آنجا نباشد. نظریه انیشتین می‌تواند غلط باشد ( احتمالی که اکثراً دوستش ندارند) و این باعث تحولی در فیزیک خواهد بود. و به همین دلیل آنها هیجان زده نیز هستند. هر کسی خواستار این است که در پیشرفت بزرگ بعدی علم مقدم باشد و پیش دستی کند. نزدیک زمین مغناطیس گرانشی ضعیف است بخاطر همین است که ژیروسکوپهای GPB فقط 42 mili-arc second تکان می‌خورند.

این میدان در کجا قوی ظاهر می شود؟
اما در جاهایی از عالم این میدان قوی است. برای مثال در نزدیکی یک سیاهچاله یا یک ستاره نوترونی. یک ستاره نوترونی نوعی جرمی در حدود خورشید دارد اما قطر آن 10 کیلومتر است و چند هزار بار سریعتر از زمین به دور خودش می‌چرخد. بنابراین مغناطیس گرانشی در آنجا خیلی قوی خواهد بود. اخترشناسان احتمالاً آثار مغناطیس گرانشی را قبلاً مشاهده کرده‌اند. بعضی سیاهچاله‌ها و ستاره‌های نوترونی جتهای روشنی از ماده و با سرعتی نزدیک نور به بیرون دارند. این جتها در صورتی که از قطبهای یک شیئ چرخنده نشات بگیرند جفتی و مختلف الجهت هستند.

نظریه پردازان تصور می کنند جت ها توسط مغناطیس گرانشی قدرت می گیرند. به علاوه سیاهچاله‌ها بوسیله دیسکی از ماده به نام accretion disk دارند و به قدری داغ است که تابش اشعه ایکس طیف الکترومغناطیسی ساتع می‌کند. شواهدی وجود دارد که توسط تلسکوپ های اشعه ایکس نظیر Nasa's chandra X ray obsevatiry جمع شده و می‌گوید این دیسکها می‌لرزند. ژیروسکوپهای GPB هم انتظار همین را می‌کشند.

کاربرد مغناطیسی گرانشی در چیست؟
اینجا در منظومه شمسی ما ، مغناطیس گرانشی در بهترین حالت می‌توان گفت که ضعیف است. سئوالی پیش می‌آید: بعد از آنکه مغناطیس گرانشی را پیدا کردیم چه کنیم؟ سئوالی شبیه این بارها در قرن 19 پرسیده شده بود. وقتی که ماکسول ، فارادی و دیگران الکترومغناطیس را بررسی می کردند. چه استفاد‌ه‌ای دارد؟ امروز ما توسط فواید تحقیقات آنها محاصره شده‌ایم: چراغ ، کامپیوتر ، ماشین لباسشویی ، اینترنت و غیره. مغناطیس گرانشی برای چه خوب است؟ آیا این فقط رخداد مهمی در راه طولانی جستجوی طبیعی ما برای فهم طبیعت است؟ یا چیزی غیر قابل تصور: زمان خواهد گذشت
منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Mohammad Hosseyn
06-10-2007, 11:38
اشعه مادون قرمز

مادون در لغت به معناي زير دست و قرمز به معناي هر چه به رنگ خون باشد، است. پس ميتوان گفت كه مادون قرمز اشعه بسيار ريز و قرمز رنگ است.

اطلاعات اوليه

كشف هرسل اولن گام در ايجاد پديده‌اي كه ما آن را طيف الكترومغناطيسي ميناميم. نور مرئي و پرتوهاي مادون قرمز دو نمونه اشكال فراواني از انرژي هستند كه توسط تمام اجسام موجود در زمين و اجرام آسماني تابانده ميشوند. مادون قرمز در طيف الكترومغناطيسي داراي محدوده طول موجي بين 0.78 تا 1000 ميكرو متر است. تنها با مطالعه اين تشعشعات است كه ميتوانيم اجرام آسماني را تشخيص و تميز دهيم و تصويري كامل از چگونگي ايجاد جهان و تغييرات آن بدست آوريم. در سال 1800 سر ويليام هرشل يك نمونه نامرئي از تشعشعات را كشف كرد كه اين نمونه دقيقا زير بخش قرمز طيف مرئي قرار داشت. او اين شكل از تشعشعات را مادون قرمز ناميد.

سير تحولي و رشد

Greathouse و همكارانش طي مطالعه‌اي تاثير ليزر مادون قرمز را به انتقال عصبي ، عصب راديال بررسي كردند. زمان تاخير ، دامنه پتانسيل عمل و دما ، متغيرهاي مورد آزمايش مشاهده نشد.Lynn Snyder و همكارانش اثر ليزر كم توان هليوم - نئون را بر زمان تاخير شاخه حسي عصب راديال در دو گروه ليزر و پلاسبو بررسي نمودند و مشاهده كردند كه در گروه ليزر ، افزايش معني دارا در زمان تاخير حسي پس از بكارگيري ليزر ايجاد گرديده است.

Bas Ford و همكارانش طي مطالعه‌اي اثر ليزر كم توان هليوم - نئون را بر شاخه حسي اعصاب راديال و مدين بررسي كردند. هيچ اختلاف معني داري در دامنه پتانسيل عمل ، زمان تاخير و دما ساعد بعد از بكارگيري ليزر مشاهده نشد.Baxter و همكارانش افزايش معني دار در زمان تاخير عصب مدين بعد از بكارگيري ليزر گرارش كردند. Low و همكارانش كاهش دما را به دنبال تابش ليزر كم توان مادون قرمز ديدند.

نتايج اشعه مادون قرمز

گرمايي كه ما از خورشيد يا از يك محيط گرم احساس ميكنيم، همان تشعشعات مادون قرمز يا به عبارتي انرژي گرمايي است. حتي اجسامي ‌كه فكر ميكنيم خيلي سرد هستند، نيز از خود انرژي گرمايي منتشر ميسازند (يخ و بدن انسان). سنجش و ارزيابي انرژي مادون قرمز ساطع شده از اجرام نجومي ‌به علت اينكه بيشترين جذب را در اتمسفر زمين دارند مشكل است. بنابراين بيشتر ستاره شناسان براي مطالعه انتشار گرما از اين اجرام از تلسكوپهاي فضايي استفاده ميكنند.

مادون قرمز در نجوم

تلسكوپها و آشكارسازهايي كه توسط ستاره شناسان مورد استفاده قرار ميگيرند نيز از خودشان انرژي گرمايي منتشر ميسازند. بنابراين براي به حداقل رساندن اين تاثيرات نامطلوب و براي اينكه بتوان حتي تشعشعات ضعيف آسماني را هم آشكار ساخت، اخترشناسان معمولا تلسكوپها و تجهيزات خود را به درجه حرارتي نزديك به 450?F ، يعني درجه حرارتي حدود صفر مطلق ، ميرسانند. مثلا در يك ناحيه پرستاره ، نقاطي كه توسط نور مرئي قابل رويت نيستند، با استفاده از تشعشعات مادون قرمز بخوبي نشان داده ميشود. همچنين مادون قرمز ميتواند چند كانون داغ و متراكم را همره با ابرهايي از گاز و غبار نشان دهد. اين كانونها شامل مناطق پرستاره‌اي هستند كه در واقع ميتوان آنها را محل تولد ستاره‌اي جديد دانست. با وجود اين ابرها ، رويت ستاره‌هاي جديد با استفاده از نور مرئي به سختي امكانپذير است.

اما انتشار گرما باعث آشكار شدن آنها در تصاوير مادون قرمز ميشود. اختر شناسان با استفاده از طول موجهاي بلند مادون قرمز ميتوانند به مطالعه توزيع غبار در مراكزي كه محل شكل گيري ستاره‌ها هستند، بپردازند. با استفاده از طول موجهاي كوتاه ميتوان شكافي در ميان گازها و غبارهاي تيره و تاريك ايجاد كرد تا بتوان نحوه شكل گيري ستاره‌هاي جديد را مورد مطالعه قرار داد. فضاي بين ستاره‌اي در كهكشان راه شيري ما نيز از توده‌هاي عظيم گاز و غبار تشكيل شده است. اين فضاهاي بين ستاره‌اي يا از انفجارهاي شديد نواخترها ناشي شده‌اند و يا از متلاشي شدن تدريجي لايه‌هاي خارجي ستاره‌هايي جديد از آن شكل ميگيرند. ابرهاي بين ستاره‌اي كه حاوي گاز و غبار هستند، در طول موجهاي بلند مادون قرمز خيلي بهتر آشكار ميشوند (100 برابر بيشتر از نور مرئي).

اخترشناسان براي ديدن ستاره‌هاي جديد كه توسط اين ابرها احاطه شده‌اند، معمولا از طول موجهاي كوتاه مادون قرمز براي نفوذ در ابرهاي تاريك استفاده ميكنند. اخترشناسان با استفاده از اطلاعات بدست آمده از ماهوارهاي نجومي ‌مجهز به مادون قرمز صفحات ديسك مانندي از غبار را كشف كردند كه اطراف ستاره‌ها را احاطه كرده‌اند. اين صفحات احتمالا حاوي مواد خامي ‌هستند كه تشكيل دهنده منظومه‌هاي شمسي هستند. وجود آنها خود گوياي اين است كه سياره‌ها در حال گردش حول ستاره‌ها هستند.

مادون قرمز در پزشكي

اگر نگاه دقيق و علمي ‌به يك طيف الكترومغناطيسي بيندازيم، ميبينيم كه از يك طرف طيف تا سوي ديگر آن ، انواع تشعشعات و پرتوها بر اساس طول موج و فركانس‌هاي مختلف قرار دارند، از آن جمله ميتوان به تشعشعات گاما ، اشعه ايكس ، ماوراي بنفش ، نور مرئي ، مادون قرمز و امواج راديويي اشاره كرد. هر كدام از اين پرتوها و تشعشعات همگام با پيشرفت بشر ، به نوبه خود چالش‌هايي را در زمينه‌هاي علمي ‌پديد آورده‌اند كه در اينجا علاوه بر كاربرد مادون قرمز در شاخه ستاره شناسي ، اشاره‌اي به كارآيي چشمگيري اين پرتو در رشته پزشكي خواهيم داشت.

كاربرد درماني مادون قرمز

بكار بردن گرما يكي از متداولترين روشهاي درمان فيزيكي است. از موارد استعمال درماني مادون قرمز موارد زير را ميتوان ذكر كرد.

تسكين درد

با وجود حرارت ملايم ، كاهش درد به احتمال زياد بواسطه اثر تسكيني بر روي پايانه‌هاي عصبي ، حسي ، سطحي است. همچنين به علت بالا رفتن جريان خون و متعاقب آن متفرق ساختن متابوليتها و مواد دردزاي تجمع در بافتها ، درد كاهش مييابد.

استراحت ماهيچه

تابش اين اشعه راه مناسبي براي درمان اسپاسم و دستيابي به استراحت عضلاني ميباشد.

افزايش خون رساني

در درمان زخمهاي سطحي و عفونتهاي پوستي ، براي اينكه فرآيند ترميم به خوبي انجام گيرد، بايد به مقدار كافي خون به ناحيه مورد نظر برسد و در صورت وجود عفونت نيز افزايش گردش خون سبب افزايش تعداد گلبولهاي سفيد و كمك به نابودي باكتريها ميكند. از اين پرتو ميتوان براي درمان مفصل آرتوريتي و ضايعات التهابي نيز استفاده كرد.

كاربرد تشخيصي مادون قرمز

از مهمترين كابردهاي تشخيصي آن ميتوان توموگرافي را نام برد. اصطلاح ترموگرافي به عمل ثبت و تفسير تغييراتي كه در درجه حرارت سطح پوست بدن رخ ميدهد، اطلاق ميشود. تصوير حاصل از اين روش كه توموگرام ناميده ميشود، بخش الگوي حرارتي سطح بدن را نشان ميدهد. در توموگرافي ، آشكار ساز ، تشعشع حرارتي دريافت شده توسط دوربين را به يك سيگنال الكترونيكي تبديل ميكند و سپس آن را علاوه بر تقويت بيشتر ، پردازش ميكند تا اينكه يك صفحه كاتوديك مثل مونيتور تلويزيون آشكار شود.

تصاوير بدست آمده به صورت سايه‌هاي خاكستري رنگ ميباشند، بدين معني كه سطوح سردتر به صورت سايه‌هاي خاكستري روشن ديده ميشوند و در نوع رنگي آن نيز نواحي گرم ، رنگ قرمز و نواحي سرد ، رنگ روشن خواهند داشت. درجه حرارت پوست بدن در نتيجه فرآيندهاي فيزيكي ، فيزيولوژيك طبيعي يا بيماري تغيير ميكند. از اين خاصيت تغيير گرمايي در عضوي خاص يا در سطح بدن براي آشكارسازي يك بيماري استفاده ميشود كه مهمترين آنها به قرار زير است.

- بيماري پستان : وسيع ترين جنبه كاربردي توموگرافي در آشكار سازي سرطانهاي پستاني است.

زيرا روشي كاملا مطمئن و بدون آزار است.

از پرتوهاي يونيزان استفاده نميشود.

روشي كاملا سريع ، راحت و ارزان است.

به دليل بي ضرر بودن از قابليت تكراري بسيار زيادي برخوردار است.

كاربرد ترموگرافي در مامائي

چون جفت از فعاليت بيولوژيكي زيادي برخوردار است. درجه حرارت حاصله در اين محل بطور قابل ملاحظه‌اي از بافتهاي اطراف بيشتر است. پس ميتوان از توموگرافي براي تعيين محل جفت استفاده كرد.

ضررهاي مادون قرمز

از طرف ديگر خطرهايي نيز در استفاده از مادون قرمز وجود دارد كه ميتوان به سوختگي الكتريكي (در اثر اتصال بدن به مدارات الكتريكي دستگاه) سر درد ، توليد ضعيف در بيمار و آسيب به چشمها در اثر تابش مستقيم پرتو اشاره كرد.

منبع :دانشنامه رشد

Mohammad Hosseyn
26-10-2007, 16:56
اشعه ايكس را چه كسي كشف كرد؟ 


آيا مي دانيد داستان اشعه ايكس (X) بيشتر از يكصد سال پيش آغاز شد؟ درنيمه سده ي نزدهم مردي به نام هاينريش گايسلر كشف كرد كه اگر لوله اي كه فاقد هواست تحت ولتاژ بالا تخليه ي الكتريكي شود نورهاي زيبايي درون لوله توليد خواهد شد. مدتي پس از آن ويليلم كروس اثبات كرد كه علت درخشندگي ذرات الكتريكي است. پس از آن هاينريش هرتز نشان داد كه اين اشعه مي تواند از لايه هاي نازك طلا و يا پلاتين عبور كند. شاگرد وي به نام لنارد پنجره هايي از مواد ساخت بطوري كه اشعه توانست از راه پنجره باز لوله خارج شود. اكنون به كشف اشعه ايكس مي پردازيم :

در سال 1895 ويلهم رونتگن با يكي از اين لوله ها كه بدون پنجره بود آزمايشي انجام مي داد وي متوجه شد كه بلورهاي نزديك لوله درخشيدند. جون او مي دانست اشعه اي كه قبلا كشف شد (اشعه كاتدي ) از شيشه عبور نمي كند تا چنين اثري داشته باشد. گمان برد بايد نوع ديگري از اشعه وجود داشته باشد. چون اين اشعه نامرئي كه از نور و اشعه ديگر بسيار متفاوت بود قابل تشريح نبود. آن را اشعه ايكس ( به معني اشعه مجهول ) ناميد. بعد ها دانشمندان آن را اشعه رونتگن نام نهادند و اكنون نيز اين نام را بسياري از دانشمندان به كار مي برند.

اشعه ايكس در لوله ي اشعه ايكس و بدين روش توليد مي شود :

1- هواي درون لوله بايد به مقداري زيادي تخليه شود.

2- دو قطب الكتريكي در دو سر لوله تعبيه مي كنند

3- يكي از قطب ها به شدت جريان مثبت و آن ديگري به جريان منفي وصل مي شود

4- الكترون ها ميان دو قطب حركت مي كنند

5- بيشترين مقدار انرژي الكترو نها به گرما تبديل مي شود ولي بخشي هم به اشعه ايكس تبديل مي شود

اشعه ايكس مي تواند از جامدات عبور كند چون طول موج آن بسيار كوتاه است هر چه طول موج اشعه كوتاهتر باشد قدرت نفوذ آن در اشيا بيشتر است

منبع :
برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

Mohammad Hosseyn
13-11-2007, 13:36
نظريه تابش گرمايي


هرگاه سيستمي از جسم هاي تابش كننده و جذب كننده بسته باشد در اينصورت گاز فوتوني « گازي كه جسم ها به ياري آن انرژي تبادل مي كنند » بايد با اتم هاي تامين كننده فوتون ها در تعادل باشد. تعداد فوتون ها با انرژي hv به اين بستگي دارد كه چند اتم در سطح E1 و چند تا در سطح E2 قرار دارند؟. در مورد تعادل اين عددها بدون تغيير باقي مي مانند. به هر حال از آنجا كه روندهاي تحريك و تابش در همان زمان روي مي دهند. تعادل ماهيت ديناميك دارد. اتم ها يا سيستم اتمي به طريقي ( با برخورد با ذره ها يا بر اثر جذب يك فوتون از خارج ) به سطح بالاتري ارتقا مي يابند. سيستم تا مدت تا حدي نامعين ( معمولا كسري از يك ثانيه ) در حالت تحريك شده پافشاري مي كندو سپس به سطح پايين تري بر مي گردد. اين روند را تابش خودبخودي مي خوانند. اتم همانند توپ كوچكي رفتار مي كند كه بر روي قله نوك تيزي با برجستگي ها و فرورفتگي هاي پيچيده قرار دارد. كمترين نسيم كافي است تا تعادل را بر هم زند. توپ رو به پايين دره معمولا پايين ترين نقطه غلت مي خورد و در اين صورت تنها تاثير نيرومندي مي تواند دوباره آن را در بياورد ما مي گوييم كه اتم در پايين ترين سطح افتاده است و در حالت پايداري است.

ولي در اينجا بايد توجه كنيم كه بين قله و پست ترين بخش هاي دره حالت هاي بينابيني نيز وجود دارد. ممكن است توپ در فرورفتگي ناچيزي در حال سكون باشد كه مي توان آن را به ياري به اصطلاح دمي از هوا و با حداقل فشار كمي از مخمصه نجات داد.اين حالت ناپايدار تزلزل پذير است. بدين ترتيب در كنار حالت پايدار و تحريك شده نوع سومي از سطح انرژي - نوع تزلزل پذيري - وجود دارد. خلاصه كنيم در اينصورت انتقال در هر دو جهت روي خواهد داد. ابتدا يك اتم و سپس اتم ديگري به سطح انرژي بالاتري حركت خواهد كرد.

در لحظه بعدي آن ها به سطح پايين تر سقوط خواهد كرد و نور خارج مي كنند ولي در همان زمان ويژه اتم هاي ديگري انرژي دريافت خواهد كرد و به سطح هاي بالاتر ارتقا خواهند يافت.

قانون بقاي انرژي ملزم مي كند كه تعداد انتقال به بالا با تعداد انتقال به پايين برابري مي كند. تعداد انتقال به بالا به چه چيزي بستگي دارد؟

دو عامل : نخست تعداد اتم ها در طبقه پايين تر و دوم تعداد ضربه ها يا برخورد كه آن ها را به طبقه بالاتر ارتقا مي دهد از تعداد رو به پايين چه ؟

البته آن با تعداد اتم هاي واقع در طبقه بالاتر تعيين مي شود و به نظر خواهد رسيد كه مستقل از هر عامل ديگري است. اين دقيقا همان چيزي است كه فيزيكدانان در ابتدا تصور مي كردند و با اين حال تكه ها با هم جور در نمي آمدند. تعداد انتقال هاي بالا كه به دو عامل بستگي دارد با مقايسه تعداد انتقال هاي رو به پايين كه تنها به يك عامل بستگي دارد با افزايش دما بسيار تندتر افزايش مي يافت . معلوم شد كه اين مدل چنين آشكاري هيچ و پوچ است. دير يا زود همه اتم ها به بالاترين سطح رانده مي شدند. سيستم در حالت ناپايداري بدون هيچ تابشي مي بود.

دقيقا همين نتيجه گيري غير ممكن بود كه انيشتين در سال 1926 از ميان استدلال هاي پيشينيان خود دست چين كرد. ظاهرا تاثير « نفوذ » ديگري وجود داشت كه بر انتقال اتم ها از طبقه بالاتر به طبقه پايين تر اثر مي گذاشت. هر كس تنها مي توانست نتيجه بگيرد كه علاوه بر انتقال خودبخودي انتقال اجباري به سطح پايين تر وجود داشت.

به اصطلاح تابش ( اميسيون ) تحريك شده چيست؟ به طور خلاصه اين است سيستمي در سطح پايين تر است آن با تفاوتE2-E1=hv از سطح پايين تر جدا شده است. اينك هرگاه فوتوني با انرژي hv بر روي سطح بيفتد در اينصورت سيستم را وادار مي كند تا به سطح پايين تري حركت كند. اين فوتون افتاده در طول روند جذب نمي شود ولي به حركت خود ادامه مي دهد در حالي كه با فوتون تازه اي دقيقا از همان نوع كه توسط فوتون نخست ايجاد شده است همراهي مي شود. در اين استدلال دنبال هيچ منطقي نباشيد. آن استدلال اشراقي حدس بود و قرار بود آزمايش درست يا نادرست بودن آن را اثبات كند

با استفاده از فرض خروج ( تابش ) تحريك شده ما قادريم فرومولي كمي اتخاذ كنيم كه نمودار تابش را به صورت تابعي از طول موج جسم گرم شده نمايان مي سازد. تئوري ثابت كرد كه توافق نماياني با آزمايش دارد و بدين ترتيب فرضيه را محق جلوه داد.




منبع : physicsir.com

ghazal_ak
22-12-2007, 22:35
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



قانون لنز كه در مورد جريانهاي القايي بكار مي‌رود چنين بيان مي‌شود كه جريان القايي در مدارهاي بسته در جهتي است كه با عامل بوجود آورنده خود مخالفت مي‌كند. اين قانون علامت منفي موجود در قانون فاراده را توجيه مي‌كند.


مقدمه


طبق قوانين القاي الكترومغناطيسي اگر شارمغناطيسي گذرا از مدار تغيير كند، نيرو محركه الكتريكي در مدار جاري مي شود. با برقراري نيرو محركه القايي در مدار، جريان الكتريكي القايي در آن جاري مي شود. طبق قانون لنز جهت جريان القايي در مدار در جهتي است كه ميدان مغناطيسي حاصل از آن با تغييرات شار مغناطيسي گذرا از مدار مخالفت مي كند. اگر چكشي را از بالاي نردباني رها كنيم، هيچ نيازي به قاعده‌اي كه بگويد چكش به طرف مركز زمين يا در جهت مخالف آن حركت مي‌كند، نداريم. اگر در اين موقع كسي از ما بپرسد كه از كجا مي‌دانيد كه چكش سقوط خواهد كرد، بهترين پاسخي كه مي‌توانيم بدهيم اين است كه بگوييم، هميشه به اين صورت بوده است و اگر بخواهيم جوابمان علمي‌تر باشد، مي‌توانيم بگوييم كه زماني كه چكش سقوط مي‌كند، انرژي پتانسيل گرانشي آن كاهش مي‌يابد و برعكس انرژي جنبشي آن افزايش پيدا مي‌كند.


اما اگر چكش به جاي سقوط ، به طرف بالا برود، در اين صورت انرژي جنبشي و انرژي پتانسيل آن هر دو افزايش پيدا مي‌كنند و اين موضوع پايستگي يا بقاي انرژي را نقض مي‌كند. استدلال مشابه را مي‌توان در مورد تعيين جهت نيروي محركه الكتريكي كه با تغيير شار مغناطيسي در يك مدار القا مي‌شود، بكار برد، يعني در اين مورد اخير نيروي محركه القايي بايد در جهتي باشد كه با اصل پايستگي سازگار باشد و اين با استفاده از قانون لنز توضيح داده مي‌شود.


تاريخچه


در سال 1834 ، يعني سه سال بعد از اين كه فاراده قانون القا خود را ارائه داد (قانون القا فاراده)، هاينريش فريدريش لنز (Heinrich Friedrich Lenz) قاعده معروف خود را كه به قانون لنز معروف است، براي تعيين جهت جريان القايي در يك حلقه رساناي بسته ارائه داد. اين قانون به صورت يك علامت منفي در قانون القاي فاراده ظاهر مي‌گردد. به اين معني كه در رابطه نيروي محركه القايي يك علامت منفي قرار داده و اعلام كنند كه اين علامت بيانگر قانون لنز است.


تشريح قانون لنز


حلقه رسانايي را در نظر بگيريد كه به يك گالوانومتر حساس متصل است. حال آهنربايي را در دست گرفته و به آرامي به اين حلقه ، نزديك كنيد. ملاحظه مي‌گردد كه با نزديك شدن آهنربا به حلقه عقربه گالوانومتر منحرف شده و وجود جرياني را در مدار نشان مي‌دهد. اين جريان را جريان القايي مي‌گويند. حلقه جريان ، مانند آهنرباي ميله‌اي ، داراي قطب‌هاي شمال و جنوب است.


حال اگر آهنربا را از حلقه دور كنيم، باز هم گالوانومتر منحرف مي‌شود، اما اين بار انحراف در جهت مخالف است و اين امر نشان دهنده اين مطلب است كه جريان در جهت مخالف در حلقه جاري شده است. اگر ميله آهنربا را سر و ته كنيم و آزمايش را تكرار كنيم، باز همان نتايج حاصل خواهد شد، جز اين كه جهت انحراف‌هاي عقربه گالوانومتر عوض خواهند شد. براي تشريح اين آزمايش با استفاده از قانون لنز به صورت زير عمل مي‌كنيم:


زماني كه آهنربا را به آرامي به حلقه نزديك مي‌كنيم، تعداد خطوط شار مغناطيسي كه از حلقه مي‌گذرد، تغيير مي‌كند و همين امر سبب ايجاد يا القا جريان در حلقه مي‌شود و چون در ابتدا هيچ جرياني وجود نداشت، اين جريان بايد در جهتي باشد كه با هل دادن آهنربا به سمت حلقه مخالفت كند. برعكس ، اگر بخواهيم آهنربا را از حلقه دور كنيم، باز جهت جريان در حلقه عوض شده و از دور كردن آن جلوگيري مي‌كند. يعني در حالت اول اگر قطب N آهنرباي ميله‌اي در طرف حلقه باشد، جريان القايي در حلقه به گونه‌اي خواهد بود كه در برابر آن يك قطب N ايجاد كند تا مانع نزديك شدن آهنربا شود.


حال زماني كه آهنربا را از حلقه دور مي‌كنيم، حلقه جهت جريان خود را عوض نموده و با ايجاد قطب S ، آهنربا را جذب كرده و مانع از دور كردن آن مي‌شود.


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



قانون لنز و پايستگي انرژي


اگر توضيحات فوق بر اساس قانون لنز نبوده و عكس آن چيزي كه گفته شد، اتفاق بيفتد، يعني اگر جريان القايي به تغييري كه باعث بوجود آمدن آن شده است، كمك كند، قانون بقاي انرژي نقض مي‌شود، يعني اگر هنگام نزديك كردن قطب آهنربا به حلقه در برابر آن قطب مخالف S ايجاد شده و آهنربا را جذب كند، در اين صورت آهنربا بايد به طرف حلقه شتاب پيدا كند و رفته رفته انرژي جنبشي آن افزايش پيدا كند و در همين هنگام انرژي گرمايي نيز ظاهر مي‌شود. يعني در واقع از هيچ ، انرژي بوجود مي‌آيد. بديهي است كه چنين عملي هرگز نمي‌تواند درست باشد.


بنابراين مي‌توان گفت كه قانون لنز چيزي جز بيان اصل بقاي انرژي نيست كه بطور مناسب در مورد مدارهاي حامل جريان القايي بكار مي‌رود.


ويژگي قانون لنز


قانون لنز مربوط به جريانهاي القايي است و در مورد نيروي محركه القايي صادق نيست، يعني اين قانون فقط در مورد حلقه‌هاي رسانا بكار مي‌رود. اگر مدار باز باشد، معمولا مي‌توان تصور كرد كه اگر بسته بود چه اتفاقي مي‌افتاد و بدين وسيله جهت نيروي محركه القايي را معين نمود. مثلا اگر شار مغناطيسي گذرا از مدار به صورت درون سو باشد و كاهش پيدا كند، جريان الكتريكي در مدار القا مي شود، كه جهت اين جريان القايي به صورت ساعتگرد خواهد بود تا ميدان مغناطيسي حاصل از آن باعث تقويت ميدان مغناطيسي شار گذرا از مدار باشد.


و اگر اين شار افزايش يابد، جهت جريان القايي در جهتي خواهد بود كه ميدان مغناطيسي حاصل از آن بر خلاف جهت ميدان شار باشد. پس جهت جريان پاد ساعتگرد است. بنابراين براي تشخيص جهت جريان القايي كافيست، با توجه به ميدان شار گذرا از مدار، جريان را در جهتي اختيار كنيم كه ميدان مغناطيسي حاصل از آن با برخلاف تغييرات ميدان مغناطيسي شار باشد.


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]
.


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]'s_law.JPG




.
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]





عکس های قانون لنز:





[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]






[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]








[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]





[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]





[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]'s_law.JPG



منبع : .kamyararyana

Mohammad Hosseyn
16-01-2008, 17:55
آهنربايي كره زمين

1 - زمينه با پيدايش آهنربا ، پس از گذشت زمان كوتاهي پي بردند كه كرة زمين نيز خاصيت آهنربايي دارد ؛ تا آنجا كه نام قطب هاي آهن ربا را را بر اساس نام قطب هاي زمين نام گذاري كردند .
به دنبال آن ، براي اولين در سال 1600 ميلادي ، توسط « گيلبرت » زمين به عنوان يك آهنرباي بزرگ معرفي شد .براي دليل وجود خاصيت مغناطيسي در كرة زمين ، نظريه هاي متفاوتي از آغاز شناخت آن تا كنون ، ارائه شده است و حتي بعضي مي گفتند ، خاصيت مغناطيسي كرة زمين ، تحت تأثير كره هاي ديگر است . اما آخرين نظريه ، اين خاصيت را به مواد مذاب داخل كرة زمين مربوط مي داند .

2 - خاصيت مغناطيسي كرة زمين
يكي از ويژگي هاي مهم كرة زمين ، وجود خاصيت آهنربايي در آن است و مانند اين است كه درون كرة زمين ، آهنرباي بسيار بزرگي قرار داده شده است و تا كنون ، نظريه هاي گو ناگوني براي علت آن ارائه شده است . آخرين نظريه اين است كه درون كرة زمين ، مواد مذاب در حال حركت وجود دارد و بيشتر اين مواد ، از جنس آهن و نيكل هستند . هنگامي كه اين مواد حركت مي كنند ، در اطراف جريان هاي الكتريكي ضعيفي به وجود مي آورند كه در مجموع ، باعث مي شود كرة زمين ، خاصيت آهنربايي پيدا كند و در اطراف كرة زمين ، ميدان مغناطيسي به وجود مي آيد . ما روي آهنرباي بزرگي به نام «زمين » زندگي مي كنيم .
چندين سيارة ديگر از سياره هاي منظومه شمسي نيز ، ميدان مغناطيسي دارند كه از جمله آنها مي توان از عطارد و مشتري نام برد . اين خاصيت در خورشيد و بسياري ستاره هاي ديگر نيز ديده مي شود .
خاصيت مغناطيسي كرة زمين ، نقش بسيار مهمي در جهت يابي كشتي ها و هواپيماها دارد . شمال و جنوب مغناطيسي زمين ثابت نيست و در فاصله هاي زماني ، به ميزان قابل ملاحظه اي تغيير مي كند .

3 - زاويه انحراف
چنانچه به كمك عقربة مغناطيسي به طرف قطب شمال يا جنوب برويم ، به قطب شمال و جنوب واقعي كرة زمين نمي رسيم . علت اين است كه قطب شمال و جنوب جغرافيايي و مغناطيسي كرة زمين ، با هم يكي نيست ؛ يعني اينكه قطب شمال مغناطيسي زمين ، درست روي قطب شمال جغرافيايي زمين قرار ندارد و اگر دو قطب جغرافيايي و مغناطيسي زمين را توسط خطي فرضي به به نام « محور » به هم وصل كنيم ، بين دو محور مغناطيسي و محور جغرافيايي زمين ، زاويه اي ساخته مي شود كه به آن ، زاوية انحراف گويند . اين زاويه ، به مرور زمان ، جزئي تغيير مي كند و ثابت نمي ماند ، و اندازة آن در نقاط مختلف زمين متفاوت است . زاوية انحراف در جهت يابي هواپيماها و كشتي ها بسيار مهم است . هم اكنون قطب شمال مغناطيسي كرة زمين ، در شمال كانادا قرار دارد .

4 - زاويه ميل
مطالعة مغناطيسي زمين ، نشان مي دهد كه خط هاي ميدان مغناطيسي زمين افقي نيست و با سطح زمين زاويه اي مي سازد همچنين مي دانيم خاصيت مغناطيسي يك آهنربا در نقاط مختلف آن متفاوت است و در دو قطب آن ، اين خاصيت بيشتر است . به همين ترتيب ، خاصيت آهنربايي كرة زمين در دو قطب بيشتر است . پس اگر يك عقربة مغناطيسي آزاد باشد تا بتواند در راستاي عمودي نيز حركت كند ، نوك اين عقربه نزديك قطب ها به زمين متمايل مي شود و در خط استواي مغناطيسي عقربه ، افقي قرار مي گيرد و در قطب ها ، به عنوان مثال قطب شمال ، نوك عقربه N آن ، عمود بر سطح افقي خواهد شد . پس محور مغناطيسي عقربه هاي مغناطيسي در مكان هاي مختلف استوا تا قطب ، نسبت به سطح افق تغيير كرده و زاويه اي با افق مي سازد ؛ اين زاويه را زاوية ميل گويند . پس زاويه ميل ، زاويه اي است كه محور مغناطيسي عقربه با سطح افق مي سازد همچنين اين زاويه ، در جهت يابي هواپيماها و كشتي ها نقش بسيار مهمي دارد ؛ در جغرافيا به اين زاويه ، عرض جغرافيايي گويند .

5 - كشف معدن هاي آهني زمين
مطالعة ميدان مغناطيسي زمين براي هدف هاي علمي و عملي ، از اهميت به سزايي برخوردار است . وجود ميدان مغناطيس زمين ، انجام پاره اي از بررسي هاي مهم ديگر را ميسر كرده است ؛ از آن جمله ، مي توان از روش هاي اكتشاف و مطالعة ذخاير زمين نام برد . تحليل دقيق ميدان مغناطيسي زمين ، وسيلة توانمندي براي بررسي ذخاير معدني زمين است . در حال حاضر ، جست و جوي مغناطيس سنجي ، روش ژئوفيزيكي مهم و گسترده اي است كه براي اكتشاف و ذخاير معدني به كار مي رود .
در زمين ، نواحي اي وجود دارد كه در آن جا كميت هاي مغناطيسي به طور ناگهاني تغيير مي كنند و مقاديري به خود مي گيرند كه با مقادير مربوط به محل هاي مجاور ، تفاوت زيادي دارند تفاوت زياد كميت هاي مغناطيسي در اين ناحيه ها ، ناشي از فشار تودة بزرگي از سنگ آهن هاي مغناطيسي در زير سطح زمين است ؛ به همين دليل ، مطالعة ناهنجاري هاي مغناطيسي ، دانسته هاي باارزشي در مورد وجود و محل مخزن هاي سنگ هاي مغناطيسي ارائه مي دهد .

6- مين هاي دريايي
مواد مغناطيسي مانند آهن كه در ميدان مغناطيسي كرة زمين قرار گرفته باشند . به مرور زمان ، خاصيت مغناطيسي پيدا مي كنند ؛ مثلاً يك كشتي كه در آن آهن نيز به كار رفته است ، به مرور زمان آهنربا مي شود . از اين خاصيت براي به دام انداختن آن استفاده مي شود .
عملكرد يك مين دريايي ، به گونه اي است كه خاصيت آهنربايي كشتي بر آن اثر گذاشته و فرمان انفجار صادر مي شود .
در يك مين دريايي ، عقربه اي مغناطيسي قرار داده اند كه هنگام عبور كشتي از بالاي آن ، عقربه تحت تأثير قرار گرفته و مين از سطح زيرين دريا ، به سطح دريا مي رسد و سپس منفجر مي شود . براي خنثي كردن اين مين ها دو روش وجود دارد .
الف ـ مغناطيس نيرومندي را با كابل هاي سيمي از زير هواپيما آويزان كرده و آن را نزديك سطح آب ، حركت مي دهند . آهنرباي قوي روي مين ها اثر گذاشته و آنها را خنثي مي كند . گاهي كابل سيمي دايره شكل را به طور شناور روي سطح آب قرار مي دهند و جرياني را از آن مي گذرانند ، كه بر اثر اين ميدان مغناطيسي يا جريان جريان ساز و كار ، مين ها عمل كرده ، بدون هيچ خسارتي منفجر مي شوند .
ب ـ حلقه هايي از سيم عايق شده را به كشتي وصل كنند و جرياني را از آنها مي گذرانند ؛ به طوري كه ميدان مغناطيسي اين جريان مساوي و در خلاف ميدان مغناطيسي كشتي كشتي ( كه يك مغناطيس دائمي است ) باشد . وقتي اين ميدان ها با هم تركيب شوند ، يكديگر را خنثي مي كنند و كشتي بدون اين كه ساز و كار مين را به كار اندازند ، از روي آن مي گذرد .

7 - باستان شناسي مغناطيسي
ميدان مغناطيسي زمين ، منظم و پايدار نيست ؛ بلكه با گذشت سال ها در يك محل معين ، مقدار متوسط زاوية انحراف و ميل تغيير مي كند . اين انحراف محور مغناطيسي و در نتيجه ، تغييرات زاويه انحراف و زاويه ميل در يك محل نسبت به زمان ، شاخة جديدي را در « باستان شناسي » به نام «باستانو مغناطيسي» ايجاد كرده است كه توسط آن ، عمر كوره ها ، اجاق ها و آتشكده هاي قديمي تعيين مي شود . اساس كار ، مبتني بر اين است كه بيشتر خاك رسهايي كه اين اجسام از آنها ساخته شده اند ، حاوي مقدار كمي مواد مغناطيسي اند . سمتگيري اين مواد مغناطيسي ، با گرم شدن در موقع استفادة عادي تثبيت شده است . با مقايسة جهت فعلي ميدان مغناطيسي زمين با جهت ميدان مغناطيسي اين مواد ، مي توان قدمت باستاني تقريبي آن ها را تعيين كرد .
در مقياس طولاني تر زمان ( دوران زمين شناسي ) ، شواهدي وجود دارد كه نشان مي دهد محور مغناطيسي زمين در مدت چهار ميليون سال گذشته ، نه بار كاملاً تغيير جهت داده است . اين شواهد ، مبتني بر اندازه گيري هاي خاصيت مغناطيسي ( ضعيف ) تثبيت شده در تخته سنگ هاي با عمر زمين شناسي معين هستند .

منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Mohammad Hosseyn
16-01-2008, 17:55
چوپان مغناطيسي

الكترونها در محيط پلاسمايي مثل گوسفنداني هستند كه در يك مرتع باشند. آنها به اطراف پرسه مي زنند و گاهي به سقلمه اي احتياج دارند تا باعث شود در راه مشخص گله قرار گيرند. چهاردهم نوامبر، يك تيم تحقيقاتي روشي را عرضه كرد كه با آن مي توان ديواري يكطرفه ساخت كه كه اجازه ي ورود الكترونها از يكطرف را مي دهد ولي الكترونهايي كه از طرف ديگر ديوار مي خواهند وارد شوند را مانع مي شود. اين روش جديدي براي به دام انداري الكترونها در محيط پلاسمايي است. اين ايده ما را به ياد "شيطانك ماكسول(Maxwell's Demon)" مي اندازد كه مي گفت فرض كنيد يك ظرف را با تيغه اي به دو قسمت تقسيم مي كنيم و يكطرفش را تا نصف از گاز پر مي كنيم. موجود هوشياري را در جلوي سوراخ بين دو نصفه ي ظرف قرار مي دهيم و او فقط مولكولهاي پرسرعت را انتخاب و به سمت ديگر هدايت مي كند. اين آزمايش نظري عملا غير قابل اجراست اما در اينجا با احتساب اينكه مقداري گرما هدر مي رود مي توان الكترونها را به دقت تفكيك كرد. (مثل همان كاري كه شيطانك جلوي دريچه در آزمايش ذهني ماكسول مي كرد!) قصه اينگونه است كه در يك راكتور گداخت بنام توكامك، محققان ميدان مغناطيسي براي نگه داري پلاسما در يك محل خاص بكار مي برند. يعني پلاسما را (كه مجموعه اي از الكترونهاست) درون ظرفي از جنس ميدان مغناطيسي قرار مي دهند. براي اينكار تعدادي از الكترونهاي پلاسما را در ميدان مغناطيسي مي اندازند كه باعث مي شود اين الكترونها دور حلقه اي شبيه به خانه ي حلزون بچزخند و اين خانه حكم ظرفي را دارد كه درونش پلاسما حبس مي شود. اما اين روش نيازمند اينست كه مقدار بسيار زيادي امواج راديويي به درون پلاسما فرستاده شود كه اين مقدار باعث گرم شدن بسياري از الكترونها و اتلاف گرمايي مي شود. نات فيش (Nat Fisch) از دانشگاه پرينستون (Princeton University) و همكارانش تصميم گرفتند كه انرژي لازم براي ظرف را بجاي اينكه به همه جا بفرستند فقط به يك منطقه ي كوچك بفرستند. اين ايده دو نوع ميدان مي خواهد. اول، يك لايه ي نازك از ميدانهاي الكترومغناطيس نوسان كننده مي خواهد كه بطور عمودي محوطه ي پلاسمايي را نصف مي كند و دوم، يك ميدان مغناطيسي ايستا مي خواهد. الكترونها ترجيح مي دهند كه از ديواره ي قوي و نوساني الكترومغناطيسي فاصله بگيرند بنابراين به عقب برميگردند اما ميدان مغناطيسي روي الكترونهاعمل مي كند و آنها را مجددا به جلو هدايت مي كند(مثل يك درب يكطرفه). نمايي از يك پلاسماي حبس شده در يك توكامك. توضيح كاملتر و واضحتر انست كه فرض كنيد يك الكترون به ديوار نزديك ميشود. ميدان مغناطيسي ايستا كه عمود بر ديوار است باعث مي شود كه الكترون روي مسيري حلزوني شكل به سمت ديوار جلو برود. در نزديكي هاي ديوار فركانس اين چرخش رو به جلو با فركانس نوسان ميدان الكترومغناطيسي ديوار هماهنگ مي شود و باعث مي شود كه الكترونها در جاي مشخصي از مدار چرخششان ناگهاني به سمت داخل كشيده شوند. اين شوت شدگي به سمت ديگر ديواره براي تمام الكترونها در همان جهت وجود دارد. يعني فرقي نمي كند كه الكترون به ديواره از كدام سمت نزديك شود. اگر الكتروني مثلا از سمت ديگر به ديوار نزديك شود، ميدان مغناطيسي ايستايي كه الكترونها را رو به يك سمت هدايت مي كند باعث دوري آن الكترون از ديوار مي شود. بنابراين مي بينيد كه ديوار اينجا مثل شيطانك ماكسول كه به يكسو تفكيك مي كرد عمل مي كند. حالا اين تيم در حال عملي كردن اين ايده هستند تا بتوانند با دو ديوار الكترونها را بين اين دو حبس كنند.


منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

hlpmostafa
07-02-2008, 12:57
مغناطیس
علم مغناطیس از این مشاهده که برخی سنگها (ماگنتیت) تکه‌هایآهنرا جذب میکردند سرچشمه گرفت. واژه مغناطیس از ماگنزیا یا واقع در آسیای صغیر ، یعنی محلی کهاین سنگها در آن پیدا شد، گرفته شده است. زمین به عنوانآهنربایدائمیبزرگ است که اثر جهت دهنده آن بر روی عقربه قطبهای آهنربا ، از زمانهایقدیم شناخته شده است. در سال 1820اورستدکشف کرد کهجریانالکتریکیدر سیم نیز می‌تواند اثرهای مغناطیسی تولید کند، یعنی می‌تواند سمتگیری عقربهقطب نمارا تغییر دهد.

در سال 1878رولاند (H.A.Rowland) دردانشگاه جان هاپکینزمتوجه شد که یک جسم باردار در حال حرکت (که آزمایش او ،یک قرص باردار در حال دوران سریع) نیز منشاأ اثرهای مغناطیسی است. در واقع معلومنیست که بار متحرک هم ارز جریان الکتریکی در سیم باشد. جهت مطالعه زندگینامه علمیرولاند فیزیکدان برجسته آمریکایی به کتاب زیر مراجعه شود:

Phusics by John D.Miller,Physics

Today , July 1976Rowland،s البته دو علمالکتریسیتهو مغناطیس تا سال 1820 به موازات هم تکامل می یافت اما کشف بنیادی اورستد و سایردانشمندان سبب شد کهالکترومغناطیسبه عنوان یک علم واحد مطرح شود. برای تشدیداثرمغناطیسی جریان الکتریکیدر سیم می‌توان را به شکل پیچه‌ای با دورهای زیاد درآورد و در آن یکهسته آهنیقرار داد. این کار را می‌توان بایکآهنربایالکتریکیبزرگ ، از نوعی که معمولا در پژوهشگاههای برای کارهای پژوهشی مربوط بهمغناطیس بکار می‌رود، انجام داد.




تولد میدان مغناطیسی


دومین میدانی که در مبحث الکترومغناطیس ظاهر می شود،میدان مغناطیسیاست. این میدانها و به عبارتدقیقتر آثار این میدانها از زمانهای بسیار قدیم ، یعنی از همان وقتی که آثارمغناطیسهای طبیعی سنگ آهنربا (Fe3O4یا اکسید آهن III) برای اولین بار مشاهده شد، شناخته شده‌اند. خواص شمال و جنوب یابی این ماده تاثیرمهمی بر دریانوردی و اکتشاف گذاشت با وجود این، جز در این مورد مغناطیس پدیده ایبود که کم مورد استفاده قرار می گرفت و کمتر نیز شناخته شده بود، تا اینکه در اوایلقرن نوزدهم اورستد دریافت که جریان الکتریکی میدان مغناطیسی تولیدمی‌کند.

این کار تواأم با کارهای بعدیگاؤس،هنری . فارادهو دیگران نشان دادند که این شراکتواقعی بینمیدانهایالکتریکیو مغناطیسی وجود دارد و این دو توأم تحت عنوانمیدان الکترومغناطیسیحضور دارند. به عبارتیاین میدانها به طرز جدایی ناپذیری در هم آمیخته شده‌اند.
حوزه عمل و گسترش میدان مغناطیسی


تلاش مردان عمل به توسعهماشینهای الکتریکی،وسایل مخابراتیورایانه‌هامنجر شد. این وسایل که پدیده مغناطیسی در آنها دخیل است نقش بسیار مهمی در زندگیروزمره ایفا می‌کنند. با گسترش و سریع علوم از اعتبار این علوم اولیه کاسته نمی‌شودو همیشه سازگاری خود را با کشفیات جدید حفظ می‌کند.
مغناطیسهای طبیعی و مصنوعی
بعضی از سنگهای آهن یاد شده در طبیعت خاصیت جذباشیای آهنی کوچک ، مانندبراده‌ها یا میخهای مجاور خود را دارند. اگر تکه‌ای از چنین سنگی را از ریسمانیبیاویزیم ، خودش را طوری قرار می‌دهد که راستایش از شمال به جنوب باشد، تکه‌هایچنین سنگهایی بهآهنربایامغناطیسمعروف است.
یک تکه آهن یافولادبا قرارگرفتن رد مجاورت آهنربا ، آهنربا یا مغناطیده می‌شود، یعنی توانایی جذب اشیای آهنیرا کسب می‌کند. خواص مغناطیسی این تکه آهن یا فولاد هر چه به آهنربا نزدیکتر باشد،قویتر است. وقتی که تکه‌ای از آهن و آهنربا با یکدیگر تماس پیدا کنند ،مغناطشیاآهنربا شدگی به مقدار ماکزیمم (میخ آهنی که به آهنربا نزدیک شود خاصیت آهنرباییپیدا می‌کند و براده‌های آهنربا را جذب می‌کند) می‌باشد.
هنگامی که آهنربا دور شود، تکه آهن یافولادکه توسطآهنربا شده‌اند بخش زیادی از خواص مغناطیسی بدست آورده را از دست می‌دهند، ولی بازهم تا حدی آهنربا می‌مانند. از اینرو بهآهنربای مصنوعیتبدیل می‌شوند و همان خواصآهنربای طبیعیرا دارد. این پدیده رامی‌توان با آزمایش ساده‌ای به اثبات رسانید. خاصیت آهنربایی که به هنگام تماس تکهآهن با آ‌هنربا پیدا می‌شود بر خلاف مغناطش بازمانده که با دور شدن آهن ربا باقیمی‌ماند، مغناطش موقت نامیده می‌شود. آزمایشهایی از این نوع نشان می‌دهد که مغناطشبازمانده خیلی ضعیفتر از مغناطش موقت است، مثلا درآهن نرمفقط کسر کوچکی از آن است.
هم مغناطش موقت و هم مغناطش بازمانده برای درجات مختلف آهن و فولاد متفاوت است. مغناطش موقت آهن نرم و آهن تابکاری شده از آهن نرم و فولاد تابکاری نشده به مقدارزیادی قویتر است. بر عکس مانده مغناطش فولاد ، به ویژه درجاتی از آن که شامل مثلاآمیزهکبالتاست، خیلیقویتر از مغناطش باز مانده در آهن نرم است. در نتیجه ، اگر دو میله یکسان ، یکیساخته شده از آهن نرم و دیگری از فولاد را اختیار کنیم و آنها را در مجاورت آهنرباییکسانی قرار دهیم ، میله آهن نرم قویتر از فولاد آهنربا می‌شود.

ولی اگرآهنربا را دور کنیم، میله آهن نرم تقریبا بطور کلی مغناطیده می‌شود، در حالیکه میلهفولاد مقدار قابل توجهی از خاصیت آهنربایی اولیه خود را حفظ می کند. در نتیجه ،آهنربای دائمی از میله فولادی از میله آهنی خیلی قویتر است. به این دلیل آهنرباهایدائمی را از درجات خاصی از فولاد درست می‌کنند نه از آهن.
آهنرباهایمصنوعیکه بطور ساده با قرار دادن تکه‌ای فولاد در نزدیکی یک آهنربا یا با تماسبا آن بدست آمده نسبتا ضعیف هستند. آهنرباهای قویتر را با مالیدن تیغه فولادی باآهنربا در یک جهت بدست می‌آورند. البته در این حالت نیز آهنرباهایی که بدست می‌آیدکه از آهنربایی که مغناطش به توسط آن انجام شده است، ضعیفتر است. هر نوع ضربه یاتکانی در طول مغناطش عمل را آسانتر می‌کند. برعکس تماس دادنآهنربایدائمیبا تغییر ناگهانی و زیاد دمای آن ممکن است باعث وامغناطش آن شود.
وامغناطش بازمانده نه تنها به ماده بلکه به شکل جسمی که آهنربا می‌شود نیزبستگی دارد. میله‌های نسبتا کوتاه و کلفت از آهن نرم بعد از دور شدن آهنربا تقریبابه کلی خاصیت آهنربایی را از دست می‌دهند. با وجود این ، اگر همین آهن را برایساختن سیمی به طول 300 تا 500 برابر قطر آن بکار بریم، این سیم (ناپیچیده) خاصیتمغناطیسی خود را به مقدار زیادی حفظ خواهد کرد

hlpmostafa
07-02-2008, 12:59
آیا تابحال به این فکر کرده اید کهجرثقیل، چگونه قطعات بزرگآهنرا جابجا می کند؟


آیا تا کنون ملاحظه کرده اید که یک میخ آهنی بعد از چند بار مالش برروی یکآهنربا ، میخهای آهنی کوچکتر از خود را جذب کند؟
برای پاسخ گفتن بهپرسشهای فوق و سوالات دیگر شبیه آنها ، باید اطلاعاتی در مورد آهنربا وخاصیت آهنرباییداشته باشیم. مقاله حاضر تاحدی ما را با این مقوله آشنا می کند.

سنگ مغناطیسیوکهربا، دو مادهطبیعی هستند که از دیر باز ، مورد توجه مردم بوده اند. سنگ مغناطیسی، یک ماده معدنی با خصوصیاتغیر عادی است که آهن را جذب می کند. اگر یک قطعه کوچک از این سنگ را از نقطه ایآویزان کنیم. آن قدر می چرخد تا سرانجام بطور تقریبی در راستایشمالوجنوبقرار گیرد. نخستین بار در کشورهای غربی ، دریانوردان از این سنگ بعنوانقطبنمااستفاده می کردند.



سیر تحولی و رشد :


انسانهای اولیه به سنگهایی برخورد کردند کهقابلیت جذب آهن را داشتند. معروف است که ، نخستین بار ، شش قرن قبل از میلاد مسیح ،در شهر باستانی ماگنزیا واقع در آسیای صغیر«ترکیهامروزی) ، یونانیان به این سنگبرخورد کردند. بنابراین بخاطر نام محل پیدایش اولیه ، نام این سنگ راماگنتیتیامغناطیسگذاشتند که ترجمه فارسی آن آهنربا می باشد. سنگ مذکور از جنساکسید طبیعی آهنبا فرمول شیمیایی Fe3O4 می باشد.

بعدها ملاحظه گردید که این سنگ درمناطق دیگر کره زمین نیز وجود دارد. پدیده مغناطیس همراه با کشفآهنربایطبیعیمشاهده شده است. با پیشرفت علوم مختلف و افزایش اطلاعات بشر در زمینهمغناطیس ، انواع آهنرباهای طبیعی و مصنوعی ساخته شد. امروزه از آهنربا در قسمتهایمختلف مانند صنعت ،دریانوردیو ... استفاده می گردد.



منشا پیدایش :


کهربا شیرهای است که مدتها پیش از بعضی از درختانمانندکاجکه چوب نرم دارند، بیرون تراوید. و درطی قرنها سخت شده و بصورت جسم جامدی نیم شفاف در آمده است. کهربا به رنگهای زرد تاقهوهای وجود دارد. کهربای صیقل داده شده سنگ زینتی زیبایی است و گاهی شامل بقایایحشرههایی است که در زمانهای گذشته در شیره چسبناک گرفتار شده اند.

یونانیانباستان خاصیت شگفت انگیزکهرباتشخیص دادهبودند. اگر کهربا را به شدت به پارچهای مالش دهیم اجسامی مانند تکه های کاه یارانههای گیاه را که نزدیک آن باشد جذب میکند. اما سنگ مغناطیس یک ماده معدنی است کهدر طبیعت وجود دارد. نخستین توصیف نوشته شده از کاربرد سنگ مغناطیس به عنوان یکقطب نمادر دریانوردی در کشورهای غربی ، مربوط به اواخر قرن دوازدهم میلادی است. ولی خواصاین سنگ خیلی پیش از آن در چین شناخته شده بود.



انواع آهنربا :







اساس کار تمام آهنرباها یکسان است، اما به دلیلکاربرد در دستگاههای مختلف ، آرایش و صنعت ، آن را به اشکال و اندازه‌های گوناگونمی سازند، و لذا انواع آن از لحاظ شکل عبارتند از :

تیغهای
میلهای
نعلیشکل
استوانهای
حلقهای
کروی
پلاستیکی
سرامیکی و ...

حوزه عمل :


آهنربا به طور مستقیم و غیر مستقیم در زندگی روزانهبشر موثر است و به جرات می توان گفت که اگر این خاصیت نبود زندگی بشر امروزی بامشکل مواجه می شد. از جمله وسایلی که در ساختمان آن از خاصیت آهنربایی استفاده شدهاست، می توان بهیخچال،قطب نما،کنتور برق، انواعبلندگوها،موتورهایالک تریکی (مانندکولر،پنکه، لوازم خانگی و ...) ، وسایل اندازهگیری الکتریکی مانندولت سنج،آمپر سنجو ... اشاره کرد.



آیا آهنربا بغیر از آهن ، اجسام دیگری را جذب می کند؟


بعد ازپیدایش آهنربا ،دانشمندانبه این فکر افتادند که آیا آهنربا غیر از آهن ، اجسام دیگری را نیز می تواند جذبکند. پس از بررسیها و مطالعات مختلف ، سرانجام مشخص شد که آهنربا در عنصر دیگر بهنامهاینیکلوکبالترا نیز میتواند جذب کند. بر این اساس به سه عنصرآهن، کبالت ، نیکل وآلیاژهای آنها که توسط آهنربا جذب می گردد،مواد مغناطیسیمی گویند. بدیهی است که سایرمواد را که فاقد این خاصیت است،مواد غیر مغناطیسیمی گویند.



روشهای مختلف تشخیص قطبهای یک آهنربا :




اگر یک آهنربا را از وسط بوسیله تکه نخ بسته و از محلی آویزان کنید، آهنربا درراستای شمال و جنوب مغناطیسی زمین قرار می گیرد.


با توجه به اینکه در آهنرباها ، قطبهای همنام همدیگر را دفع و قطبهای غیر همنامهمدیگر را جذب می کنند، لذا اگر یک آهنربای دیگر که قطبهای آن معلوم است، در اختیارداشته باشیم، به راحتی می توان قطبهای آهنربای دیگر را تشخیص داد.


به کمک یکعقربه مغناطیسیو با استفاده از رانش وربایش قطبها نیز میتوان این کار را انجام داد

hlpmostafa
06-03-2008, 00:32
مغناطیس ،از ابتدا تا انتها (غیرتخصصی)
مغناطیس و الكتریسیته تاریخی طولانی و درازی دارند. الكتریسیته و مغناطیس ابتدا در قرن هشتم قبل از میلاد مورد توجه یونانیان باستان قرار گرفتند. مهمترین عاملی كه موجب جذب و توجه مردم به الكتریسیته ومغناطیس شد، دو ماده طبیعی كهربا و كانی مگنتیت(سنگ مغناطیس) بود. كهربا، شیره برخی از درختانی است كه چوب نرمی دارند؛ هنگامی كه این شیره از درخت بیرون می آید، پس از مدتی سفت می شود. این جامد سفت كه رنگی بین قهوه ای و زرد دارد، كهرباست. و اگر كهربا را به پارچه ای بمالیم، باردار شده و می تواند تكه های برگ یا كاغذ را جذب كند. سنگ مغناطیس، همان اكسید آهن است؛ كه براده های آهن را جذب می كند. سنگ های مغناطیسی می توانند یكدیگر را جذب كنند. و علت این نامگذاری آنست كه این سنگ در منطقه ای به نام “مگنزیا” یا “مغناطیس” برای نخستین بار كشف شد. كه به ماهیت این سنگ، مغناطیس گفته می شود. اگر یك تكه از این سنگ ها را بر روی آب شناور كنیم، جهت آن در راستای شمال-جنوب قرار می گیرد. همین خاصیت سنگ مغناطیسی سبب شد كه در قرون گذشته دریانوردان از آن بعنوان جهت یاب استفاده كنند.
دموكریتوس، كه یكی از فلاسفه بزرگ باستان و بنیانگذار تئوری اتمی است، معتقد است كه میان سنگ مغناطیسی جریانی از ذرات بسیار ریز به نام اتم وجود دارد. و در این جریان هنگامی كه اتم به آهن یا سنگ مغناطیسی دیگر برخورد می كند، در برگشت به سوی سنگ مناطیس، سبب می شود كه آهن را به دنبال خود بكشاند. ویلیام گیلبرت یكی از نخستین دانشمندانی است كه در زمینه مغناطیس دست به آزمایش ها و بررسی های اساسی كرد. او مشاهده كرد كه براده های آهن در اطراف سنگ مغناطیس در راستای منظمی قرار می گیرند. و همچنین سنگ مغناطیس در حالت آویزان یا حتی سوزن های آهنی در حالت شناور در راستای شمال-جنوب قرار می گیرند.
او چنین پنداشت كه علت این امر آنست كه زمین یك سنگ مغناطیس بسیار بزرگیست كه اینگونه عمل می كند. او برای اثبات نظریه خود، یك سنگ مغناطیس را به صورت یك كره بزرگ در آورد و سپس در اطراف و بر روی سطح این كره، سنگ های مغناطیسی كوچك و براده های آهنی قرار داد و مشاهده كرد كه این براده ها در راستای شمال-جنوب قرار می گیرند.
قبل از اینكه به بحث در مورد خطوط و میدان مغناطیسی آهنربا و زمین بپردازیم، لازم است كه به قطب های مغناطیسی و خاصیت آن اشاره ای كنیم.
در آهنربا یا همان سنگ مغناطیسی، دو ناحیه وجود دارد كه نسبت به سایر نقاط دیگر آهنربا، خاصیت جذب براده های آهن بیشتر و راستای این براده ها به سمت این نواحی است. كه به این دو ناحیه، قطب های مغناطیسی می گویند. اگر آهنربا را شناور قرار دهیم، قطبی كه به سمت شمال است را قطب شمال یا شمال یاب، و قطب مقابل آن را قطب جنوب یا جنوب یاب می گویند. پس هر ماده مغناطیسی از دو قطب شمال وجنوب تشكیل شده است. در مغناطیس مانند الكتریسیته، قطب های ناهمنام یكدیگر را جذب و قطب های همنام یكدیگر را دفع می كنند. پس در خاصیت مغناطیسی، نیروی دفع وجذب نیز وجود دارد.
آزمایش ها نشان می دهد كه اگر در اطراف یك آهنربا، قطب نما یا سنگ های مغناطیسی كوچك قرار دهیم، نیروی حاصله از مغناطیس بر قطب های آن ها اثر گذاشته، به طوری كه قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعكس قرار می گیرد. و این نشان می دهد، كه در نقاط اطراف آهنربا، نیرویی وجود دارد كه بر قطب های قطب نما وارد می شود و آن را در راستای مشخصی قرار می دهد. كه به مجموعه ای از این نیروها یا نقاط، میدان مغناطیسی می گویند. میدان مغناطیسی اطراف آهنربا را توسط خطوطی نشان می دهند كه این خطوط قطب جنوب(s) را به قطب شمال(n) وصل می كند. و جهت این خطوط از شمال(n) به جنوب(s) است. خطوط میدان مغناطیسی ویژگی هایی دارند كه عبارتند از:



۱) خطوط همانطور كه قبلا گفته شد راستاو جهتشان از شمال به جنوب است. ۲) خطوط یكدیگر را قطع نمی كنند. ۳) تراكم خطوط در نزدیكی قطب ها بیشتر از نواحی دیگر است و این نشان دهنده آن است كه نیروی مغناطیسی در این نواحی زیاد است. ۴) برآیند نیروهای مماس بر خطوط میدان در یك نقطه برابر با نیروی مغناطیسی در آن نقطه است.
اكنون به سراغ علت تاثیر نیروی مغناطیسی بر براده های آهن می رویم. می دانیم كه الكترون در ساختار تمام اجسام وجود دارد كه الكترون ها دارای دو قطب مغناطیسی می باشند. بنابراین می توان نتیجه گرفت كه تمام اجسام از ذراتی تشكیل شده اند كه دارای دو قطب مغناطیسی هستند كه به این ذرات، دو قطبی مغناطیسی می گویند و به موادی كه دارای دوقطبی مغناطیسی هستند، مواد مغناطیسی می گویند.
البته لزومی ندارد كه بگوییم این دوقطبی ها همان الكترون ها هستند بلكه این دوقطبی ها ذرات بنیادی مغناطیس هستند همانطور كه از الكترون بعنوان بار بنیادی در الكتریسیته یاد می كنیم. این دوقطبی های مغناطیسی مانند یك آهنربا عمل می كنند و در اطراف خود میدان مغناطیسی تولید می كنند.
آهن نیز دارای این دوقطبی های مغناطیسی است اما در آهن دو قطبی های مغناطیسی به گونه ای رفتار می كنند، كه خاصیت مغناطیسی یكدیگر را خنثی می كنند. و هنگامی كه در یك میدان مغناطیسی قرار می گیرند، بر این دوقطبی ها نیروی مغناطیسی وارد می شود، به طوری كه قطب شمال تمام این دوقطبی ها در جهت خطوط میدان قرار می گیرند. و آهن ساختار ساختمانی منظمی پیدا می كند و به یك آهنربا تبدیل می شود. كه از آن می توان بعنوان یك قطب نما استفاده كرد. اگر این آهنربا را به دوقسمت تقسیم كنیم، این آهنربا باز هم خاصیت مغناطیسی خود را حفظ می كند، زیرا دوقطبی های مغناطیسی در یك جهت قرار دارند و این دو قطبی ها عامل ایجاد خاصیت مغناطیسی در آهنربا هستند.
سوالی كه پیش می آید این است كه آیا فقط آهن تحت تاثیر میدان مغناطیسی قرار می گیرد؟ برای پاسخ به این سوال برمی گردیم به مواد مغناطیسی كه از دو قطبی های مغناطیسی تشكیل شده اند در مواد مغناطیسی، حركت و رفتار دوقطبی ها به گونه ای است كه اثر میدان مغناطیسی یكدیگر را خنثی می كنند. مواد مغناطیسی از نظر رفتار دوقطبی های مغناطیسی به سه دسته تقسیم می كنند:
الف) مواد پارامغناطیس:
موادی هستند كه حركت و جنبش دوقطبی هایشان راحت و آسان تر است. هنگامی كه این مواد را در میدان مغناطیسی قرار دهیم، بر دوقطبی های آن نیرو وارد شده و تعداد زیادی از آن ها در خطوط میدان به طوری كه قطب های شمال در جهت خطوط قرار می گیرند. و این امر سبب می شود كه این مواد به یك آهنربای قوی تبدیل شود. اما چون حركت وجنبش این دو قطبی ها سریع است، با برداشتن این مواد از میدان مغناطیسی، این دوقطبی ها به سرعت از مسیر خطوط خارج و به حالت كاتوره ای قبلی برمی گردند و این مواد در خارج از خطوط میدان به سرعت خاصیت مغناطیسی خود را از دست می دهند. مانند آلومینیوم.
ب) مواد دیامغناطیس :
مواد دیامغناطیس موادی هستند كه اگر در میدان مغناطیسی قرار بگیرند از آهنربا دفع می شوند. در این مواد برآیند گشتاور دو قطبی مغناطیسی صفر است و در واقع فاقد دوقطبی ذاتی هستند و هنگامی كه در میدان مغناطیسی قرار می گیرند، گشتاور دو قطبی در آن ها القا می شود اما جهت این دوقطبی های القا شده بر خلاف جهت میدان مغناطیسی خارجی می باشد و این امر باعث می شود كه ماده دیامغناطیس از میدان مغناطیسی دفع شود.
البته این خاصیت در تمام مواد وجود دارد، و هنگامی این خاصیت در مواد ظاهر می شود كه خاصیت پارامغناطیسی آن ها ضعیف باشد.مانند: بیسموت.
پ) مواد فرومغناطیس :
این مواد مانند مواد پارامغناطیس است اما با این تفاوت كه در این مواد مجموعه ای از دوقطبی های مغناطیسی در یك جهت و راستا قرار دارند كه این مجموعه ها در راستا و جهت های متفاوتی قرار دارند به طوری كه اثر میدان یكدیگر را خنثی می كنند. كه به این مجموعه از دوقطبی های مغناطیسی كه در یك استا قرار دارند، حوزه مغناطیسی می گویند. هنگامی كه این مواد در میدان مغناطیسی قرار می گیرند، بر حوزه های مغناطیسی نیرو وارد می شود و آن ها را در جهت میدان قرار می دهند. خاصیت مغناطیسی این مواد به سرعت تغییر مسیر این حوزه ها و قرار گرفتن در جهت میدان بستگی دارد. كه از این لحاظ مواد فرومغناطیس را به دو دسته تقسیم می كنند:

۱) مواد فرومغناطیس نرم:
در این مواد سرعت تغییر حوزه ها بسیار آسان و سریع است و به همین خاطر در میدان مغناطیسی این حوزه ها به سرعت در جهت خطوط میدان قرار می گیرند و خاصیت مغناطیسی بسیار قوی بدست می آورند. اما همینكه این مواد را از میدان دور كنیم، جهت این حوزه ها به سرعت تغییر و به حالت كاتوره ای قبلی بر می گردند. مانند آهن
۲) مواد فرومغناطیسی سخت:
در این مواد سرعت تغییر حوزه ها بسیار سخت و كُند است و همین كه در میدان قرار می گیرند، این حوزه ها به كندی در جهت خطوط قرار می گیرند و خاصیت مغناطیسی آن ها نسبت به مواد فرومغناطیس نرم ضعیفتر است؛ اما همین كه از میدان دور می شوند بر خلاف مواد فرومغناطیس نرم خاصیت مغناطیسی خود را حفظ می كنند.مانند آلیاژ های نیكل.
پس مواد پارامغناطیس و فرومغناطیس تحت تاثیر میدان مغناطیسی قرار می گیرند و به یك آهنربا تبدیل می شوند.
در قرن هیجدهم هانس اورستد نشان داد كه در اطراف سیم حامل جریان میدان مغناطیسی ایجاد می شود و بعد ها آمپر و مایكل فارادی در این زمینه دست به فعالیت های گسترده ای زدند. آن ها نشان دادند كه در اطراف یك سیم حامل جریان، میدان مغناطیسی تولید می شود و حتی موفق شدند كه روابط كمی آن را محاسبه كنند. بنابراین منبع تولید میدان مغناطیسی عبارتند از:سنگ مغناطیس یا همان آهنربای طبیعی و جریان الكتریكی. البته بعدها ماكسول نتیجه گرفت كه بر اثر تغییر جریان الكتریكی، میدان مغناطیسی در فضا منتشر می شود و همچنین براثر تغییر میدان مغناطیسی، جریان الكتریكی در فضا تولید می شود كه نتیجه این، امواج الكترومغناطیسی است.
و از طرفی تغییر میزان عبور میدان مغناطیسی از یك رسانا، باعث تولید جریان الكتریكی در همان رسانا می شود. پس منبع تولید میدان الكتریكی عبارتند از: اختلاف پتانسیل بین دو سر رسانا و تغییر شار(میزان عبور میدان) مغناطیسی است.
پس می توان اینگونه نتیجه گرفت كه الكتریسیته و مغناطیس باهم در ارتباطند و به جر‌‌أت می توان گفت كه یكی بدون دیگری معنی ندارد. چون وجود یكی باعث پیدایش دیگری می شود.
می دانیم كه ذرات باردار تحت تاثیر میدان الكتریكی یا نیروی كولنی قرار می گیرند. اگر این ذرات وارد میدان مغناطیسی شوند تحت تاثیر نیروی دیگری كه همان نیروی مغناطیسی است می شوند.
آزمایش ها نشان می دهند كه میزان انحراف ذره باردار به بزرگی میدان، اندازه بار، سرعت و زاویه حركت ذره بستگی دارد. اگر این ذره در راستای خطوط میدان حركت كند، هیچ نیرویی مغناطیسی بر آن وارد نمی شود. نیروی مغناطیسی بر راستای حركت ذره عمود است و بر سرعت آن تاثیری نمی گذارد و فقط جهت بردار حركت آن را تغییر می دهد. به همین دلیل اگر ذره باردار وارد میدان مغناطیسی شود حركت مارپیچی یا دایره ای خواهد داشت. اگر ذره به طور عمود بر راستای خطوط وارد میدان شود، چون اندازه سرعتش ثابت و نیروی وارده بر آن عمود بر جهت حركت است، شتاب مركز گرا خواهد گرفت و این امر موجب می شود كه ذره در میدان یك مسیر دایره ای داشته باشد.
البته ذره باردار بر اثر حركتش مقداری از انرژی خود را به صورت امواج الكترومغناطیسی گسیل می كند و انرژی آن كاهش و سرعتش كم می شود و به همین خاطر شعاع حركت دایره ای آن در طی مدت زمانی، كوچك و كوچكتر می شود. و اگر به صورت غیر عمود بر خطوط میدان وارد شود، حركت مارپیچی خواهد داشت.
همین خاصیت ذرات باردار در میدان مغناطیسی سبب می شود كه ما را از آسیب های ذرات باردار و پرانرژی كیهانی كه به زمین برخورد می كنند، مصون نگاه دارد.
در اطراف كره زمین میدان مغناطیسی وجود دارد و طبق نظریه ای كه گیلبرت پیشنهاد كرد، زمین یك آهنربای بزرگی است كه قطب شمالش در قطب جنوب جغرافیایی و قطب جنوب مغناطیسی در قطب شمال جغرافیایی قرار دارد كه میدان مغناطیسی در این دو قطب نسبت به سایر نواحی دیگر كره زمین قوی تر می باشند.
ذرات باردار و پر انرژی كیهانی كه به سوی زمین می آیند گرفتار میدان مغناطیسی زمین شده و حركت مارپیچی به خود می گیرند كه به این منطقه، كمربند “وان آلن” می گویند.این ذرات با حركت مارپیچی خود به سمت دو قطب حركت می كنند. این ذرات با نزدیك شدن به دو قطب بر اثر برخورد به لایه های بالایی جو قطب شمال و جنوب، مقدار زیادی از انرژی خود را ازدست می دهند كه به صورت تابش آزاد و روشنایی را در دو قطب ایجاد می كنند كه به این روشنایی، شفق های قطبی می گویند.
علت ایجاد میدان مغناطیسی در اطراف زمین و یا آهنربا بودن زمین، سوالی است كه ذهن دانشمندان را در طی چند ده مشغول كرده بود. نظریه ای كه توانست در توضیح علت میدان مغناطیسی موفق ظاهر شود، را بیان می كنیم:
در درون زمین فلزاتی نظیر آهن و نیكل به صورت مذاب و گداخته وجود دارند كه در حال حركت و جنبش هستند. حركت این مواد از هسته شروع شده و به نزدیكی سطح زمین نزدیك شده و دوباره به هسته و مركز زمین بر می گردند. این مواد مذاب با حركت رفت وبرگشتی كه دارند باعث پیدایش جریان الكتریكی در درون زمین می شوند.
از همین خاصیت الكتریكی مواد مذاب درون زمین، برای پیش بینی وقوع فوران آتشفشان یا زلزله استفاده می كنند. جریان الكتریكی كه این مواد مذاب ایجاد می كنند، باعث پیداش میدان مغناطیسی در اطراف زمین می شود. خطوط میدان مغناطیسی به اینگونه هستند كه از هسته به قطب جنوب جغرافیایی وصل و سپس از قطب جنوب به قطب شمال و از آنجا دوباره به هسته وصل می شوند. و به این گونه این خطوط در اطراف زمین رسم می شوند.
قطب های مغناطیسی زمین بر روی قطب های جغرافیایی آن منطبق نیستند و امروزه حدود ۱۱ درجه اختلاف دارند.
بررسی ها و مطالعه آثار نشان می دهند كه میدان مغنطیسی زمین ثابت نیست و تغییر می كند. آثاری كه از روی سنگ های زمین بدست آمده حاكی از آنست كه میدان مغناطیسی زمین به مدت حدود ۸۰۰۰۰۰ سال وارونه بوده و حدود ۱۰۰۰۰۰ سال دچار افت شدیدی می شود. علت این امر آنست كه مواد مذاب و گداخته حركت رفت و برگشتی كاتوره ای دارند كه سرعتشان حدود ۵ سانتی متر در روز است.
و جابجایی این مواد باعث تغییر جریان الكتریكی و درنتیجه میدان مغناطیسی زمین می شود. البته دانشمندان در تلاش هستند تا بتوانند به ساختار كاتوره ای تغییر میدان مغناطیسی در آینده دست یابند.
مغناطیس گرانشی
فضاپیمای Gravity Probe B or GPB بیستم آوریل ۲۰۰۴ زمین را برای جستجوی نیرویی از طبیعت که در وجودش تردید است، ترک کرده است. این نیرو که هیچ وقت ثابت نشده مغناطیس گرانشی (Gravitomagnetism) نامیده می‌شود. نام دیگری نیز که برای این پدیده به‌کار می‌رود کشش چارچوب (Frame dragging) است.
مغناطیس گرانشی بوسیله ستاره‌ها یا سیاره‌هائی که به دور خود می‌چرخند تولید می‌شود. کلیر فرد ویل از دانشگاه واشنگتن می‌گوید "از نظر شکل شبیه یک میدان مغناطیسی است که توسط یک کره (توپ) باردار در حال چرخش تولید می‌شود" بار را با جرم جایگزین کنید می‌شود مغناطیس گرانشی ما در حالی که زندگی می‌کنیم، مغناطیس گرانشی را احساس نمی‌کنیم. اما برطبق نظریه عام اینشتین این حقیقت دارد وقتی که یک ستاره یا سیاهچاله یا هر چیزی که جرم زیادی دارد به دور خود می‌پیچد فضا و زمان اطراف را به دور خود می‌کشد.

Mohammad Hosseyn
11-04-2008, 10:55
پروژه جديد ناسا براي بررسي فعاليتهاي مغناط كره ي زمين


ناسا طرحي را براي بررسي علمي علل پديده طوفانهاي مغناطيسي در اطراف زمين به تصويب رساند .

ناسا پس از بررسي 40 طرح متفاوت طرحي را براي بررسي ديناميك طوفانهاي فضايي كه در شكل گيري شفقهاي قطبي نقش ايفا مي كنند را به تصويب رساند.اين طرح تحقيقاتي بر اساس سياستهاي جديد سازمان فضايي ناسا به تصويب رسيده است كه در آن ناسا به دنبال طراحي و اجراي پروژه هايي است كه با حداقل هزينه داراي بالاترين كارآمدي علمي باشند. در پروژه جديد كه تميس (THEMIS) نام دارد دانشمندان به بررسي زمان و نحوه شكل گيري پديده موسوم به ريز طوفانها (substorms) در ناحيه مغناط كره زمين خواهند شد و همچنين خواهند توانست محل دقيق شكل گيري اين پديده ها را آشكار كنند. ريز طوفانها امواجي از انرژي هستند كه در كمربند مغناطيسي زمين و مغناط كره آن تشكيل شده و منتشر مي شوند. مبدا و خواستگاه اين طوفانك ها بيش از 30 سال است كه مورد مناقشه دانشمندان قرار دارد و هنوز اطلاع دقيقي از نحوه شكل گيري و جاري شدن آنها وجود ندارد. در خلال اين طوفانك ها فعاليتهاي شفقهاي قطبي ناگهان و به شكل غير معمول اوج مي گيرد . به نظر مي رسد با آغاز به كار ماموريت تميس پاسخي به سوالهاي بسيار زيادي كه در اين خصوص وجود دارد داده شود. در اين ماموريت 5 ماهواره مشاركت مي كنند كه در مداري نزديك به مدار استوايي براي مدت 2 سال قرار خواهد گرفت و تلاش مي كنند تا محل ، زمان و نحوه شكل گيري اين طوفانها را در مغناط كره زمين مشخص كننداين طرح كه مطابق برنامه اعلام شده بايد سال 1386 خورشيدي آغاز شود نقشي كليدي در درك فعاليتهاي آب و هواي فضايي و محيط اطراف زمين ايفا خواهد كرد. قابل ذكر است كه ماموريتي ديگري با همين نام (تميس) وجود دارد كه مشغول بررسي حراراتي عوارض سطحي مريخ است و ارتباطي با اين ماموريت ندارد.

منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Mohammad Hosseyn
11-04-2008, 11:05
توانايى نور در حركت دادن مولكول هاى آب


گروهى از محققان دانشگاه آريزونا توانايى حركت مولكول هاى آب به وسيله نور را بررسى كرده و معتقدند كه اين پديده كاربردهاى گسترده اى در شيمى تجزيه و دارورسانى خواهد داشت. پژوهشگران دانشگاه آريزونا (ASU) اثر تقويت كننده نور بر تغيير زاويه تماس آب و سطح را كشف كرده اند كه اين يافته تاثير مهمى در گسترش زمينه نوپاى ميكروسيالات خواهد داشت.

استفاده از يك پرتو نور معمولى براى حركت دادن آب به جاى ميدان هاى الكتريكى مخرب، يا حباب هاى هوا - كه تغييردهنده ماهيت پروتئين ها هستند - و يا حركت اجزاى ميكروسكوپى پمپ ها كه ساخت و تعميرشان هزينه بر و مشكل است، مى تواند به طور قابل توجهى به توسعه وسايل ميكروسيال مورد استفاده در تجزيه نمونه ها كمك كند.

اين وسايل مى توانند 20 تا 30 نوع آزمايش مختلف را بر روى يك قطره خون انجام داده و دسترسى به نتايج را در مدت زمان كوتاهى امكان پذير كنند. علاوه براين شركت هاى داروسازى با استفاده از اين وسايل، داروهاى جديدى را عرضه خواهند كرد كه در مقياس خيلى كوچك ولى به طور همزمان مى توانند چندين اثر داشته باشند. تيم تحقيقاتى ASU اثبات كرده اند كه با كمك نور مى توان تغييرات زيادى در خيس شوندگى سطوح بسيار صاف با پوشش هاى شيميايى ايجاد كرد. با رشد ماهرانه نانوسيم ها مى توان بر يكى از خاصيت هاى فيزيكى سطح به نام جنبش سيالات، در اندازه هاى نانو اثر گذاشت.

تيم ASU هم اكنون قصد دارد با اين روش، وسيله اى را براى انتقال داروهاى محلول در آب يا قطرات و نمونه هاى نيازمند به آناليزهاى بيوشيميايى يا زيست محيطى طراحى كند. كاربرد ديگر، كاهش پروتئين ها يا مقدار آنزيم هايى است كه براى آزمايش طى توسعه دارو مورد نياز است. معمولاً توليد و تخليص چنين داروهايى بسيار وقت گير است و با بازده پايين انجام مى شود. در يك افزاره ميكروسيالى، مقدار DNA و پروتئين هايى كه براى آزمايش داروها به كار مى روند، آنقدر كاهش مى يابد كه مقدار كمى از دارو به هدف رسانده مى شود.

اين امر زمان لازم براى آزمايش تمام دارو را كاهش داده و اجازه مى دهد كه بيشترين تعداد آزمايش به طور همزمان انجام شود. نتيجه علمى اين تحقيق به كار گيرى پرتوهاى نور براى حركت ميكرو قطرات در كانال هاى كوچك بر روى سطح يا قرار دادن آنها در موقعيت هاى از پيش تعيين شده براى آناليز است.

منبع :[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

سامان سپهوار
01-08-2009, 19:14
محاسبه نيروي فوتون رشته اي و مدت زمان انتقال تكانه آن


طريقه محاسبه و مقدار نيروي فوتون ذره اي توسط انجمن فيزيك آمريكا ، طبق سند زير ارايه شده است :




[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]
منبع :
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ] ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ])





اينك روش پيشنهادي ما براي محاسبه نيروي فوتون رشته اي و پيدا كردن رابطه آن با فركانس موج الكترومغناطيسي از قرار زير است :

همانطور كه مي‌دانيم انرژي برابر حاصل ضرب نيرو در مسافت است يعني :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

E انرژي ، F نيرو و d مسافت است . همانطور كه مي‌دانيم انرژي كل فوتون يا كوانتوم موج الكترومغناطيس از رابطه معروف پلانك بدست مي‌آيد يعني :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Ep انرژي فوتون ، h ثابت پلانك و f فركانس موج الكترومغناطيس است . به شكل زير توجه كنيد :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

طرح معادلات براي محاسبه نيروي فوتون رشته اي ، در مرحله اول ميتواند چنين به نظر برسد كه :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Eλ انرژي هر سيكل موج برابر h ثابت پلانك ، λ طول موج ، Fp نيروي فوتون رشته اي ، Pp تكانه ( اندازه حركت ) فوتون ميباشد . همانطور كه در مبحث فوتون ذره اي يا رشته اي ، فوتون يك ثانيه اي يا چند ثانيه اي ، كوانتيده شدن انرژي در همبافته فضا - زمان ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]) گفته شد ، فوتون يك رشته كوانتومي به تعداد f طول موج λ است كه ميتواند تكانه و انرژي كل خود را يكجا و يكباره به مانع يا تراز ، منتقل و يا القا كند . پس معادلات درست به صورت زير طرح خواهند شد :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

و اين همان نتيجه بدست آمده قبلي ، ارايه شده توسط انجمن فيزيك امريكاست منتها با راهكاري جديد همچنين روشن و ساده‌تر ، كه ثابت مي‌كند فوتون و يا كوانتوم انرژي الكترومغناطيسي به صورت رشته اي از طول موجها به تعداد فركانس موج است ، يعني همان مطالبي كه در مبحث فوتون ذره اي يا رشته اي ، فوتون يك ثانيه اي يا چند ثانيه اي ، كوانتيده شدن انرژي در همبافته فضا - زمان ([ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]) ارايه شد و اين نكته مهم كه فوتون حامل نيروي ميدان الكترومغناطيسي نيست ، بلكه حامل نيرو و انرژي نوسان ميدان الكترومغناطيسي متناوب و يا متغير است . براي اينكه ميدان ساكن و بدون نوسان ، هيچگونه تابشي به صورت امواج يا فوتون نخواهد داشت ، و با توجه به معادلات مربوط به جرم ، انرژي ، تكانه و نيروي فوتون در صورت صفر بودن فركانس موج الكترومغناطيس ، تمامي مولفه هاي فيزيكي فوتون صفر خواهد بود و به زبان ساده ، كوانتومي وجود نخواهد داشت . براي نيروي فوتون رشته اي ميتوان به اين نتيجه گيري كلي دست يافت :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

c سرعت نور و mp جرم فوتون ميباشد . علت زياد بودن نيروي فوتون اين است كه فوتون رشته‌اي ميتواند در مدت زمان بسيار كوتاهي تكانه خود را به مانع يا تراز انتقال و يا القا كند . اين مدت زمان ، معادل مدت زمان نوسان يك سيكل موج الكترومغناطيس است يعني :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

Δt مدت زمان انتقال تكانه فوتون رشته اي است . با توجه به اينكه رابطه نيرو و تكانه از قرار زير است :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

ΔP مقدار تكانه انتقال يافته است . رابطه نيرو و تكانه فوتون رشته اي از اين قرار خواهد بود :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

ΔPp مقدار تكانه فوتون انتقال يافته است و اگر تمام تكانه فوتون رشته اي انتقال يابد ، مسلما به همان نتايج قبلي خواهيم رسيد :


[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

در واقع نيروي فوتون رشته اي با مربع فركانس موج الكترومغناطيس رابطه مستقيم دارد .




نمودار فركانس و انرژي فوتون رشته اي
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



نمودار فركانس و تكانه فوتون رشته اي
[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]


نمودار فركانس و نيروي فوتون رشته اي

[ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]



نویسنده : محمدرضا طباطبايي

منبع : [ برای مشاهده لینک ، لطفا با نام کاربری خود وارد شوید یا ثبت نام کنید ]

B.Spears
11-11-2009, 11:29
سلام
من چندتا مطلب لازم داشتم که نتونستم از جایی پیدا کنم ممنون میشم اگه کسی میتونه کمک کنه
1-خط کش های الکترومغناطیس چیست و چگونه کار میکنند؟
2-کاربردهای خازنهای بیش از 1 دی الکتریک چیست؟وچگونه میتوان از خازنها به عنوان سنسور استفاده کرد؟
3-کاربردهای الکترو مغناطیس در مخابرات؟
ممنون

nvb007
13-11-2009, 14:39
کاش کل موضوعات رو در صفحه اول بیاری . یه جوری جمع و جورش کنی

oldgods
18-11-2009, 15:05
درود
کسی میدونه پتانسیل هشت قطبی محوری چطور بدست میاد؟

mr.mrh
30-12-2009, 06:43
از مطالب مفید شما دوستان متشکرم
M.R.H:40:

arm1n
03-02-2013, 13:45
سلام به همه دوستان
کسی میتونه تو این موضوع کمکم کنه
محاسبه روابط تابش موج الکترو مغناطیسی تخت که به یک استوانه رسانا به شعاع r می تابد(عمود بر محور استوانه)
اگه کسی بلده لطفا باهام تماس بگیره